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Entropy production (EP) is a key quantity in thermodynamics, and yet measuring EP has remained a

challenging task. Here we introduce an EP estimator, called multidimensional entropic bound (MEB), utilizing
an ensemble of trajectories. The MEB can accurately estimate the EP of overdamped Langevin systems with
an arbitrary time-dependent protocol. Moreover, it provides a unified platform to accurately estimate the EP
of underdamped Langevin systems under certain conditions. In addition, the MEB is computationally efficient

because optimization is unnecessary. We apply our developed estimator to three physical systems driven by
time-dependent protocols pertaining to experiments using optical tweezers: A dragged Brownian particle, a
pulling process of a harmonic chain, and an unfolding process of an RNA hairpin. Numerical simulations confirm

the validity and efficiency of our method.

DOLI: 10.1103/PhysRevResearch.5.013194

I. INTRODUCTION

Entropy production (EP), referring to the quantification
of the irreversibility of a thermodynamic process, is one
of the most fundamental thermodynamic quantities. The EP
was originally identified in the Clausius form in equilibrium
thermodynamics. More recently, crucial progress in the field
of thermodynamics has been the extension of the EP to
general nonequilibrium phenomena at the level of a single
stochastic trajectory. This extension triggered a renaissance of
thermodynamics, namely the establishment of stochastic ther-
modynamics. Based on the novel EP formulation, EP theories
have been developed and extensively studied over the past
two decades. An early one is the fluctuation theorem [1-5],
which can be understood as a generalization of the thermo-
dynamic second law. Later developments include a group of
thermodynamic trade-off relations such as the thermodynamic
uncertainty relation (TUR) [6—13], the power-efficiency trade-
off relation [14—-18], and the speed limit [19-24].

Subsequently, experimentally feasible methods for mea-
suring the EP have been actively suggested and dis-
cussed [25-39]. In fact, measuring EP is not a trivial task. It
is almost impossible to measure the EP by using its definition,
the logarithmic ratio of forward and time-reversal path prob-
abilities [40], since all path probabilities cannot be measured,
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especially for a continuous system. Instead, there exist two
direct EP measurement methods using the “equality” for the
total EP, AS™. The first method uses the equality AS™ =
AS™ 4+ Q/T, where AS®* is the Shannon entropy change of
a system and Q is dissipated heat into a reservoir at temper-
ature T [40,41]. In experiments, it is difficult to measure the
amount of heat flow accurately with a calorimeter. One may
calculate Q from trajectory data instead, but this requires full
knowledge of the external and internal forces acting on the
system [41]. Therefore, this method is not practically useful
for complicated cases such as a biological system. The second
direct method uses the equality for the average EP in terms
of the probability density function (PDF) and the irreversible
probability current as presented in Eq. (6) of Ref. [30]. The
PDF and the irreversible probability current can be estimated
solely from system trajectories without knowledge of applied
forces in the overdamped Langevin dynamics. Nevertheless,
obtaining them precisely for a high-dimensional system is
infeasible in practice, which is called the “curse of dimen-
sionality.”

To overcome these shortcomings of the direct methods,
several indirect methods using a thermodynamic “inequality”
have been suggested. Here the EP can be estimated from an
ensemble of system trajectories, and the curse of dimensional-
ity can be mitigated by measuring several observable currents
only. The indirect methods are based on an inequality in the
general form of AS'*™ > B(®), where the EP bound B(®) is
determined by an observable current ®. In a certain condition,
one can find an optimal observable current ®*, which yields
B(®*) = AS™. Then, the EP can be accurately estimated by
measuring ©*.

Regarding the above indirect methods, there exist two
representative inequalities. The first inequality is in TUR
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form [6—10], where the EP is bounded by the relative fluctua-
tion of a certain observable current. To access a tighter bound
of this TUR, multidimensional TUR [11] and Monte Carlo
methods [30] have been developed. However, TURs depend
on the nature of the system dynamics; e.g., the TUR must
be modified when a time-dependent protocol is involved [13]
or when a system follows underdamped Langevin dynam-
ics [12,42,43]. Thus, EP estimation based on TURs is not
universal. Moreover, if we use a TUR for an underdamped
system, then EP estimation is not possible from only system
trajectories but rather needs full knowledge and full controlla-
bility of the applied forces [12,42,43]. Thus, no proper method
via TUR exists for estimating the EP solely from system
trajectories for underdamped dynamics.

The second inequality for the indirect method is the
Donsker-Varadhan inequality [44]. Recently, a machine
learning technique named the neural estimator for entropy
production (NEEP) [33,34,37] utilized this inequality as an
optimized function for a given neural network. Though this
technique yields a reliable result in overdamped Langevin
systems, a high computational cost is required for a process
with a time-dependent protocol since the parameters of the
neural network should be reoptimized every single time. Oth-
erwise, this machine learning technique has also been applied
to underdamped Langevin dynamics; however, it has difficulty
in estimating the EP accurately for large inertia [37].

In this study, we propose a unified and computationally
efficient method to estimate the EP by using the entropic
bound (EB) inequality introduced by Dechant and Sasa [17].
Inspired by the multidimensional TUR [11], we use multiple
observable currents to obtain the optimal EB for the EP. Thus,
we call this the “multidimensional entropic bound” (MEB).
The MEB is universal in the sense that it provides a unified
platform to estimate the EP for both overdamped and un-
derdamped systems regardless of the time dependence of the
driving protocol. The MEB can estimate the EP from system-
trajectory information when an irreversible force is absent,
a common experimental setup. When an irreversible force is
involved, additional information about the force is required to
estimate the EP. For an underdamped system, supplementary
information on the velocity relaxation time, which can be
determined experimentally, is necessary to estimate the EP.

This paper is organized as follows. In Sec. II, we derive the
formulas for the MEB and describe the EP estimation process
using it. In Sec. I1I, we explain the relation between the MEB
and various TUR bounds. In Sec. IV, we apply the MEB to
three systems with time-dependent driving forces that can be
realized in experiments using optical tweezers. We conclude
the paper in Sec. V.

II. MULTIDIMENSIONAL ENTROPIC BOUND

The EB is the inequality between the EP and an observ-
able current [17]. As this bound holds for both overdamped
and underdamped Langevin systems with an arbitrary time-
dependent protocol, it can be a good starting point to obtain
a unified and efficient EP estimator applicable to both over-
damped and underdamped Langevin dynamics. In this section,
we introduce the MEB estimator by incorporating multiple
observable currents systematically into the EB estimator.

A. Derivation of the integral and the rate EB

Here we consider an M-dimensional Langevin system with
a state vector q(t) = (qi1,...,qu)", where T denotes the
transpose of a matrix, described by the following equation of
motion:

q(t) =A(q(t), 1)+ /2B(q(1),1) e £(1), ey
where A = (A4, ... ,AM)T is a time-dependent drift force,

B is a positive-definite symmetric M x M diffusion matrix,
and & = (£1,...,&y)" is a Gaussian white noise satisfying
(E(DE;(t")) = 8;;8(t — 1) for i, j e {1,..., M}. The symbol
e in Eq. (1) represents the It6 product. From now on, we
sometimes drop the arguments of functions for simplicity.

A component of g can be an odd-parity variable such as a
velocity under time-reversal operation. The time reversal of a
state g is denoted by § = (g1, . .., Gar)" with §; = €;q;, where
€; = 1 for an even-parity variable and €; = —1 otherwise. The
drift force can be divided into reversible and irreversible parts
as A(q, 1) = A™(q, 1) + A" (q, t) with [45]

A™(q,1) = 3|A(g.1) — e OAT (€ O ¢, 1)],

, @)
A"(q.1) = 3[A(q.1) + € OAT(€ O ¢, 1)],
where € = (¢, ..., eM)T, ©® denotes the element-wise prod-
uct, i.e., a®Ob=1(...,ab, ... )T, and T is an operation
changing the sign of the odd-parity parameters.
The Fokker-Planck equation associated with Eq. (1) is

OP(q. 1) =—VIJ™(q.1) +J"(g.D] . 3

with the PDF P(q, t). The reversible current J*" (g, ¢) and the
irreversible current J" (g, t) are defined as

g1 = A (g, DP(g. 1), @

Ji(g. 1) = A (g, P(g, 1) — ) _ 94, [Byj(g, HP(g, )], (5)
J

with B(e ® q,t) = B(q, ). Note that for an overdamped
Langevin system with even-parity variables only, A™(q, t)
vanishes, and thus J™(q,¢) = 0 and the total current co-
incides with J™(q,¢). As dissipation originates from the
irreversible current, the EP is determined only by J'™(q, ).
Therefore, the total EP rate o' is given by [17,46,47]

irr T —1 girr
O,tot(t) = / qu (‘I» t) B(qv t) J (‘I: t) .
P(q,1)

Hereafter, we use the kg = 1 unit. Note that for underdamped
Langevin systems, the matrix is not directly invertible since
B;j =0 when the component index i or j denotes a po-
sitional variable. For such an index i, we first set B;; = b
(b > 0) and B;; =0 (i # j), then take the inverse of B and
calculate J™(q,1)"B(g, 1)~ 'J™ (¢, ) in Eq. (6), and finally
take the b — 0 limit. Since Ji™(g, t) o b, this limit leads to
Jii”(q, t)zBii(q, t)~! ~ b — 0.For underdamped systems, this
procedure amounts to writing B and J'™ in terms of velocity-
variable components only.

In this study, we consider the following form of an aver-
aged observable current generated by the irreversible current

(6
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during time t:
(O(0)) =/0 dt/dq Ag.0'J"™(q. 1), N

where A(q,1) = (Ay,..., Ay)' is a weight vector of the
irreversible current for a given observable. Then the averaged
current rate at time ¢ is given as

(©@) = f dq Ag,t)'J"™(q, 1). 8)

The EB in an integral form can be derived from Eq. (7) as
follows:

(O(1))

:/ 1 / daP(@, 1) Mg, 1)"B(g, )} 24D 7@ )
0 P(‘I’t)f

< / dt(ATBA),/AS©(T), ©)
0

where (---), = [dq---P(q,t) and the total EP AS™(7) =
Jo dt o'°'(¢t). The Cauchy-Schwartz inequality is used for the
last inequality of Eq. (9). Hence, the total EP is bounded in an
integral form as

(0(0))?

AS{Ot(T) 2 NN
Jo ds(ATBA),

=AS®B(0, 1)

(integral EB). (10)

Similarly, the EB in a rate form can also be obtained from
Eq. (8) as
(©)*

o' t) > —"— =0o"8(O, 1) (rate EB).

= 11
(ATBA), (b

The equality of the integral EB is satisfied when the weight
vector has the following form:

B(g.1)"'J"™(q,1)
P(q,1)

where c is an arbitrary constant that is independent of g and ¢.
This can be easily checked by inserting Eq. (12) into Eq. (10).
The weight vector in this case corresponds to the observable
current proportional to the total EP, i.e., (®©(7)) = cAS™ (7).
Similarly, we find the equality condition for the rate EB
as

A(q,t)=c (for the integral EB), (12)

B(g. )"\ J™ (g, 1)
P(q,1)

where c(t) is an arbitrary time-dependent function that is inde-
pendent of ¢g. This weight vector corresponds to the observable
current rate as (@(t)) = c(t)o'°'(¢). Note that ¢ and c(¢) can
be arbitrary, and thus we may choose ¢ and c(¢) freely in
order to simplify the measurement of an observable current.
A relevant example is presented in Sec. IV A.

A¢(q,t) = c(t) (for the rate EB), (13)

B. Derivation of the integral and the rate MEB

With the knowledge of the functional form of A°(q,1t),
one may obtain the tight EP bound. However, except for

very simple examples, it is impossible to identify A°(q,?)
without knowing all driving and interaction forces. Instead,
we measure multiple observable currents to access a tighter
bound, thereby systematically approaching the total EP. Our
MEB method is analogous to the multidimensional TUR [11]
but is more general in the sense that it can be applicable to
wider classes of Langevin dynamics.

In this method, a linear combination of multiple weight
vectors is adopted to approximate A°(q, t). The linear com-
bination of ¢ weight vectors {A;,...,A;,} for the ith
component is written as

12
Al(.e)(q, l) = Z ki,aAi,a(q’ t)7

a=1

(14)

where k;, is the coefficient for A;,(g,?) and is indepen-
dent of ¢ and z. From now on, we will consider the case
B;; = B;d;; for simplicity. Even when the diffusion matrix
has off-diagonal elements, we can always diagonalize the
diffusion matrix by using a proper transformation of the co-
ordinate if the full information of B;; is given. Thus, we
can still set B;; = B;§;; on the transformed coordinate. In
cases where it is difficult to obtain the information of B; >
and thus not possible to find the proper transformation, we
cannot use the following MEB in component-wise form.
However, even in such cases, we can still derive the MEB
in “component-combined” form, as we show in Appendix C.
The observable in Eq. (7) can be divided into the sum of
its components as (®(7)) = Zﬁl (®;(1)), where (®;(t)) =
Jo dt [dq Ai(q,1)Ji™(g, ). With the ith component current
(®;(t)), we derive the component-wise EB as

(@i(1))°

ASi(T) 2
Jo dt{ABiA;),

(ith integral EB), (15)

where AS;(t) = fof dto;(t) with the ith component EP rate
0i(t) = [ dq Bi(g. )"/ (¢.1)*/P(g,1). Thus, AS®\(r)=
> i ASi(r) and ¢''(t) = ), 0,(t). By substituting Eq. (14)
into Eq. (15), we have

2
Si(t) {kiT(e’('E)(T)> } A8 (ki) (16)
AS(T) > e = A8 k),
kL (0)k;
where k; = (ki1, ..., k,-,g)T and the vector (G)Ee)(t)) =
(O (), ..., (@,-,g(t)))T and the ¢ x ¢ matrix L;(t) are
defined as

(0 4(1)) = / “ar / dq Aio(q,1)J™(g,t) and  (17)
0

(L"), 5= /0 dt(A;o(g. DBi(q. A p(q.1))g.  (18)
respectively. Note that Ll@ (t) is a positive-definite matrix
since zTLl@(t)z = [, dt [dq((3", V/Biliaza)*)q > 0 foran
arbitrary z.

The bound AS';(Z)(k,') in Eq. (16) is a function of k;; thus,
the tightest bound can be written as A8 (k?), where k is the
optimal vector maximizing the bound. The optimal vector is
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obtained by solving the following equation:
8ki,u Agfe)(kl) =0
A (O YKLk, - (©,4) —kT(OF) - (LK), }
= (kTL(E)k,)z .

(19)
We can easily check that the numerator vanishes with the
choice of ki = (Li(z))’1 . ((-)l@(t)). By plugging k; into
Eq. (16), we find the component-wise MEB as

ASi(t) > (@#’(z))T(L}“(r))’l(@),@(r)) = ASPO(D),
(20

By summing over all components, we finally obtain our main
result, namely MEB in integral form, as follows:

M
AS®(T) = > ASE (1)
i=1

= ASMEBO)(7) (integral MEB). (1)

We can also derive the MEB in rate form. The derivation
of the rate MEB is essentially the same as that of the integral
MEB. It starts from the component-wise rate EB as

(©:(1))?

q

(ith rate EB). (22)

In this case, it is usually sufficient to choose a time-
independent basis as

14
1\1('6)(q7 t) = Z ki,a (I)Ai,ot(q)7 (23)

a=1

where the time dependence is encoded in the coefficients
instead of in A; (q), as the equality condition in Eq. (13) also
allows a time-dependent overall multiplicative coefficient.
Following the same derivation procedure as in Eqs. (16)—(21),
we finally obtain

O ) (LO0) (6" 1))

M=

O_tot(t) 2
i=1

MEB(¢)
o; @)

Il
.ME

12

= oMEBO (1)  (rate MEB), (24)

where the vector (@fe)(t)) = ((®i,1(l)), A (@i,g(t)))T and
the £ x £ matrix LEZ)(‘E) are defined as

(©,0(0)) = / dq Ara@J™(q.1) and (25

(Li71), 5 = (Aia@Bi@, DA s (@) (26)

The total EP during a finite time t can be evaluated by inte-
grating o MEB®) (1) over time.

The weight vectors for the rate MEB are not time de-
pendent, so we need a lower number of weight vectors to
approximate A¢(q,t) compared to the integral MEB where
time-dependent weight vectors are necessary. In practice, too

many weight vectors can overfit all the fluctuations originating
from a finite number of trajectories, sometimes giving rise to
an undesirable result. Thus, the rate MEB is usually preferable
in estimating the EP for a system driven by a time-dependent
protocol.

The MEBs in Egs. (21) and (24) are the maximum bounds
for a given finite number of observables. If we add one more
observable to the existing ¢ observables, then the MEB be-
comes tighter, i.e.,

ASYEED (@) — ASIPO(@) > 0,
>

aiMEB(€+1)(t) _ aiMEB(Z)(t) 0. 27

The proof of Eq. (27) is basically the same as that presented
in Ref. [48]. To be self-contained, we include the proof in
Appendix A. As we increase ¢, the MEB estimator also in-
creases and eventually saturates to the maximum value, i.e.,
AS;(t) or o;(¢). It can often saturate even at finite £ = £ for
simple systems. Therefore, by observing the saturation regime
in a plot of the EP estimator versus ¢, we can accurately
estimate the total EP (see Sec. IV) without resorting to a
time-consuming optimization procedure.

There exists no limitation for choosing a set of ¢ weight
vectors as long as they are linearly independent of each other.
In this study, we adopt a Gaussian weight vector set [49] for
numerical verification of the rate MEB method in Sec. IV.
The first weight vector is a Gaussian function, the width of
which corresponds to the difference between the maximum
and minimum state values. The second and third weight vec-
tors are Gaussian functions with a width half that of the first
one, and so on. This represents one way to add the Gaussian
basis uniformly for a given state-variable range, which yields
an accurate and reliable EP estimation as shown in Sec. IV.
The mathematical expression for the weight vector set is as
follows:

{Aigh={... exp[ = (@i — @) /267, ). ... ). (28)
In Eq. (28), a; , and b; , are given as
{aiata<e = {3 + 37, 3™ + 1™,
X gt 4 2gM 3gmn 4 bgm, L)

{bi,a}a<€ = {Aq17 %AQH %AQH %A%, %Aqlv %Aqh AR }7

where g"™* (ql’.“i“) is the maximum (minimum) value of ¢;
in a given trajectory ensemble and Ag; = g™ — g™, Ex-
plicit forms of a; , and b; o, are given as a; , = qlmi“ + [u(a) +
17 o — “UD=DIA G and b; o = Ag;/u(er) fora > 1 with
u(n) = LHTWJ. Here |x] = /7, where 1 is an integer sat-
isfying /i < x < m 4+ 1. We note that the Gaussian weight
vector set usually yields reliable estimation results com-
pared to other sets. For example, the polynomial basis set
{4i, 47, ..., q'} typically overestimates the EP with large fluc-
tuations when ¢ is large, since the polynomial term with a
large exponent is highly sensitive to rare-event data.

C. EP estimation procedure via MEB

In this section, we describe how to estimate the EP with the
MEB from an ensemble of system trajectories. Here we con-
sider both overdamped and underdamped Langevin dynamics.
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For an overdamped system, the system states consist of only
position variables, i.e., g(t) = x() = (x1, ..., Xxy), and the
Langevin equation is written as

1
x() = ;Fi(q(f),l)-i-\/ 2Bi(q.t) @ &(2), (29)

where F; is a force applied to the x; component. The reversible
current J{® = 0, while the irreversible current is given as

. 1
Jilrr(q» t) = |:;E(qv t) - ax;Bi(q$ t)i|P(qs t)' (30)

In the case of underdamped dynamics, the system states
consist of both position and velocity variables, i.e., g(t) =
(X1, ..., XN, V1, ...,0y) With M =2N, and the Langevin
equation is written as

)&,‘ =V;
1
vi(r) = ;E’(Q(t)’ 1) — %v +V2Bi(q,t) e §(r).  (31)

As done in Eq. (2), the external force F; can be divided into
reversible and irreversible parts as F; = F®" 4+ F™ with

F;reV(q’ t) = %[E(% 1)+ F}T(E ©gq,1)],
Fviirr(q’ t) = %[E(q’ t) — ET(G @ q, t)]
Then, the irreversible currents are given as

J"(g.1) =0,

(32)

J:’T(qv t) = [ZF;HT(qa t) - %Ui - av,Bl(qs t)}P(qa t) s (33)

while the reversible currents Ji*'(q,t) = v;P(¢q,t) and
T (g, 1) = 5 F' (g, )P(q, 1).

We focus on the rate MEB in the following discussions but
note that the procedure for the integral MEB is essentially the
same.

1. Determination of B; and L;
For an overdamped dynamics described by Eq. (29), the
diffusivity B; is determined from the average of short-time
mean-square displacements as

5xi(t)?
% (overdamped),

Bi(q,t) = lim 34)
8t—0

where 8x;(t) = x;(t + 6t) — x;(t) and (- - - ) (4,1) denotes the av-
erage over the trajectory ensemble at position ¢ and time 7.
When B; is independent of position and time, all short-time
trajectories can be utilized for estimating the diffusivity. For
an underdamped dynamics, B; can be estimated from the
ensemble of velocity trajectories as

Sv;(t 2
Big. 1) = tim UOV@0 o derdamped),  (35)
510 5t
where 6v;(¢) = v;(t 4+ 8t) — v;(¢). With these estimations

for B;, we calculate (I._E[)(t))a’ﬁ from Eq. (26). Note that

(1) .
limg; 0 W = 0 in the underdamped case. In the case

where the estimation of B;(q, t) requires heavy computation,
instead of evaluating the diffusivity, we can directly estimate

the (I'_El)(t))a, s matrix from the average of the products of two
infinitesimal observable changes as

(L), , = (Mia@Bi@. DA s (@)
~ (Ara(@) 0 8i - Mip(@) 0 343)g/(251).

When the diffusion matrix has nonzero off-diagonal terms,
we first have to directly evaluate B;; = limg;—.0(6¢i84;)q.1)/ 5t
and find the proper transformation to diagonalize the matrix.

(36)

2. Measurement of an observable current

Now we describe how to measure the observable cur-
rent rate in Eq. (25) for both overdamped and underdamped
dynamics. First, in the overdamped dynamics with g(¢) =
(x1, - .., xp), the ith component of an observable current rate
can be measured by averaging A;,[q(t)] o x;(¢) over the en-
semble of system trajectories as

(©ia(1)) = (Aialq()] 0 %)) g

where o denotes the Stratonovich product. This can
be checked from the fact that (H(q,t)oXi)qg: =
[dqH(g, t)J™(q,t) with an arbitrary function H(q,1).
For A, ,(q) = 1, the observable current is the displacement in
the x; direction as ©; ,(7) = x;(t) — x;(0).

In the wunderdamped dynamics with ¢q(¢) =
(x1, .. ., Uy), by plugging Eq. (33) into Eq. (25),
we have

(37

<5 XN, Ul ..

R 1 .
(O () = —%(Ai,aw)v»q +—(Aia@F (. D)

+ Bi(q. 1)(0y, Aiw(q))g-

When F™ = 0 and A;, has no explicit velocity dependence,
the observable current is proportional to (A;«(q)v;)g, simi-
larly to that of the overdamped system, Eq. (37). However,
extra information y/m is required to evaluate Eq. (38) in
the underdamped case. This constant can be determined ex-
perimentally by measuring the velocity relaxation time [50].
Otherwise, when Fl.irr =0 and A;, has an explicit velocity
dependence, extra calculation of the last term in Eq. (38) is
necessary. For the most general case with F™ = 0 (velocity-
dependent force), (®;,(t)) cannot be determined solely by
system trajectories, but rather concrete information on the
force is necessary.

(38)

3. EP estimation

Utilizing numerical data for I;Ee) and (@,‘,a(t)) obtained
in Secs. IIC1 and I1C2, one can evaluate oMEB®)(¢) from
Eq. (24) and then obtain SMEBO() = [*dr oMEBO)(¢) for
each¢ =1,2,3,.... As proved in Sec. II B, MEB®)(7) is an
increasing function of £ and saturates to the maximum value
at some £**. This saturation indicates that A’ coincides with
Af(q, 1), thus satisfying the equality of the EB. Therefore, the
total EP corresponds to the MEB estimator at £ = £, i.e.,
AStOt(T) — EMEB(PQ[)(T).

III. RELATION BETWEEN MEB AND TUR

In this section, we discuss the relation between MEB
and TURs. We first consider a one-dimensional (1D)
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overdamped Langevin dynamics in the steady state (without
a time-dependent protocol) as described by Eq. (29). The
total EP AS™'(¢, ') during a small time segment between ¢
and ¢’ =t + 8t and the corresponding accumulated current
O(t,t') are written as

p
AS®(t, 1) = AS' (") — AS©' (1) = / dt a"\(1),

t

O@,t)=0@)—-01) = / dt A(x(t),1) ox(2).

(39)
Then, the TUR is given by
o, oo 2000 1)
AS®Y iz, 1) > BAOC T (40)
where (O(z, 1)) and AO(z, t') are
(O(t,1)) =/ dt/dx AQx, )™ (x, 1),
AO(t, 1) = 0O(,t') — (O, t)). 41)

In the short-time limit §t — 0, (O(t, 1)) = (O(t))8t and
(AO(t, 1)) = ((A o 8x — (O())81)?) = 2(ABA) 8t +
O(6t%). With these short-time forms, Eq. (40) becomes
identical to the rate EB equation (11). Therefore, the
previous EP estimation methods using the multidimensional
TUR [11,49] are identical to our MEB method for a 1D
overdamped Langevin system in the short-time limit. For a
higher-dimensional process, it is not possible to write the
component-wise TUR, such as AS;(t) > 2 <g")@;f2>;), and
consequently we cannot obtain the component-wise bound
for the EP from the TUR. In this sense, the MEB provides
more detailed information on the EP, compared to the TUR
method.

We note that other modified TURs with an arbitrary time-
dependent protocol or an arbitrary initial state do not approach
the rate EB in the short-time limit even in one dimension.
As an example, consider a 1D overdamped Langevin system
driven by a time-dependent protocol. The modified TUR for
this process with an arbitrary protocol was introduced by
Koyuk and Seifert [13] as

2[h@") (O, )17

_ KS /
GRS = ASKS@, 1), (42)

AS© (1) >

where /(1) =19, — wd,, and w denotes the protocol speed.
In the 87 — O limit, the numerator of ASXS(r,#’) becomes
2{(1 — wd,){O())}*8¢%, and thus this TUR is written as

2{(1 — 0d,)(O(t)))?
(ABA),

o' (1) > =01, 43
which is different from the rate EB in general. Note that we
have to evaluate the sub-leading-order contribution when the
numerator vanishes in Eq. (43). Experimental estimation of
o®5(¢) is a very laborious task since we need a sufficiently
large ensemble of trajectories, slightly perturbed with respect
to w at time ¢ for every single ¢. Therefore, compared to
this modified TUR method, MEB is a much more efficient

approach to correctly estimate the EP of a system driven by a
time-dependent protocol.

In addition, short-time TURs for underdamped dynamics
do not correspond to the rate EB either. The TUR for a
1D underdamped system with a time-dependent protocol and
the observable current (®(z)) = (A(x, t)v), can be written
as [43]

2[h, (1) (O, 1) ?

AS©(t, 1) >
0 (AO(t,1)?)

— 1), (44)

where f, (1) = 18, — 59, — rd, — wd, and I(r) is the initial-
state dependent term, defined as I(¢) = 2((1 + fz; InP(x, 1))?)
with ﬁ; = X0, — §0; — rd, — wd,. Here s and r are scal-
ing parameters for force and position, respectively. In the
8t — 0 limit, since O(z, 1) = Avdt, (AB,t")?) = ([Av —
(O(1))1*)8¢%, which is not O(8¢) [51]. Thus, in the 8§t — 0
limit, Eq. (44) becomes

2[(1 — 59 — rd, — @3, ) (O]
([Av = (©1))]1?)

which is also different from the rate EB. For evaluating
Eq. (45) experimentally, slight scalings of all forces and po-
sition variables are necessary, which demands full knowledge
and full controllability of all forces. Thus, it is clear that the
underdamped TUR is not practically useful to estimate the EP
for a complicated system, such as complex biological systems
where such detailed information is not available.

We conclude that the MEB is a unified tool that enables the
efficient estimation of the EP from a trajectory ensemble for
an overdamped or underdamped Langevin process without an
irreversible force. Finally, it is interesting to note that the inte-
gral MEB can be tight when we choose the optimal observable
current, a feature that no finite-time TUR can achieve.

o ()8t > —1(t), (45)

IV. NUMERICAL VERIFICATION OF MEB

In this section, we estimate the EP of three physical
systems driven by time-dependent protocols via the MEB
method. All these systems can be realized experimentally us-
ing optical tweezers. The first example is a dragged Brownian
particle, the second is a pulled harmonic chain, and the last is
an RNA unfolding process. We also compare the MEB results
to those of other well-established EP measurement methods,
namely the direct method utilizing AS™ = AS®S + Q/T and
a machine learning technique (NEEP) [33,34,37].

A. Brownian particle dragged by optical tweezers

We consider a 1D Brownian particle dragged by optical
tweezers as illustrated in Fig. 1. The center of the harmonic
potential of the tweezers is initially (# < 0) located at the
origin and moves with a constant speed w for ¢ > 0. Then the
corresponding overdamped Langevin equation for the position
x(t) is written as

() = —pklx(t) — A()] + V2BE(1), (46)

where A(t) = wt is a time-dependent protocol, u is the mo-
bility, & is the spring constant of the harmonic potential, and
B = uT with the environmental temperature 7. The initial
state at t = 0 is set as the equilibrium state. As the driving
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FIG. 1. Plot for the rate EP estimator & normalized with respect
to the total EP rate o''(r) as a function of time 7. The green solid
and red dotted line denote the MEB results of the overdamped
and underdamped dynamics, respectively. The orange dashed line
represents the result of the modified TUR by Koyuk and Seifert,
o®5(t)/o"°'(t). The parameters used for this plot are k = 4 = w =
T = 1. The inset shows a schematic of the Brownian particle dragged
by optical tweezers. Note that these plots are obtained from the
analytic expressions.

force is linear in position, we can solve the equation of motion
analytically. The procedure for deriving the analytic solutions
is presented in Appendix B.

We measure the displacement of the particle, that is, we
take the weight vector A(x, t) = 1. With this observable cur-
rent, we evaluate the rate MEB estimator oMFB(¢) for each
time ¢ analytically and plot the results in Fig. 1. Note that
the normalized estimator is defined by & = oMEB(t)/5%!(r),
which turns out to be unity, i.e., the estimated EP exactly
matches the true EP. This is a rather surprising result, as we
use only one current (displacement). In fact, one can analyti-
cally find the tight weight factor A°(x, ¢) in Eq. (13) with the
help of the exact solution in Eq. (B8) as

T (x, 1)

A(x,1) = c(t)BP(x 0

J— i — —Z/T,L
—c(t)MT(l e ), 47)

where t, = 1/(uk). Note that A¢(x,7) is x independent.
Thus, by choosing the arbitrary c(¢) to cancel the ¢ dependence
exactly in Eq. (47), one can easily see that the unity weight
vector A = 1 also satisfies the equality condition of the rate
EB.

For the purpose of comparison, we also plot the ratio of
the modified TUR by Koyuk and Seifert [13] to the EP rate
in Fig. 1. For evaluating the ratio of this example, the sub-
leading-order terms that we neglected for deriving Eq. (43)
are necessary since the numerator in Eq. (43) vanishes in this
example, so we calculate ASXS(¢ + 8¢,1)/AS(t + 8t,t) with
small 6z = 0.001. This approximated ratio coincides with the
result in Ref. [13]. The modified TUR deviates largely from
the correct one for small ¢. This confirms that our MEB
method outperforms the modified TUR method for this simple
case.

We also consider the same process in the underdamped ver-
sion. The corresponding underdamped Langevin equation is

written as

x(t) =v(@) 48)

1 k
0(t) = _m_uv(t) — —[x() = 2O] + V2BE(1),

where A(t) = wt and B = T /(um?). The initial state is also
set as the equilibrium state. The analytic solution of this
equation is also available via similar procedure for solving
Eq. (46). The derivation is presented in Appendix B. From
Eq. (B14), the tight weight vector is obtained as

P(x,v,t) —

T
A v, 1) = ey D) c(t)[ m(?v(f»} (49)
B T

where (v(t)) is evaluated by taking the time derivative of
(x(¢)) in Eq. (B12). We find that A°(x, v, ¢) depends only on
time but not position, like in the overdamped case. Therefore,
the unit weight vector again provides the EP exactly. The
analytic result of & = oMEB(#)/5!(¢) for this underdamped
dynamics is also plotted in Fig. 1, which confirms the exact
estimation of the EP from the rate MEB by measuring only
the displacement.

B. Harmonic chain pulled by optical tweezers

The next example is an M-bead harmonic chain dragged
by optical tweezers as illustrated in Fig. 2(a). The harmonic
potential of the optical tweezers is exerted on the rightmost
particle of the chain, and the leftmost spring clings to the
wall. Here we consider an overdamped Langevin dynamics
described by

x(1) = —puKx(t) + pkd(t) + V2BE®), (50)
where Kij = 2k8l‘,j - k((SH—l,j + (Si—l,j)’ )\i = a)ISM,,-, and

Bij = uTé;; with i, j € {1,..., M}. We can solve Eq. (50)
in a similar way used for the dragged Brownian particle. The
derivation details are presented in Appendix B.

For validating the MEB estimator, we generate 10° trajec-
tories of T = 1 by solving Eq. (50) numerically with M =5
and T = 1 via the second-order stochastic differential equa-
tion integrator. We set the time resolution df to 0.01. The
initial state of the chain is in equilibrium, with the center
of the harmonic potential being located at the origin. From
the trajectories, we estimate AS;, the EP for the ith bead,
by using the rate MEB estimator with the £ = 4 Gaussian
weight vector set. The estimated data are plotted in the inset of
Fig. 2(b). As the figure shows, the estimated EP of each bead
perfectly matches the analytic result. We plot the total EP by
adding all these AS; in Fig. 2(b). For comparison, we also
estimate the total EP with the NEEP machine learning tech-
nique [33], which coincides with the MEB result precisely.
The detailed procedure for the NEEP calculation is explained
in Appendix E. Both methods exactly estimate the total EP
within 0.5% error.

Figure 2(c) is a plot of the total EP at r = 1 against the
number of weight vectors. Surprisingly, the EP estimated by
the MEB with only one weight vector is already very close to
the analytic result. This is due to the fact that a constant weight
vector results in the exact EP value in this system, as explained
Appendix B. As a Gaussian function with a broad width can
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FIG. 2. (a) Schematic of the harmonic chain pulled by optical tweezers. (b) Estimated EP via the MEB method (black) and the NEEP
method (green) as a function of time 7. The inset shows the EP of the ith bead. O, x, +, [J, and ¢ represent the estimated EPs for x1, x,, x3, X4,
and xs beads, respectively. Solid lines denote the analytic results. Four Gaussian weight vectors are used for the MEB estimation. (c) Plot of
AS™ att = 1.0 against the number of weight vectors £. The green dashed line represents the NEEP result, while the red solid lines in (b) and
(c) denote the analytic results. The parameters used for these plotsare k =5, u = 1,w =5,and T = 1.

be approximated as a constant, the EP can be approximately governing equation of motion in this case is

estimated solely with the broadest Gaussian function. The

EP for £ > 1 saturates to the analytic result as expected in 2(t) = fiaslx()] + ot + V2DE(1), (51
Sec. IIB. In Fig. 2(c), we also plot the result of the NEEP
calculation, which is also close to the analytic result.

To test the performance of the MEB method for a high-
dimensional system, we perform the same simulation with
M = 100. The estimated EP from the MEB method is 14.4,
which is only 3.5% distant from the analytic result, 13.9. We
note that this accurate estimation is infeasible for the direct
(plug-in) method for such a high-dimensional system.

where x(¢) is the distance between the two ends of the RNA
at time ¢. The force function fj47 is estimated from coarse-
grained molecular dynamics simulation data when the RNA
is pulled by a 14.7-pN force [52], where a polynomial func-
tion of degree 10 is employed to fit the force. The reflection
boundary condition is imposed at Xy, = 1.01 nm and xpx =
9.07 nm, as distances larger than xp,,x and smaller than xp;,
were not found in the simulation [52]. We set the initial
condition as the equilibrium state at room temperature 300 K,

C. RNA unfolding process which is an ordinary experimental setup. During the process
The final examp]e is an RNA unfo]ding process, which time T = 7.19 ns, the pulhng force linearly increases up to
involves a nonlinear potential and thus an analytic treatment 19.7 pN with a constant rate w = 7 19 pN/ns. We generate

is not possible. A typical experimental setup consists of a 10° trajectories from the simulations. The time resolution dt
single RNA hairpin molecule whose terminals are connected  is set to 79.1 ps. The initial and final distributions at# = 0 and
to DNA handles that are controlled by two optical tweez- T are presented in Fig. 3(a), respectively.

ers, as illustrated in Fig. 3(a). By moving the center of the We estimate the total EP by evaluating the rate MEB from
rightmost optical tweezers, a pulling force is exerted on the  the trajectory ensemble. Here we use the Gaussian weight
rightmost particle and the RNA is unfolded. For the RNA  vector set from Eq. (28) for evaluating the rate MEB estimator.
hairpin P5SGA [52], a pulling force that amounts to 14.7 pN  Figure 3(b) shows a plot of the estimated EP as a function of
yields equal probabilities for folded and unfolded states. The  time for £ = 4. As the analytic expression of the EP for this

(@ (b) ©
5 6.0
[T t=0ns (14.7 pN)
041 1 —719ns 197pN — 41 55
9 —
= 5.0 o A oo
@0'3 =3 .i?
o2 = 5 450, °
2 0
M e <] 4.01
0.1 w : a4, O MEB O MEB
3.51
. ® NEEP ---- NEEP
0.0 01
! 8 0 2 4 6 3.0 2 2 6 8 10
z [nm
[ ] t [ns] ¢

FIG. 3. EP estimation results for the RNA unfolding process. (a) Histogram of the distance x between the two ends of PSGA at initial time
0 ns (light blue) and final time 7.19 ns (orange). The inset shows a schematic of the RNA pulled by optical tweezers. (b) EP estimated via
MEB with four Gaussian weight vectors (black) and NEEP (green) as a function of time z. The red solid line denotes the results obtained from
Eq. (52). (c) Estimated EP via MEB at # = 7.19 ns as a function of the number of weight vectors £ (black). The green dashed line and the red
solid line denote the results of the NEEP and the EP obtained from Eq. (52), respectively.
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system is not available, we evaluate the EP using other numer-
ical methods to check the validity of the MEB method. First,
we employ the NEEP using the same trajectory ensemble and
present the result in Fig. 3(b). We find that the MEB and NEEP
results coincide with each other precisely. Second, we apply
the direct method using the following equality:

1 T
AS(2) = ASV(D) + / (Lfrar () + ot] 0 H)dt, (52)
0

where AS*Y$(t) = (—In p(x, 7) + In p(x, 0)). The integration
over the process time of the last term in Eq. (52) denotes the
dissipated heat during the process. The initial and the final
PDFs can be estimated from the trajectory ensemble. This
task becomes much harder with increasing system dimension.
The estimated total EP from the direct method is denoted as
the red solid line in Fig. 3(b), which matches the MEB and
NEEP results very well. We note that the computational cost
of the MEB method is lower than that of the NEEP method;
it takes 3 s for the MEB method with four weight vectors,
while it takes 60 s for the NEEP process including the learning
time [53]. Here we do not take into account the time required
to find the proper hyperparameters for the NEEP.

Figure 3(c) shows the way to determine the proper number
of weight vectors £. From a given trajectory ensemble, we
estimate the total EP by using the MEB estimator; the esti-
mated EP as a function of ¢ for this RNA unfolding process
is plotted in Fig. 3(c). For ¢ < 3, the estimated EP increases
as ¢ increases, which indicates that no combinations of two
Gaussian weight vectors, Eq. (23), are sufficiently close to the
optimal weight vector, Eq. (13). The estimated EP saturates to
a certain value for £ > 3, which indicates that the estimator is
now sufficiently close to the optimal one. Thus, accurate EP
estimation can be obtained by choosing ¢ > 3. We also ex-
amine the dependence of the time resolution of an experiment
and a limited number of trajectories on the EP in Appendix D.

V. CONCLUSION AND DISCUSSION

In this study, we suggested an EP estimator, named MEB,
by applying multidimensional observable currents to the en-
tropic bound. The MEB provides a unified way to estimate
the EP for both overdamped and underdamped Langevin dy-
namics regardless of the time dependence of the protocol. The
MEB estimator can be obtained in either integral or rate form.
The tight EP bound is always achievable for any finite-time
processes via both the integral and the rate MEBs, whereas
it is possible for TURs only in the short-time limit. From
numerical simulations, we confirmed that the MEB estimates
the EP with high accuracy from an ensemble of system trajec-
tories of overdamped Langevin systems. For an underdamped
system with an irreversible force, information about the force

J

A B]' _[A'4+A'B(D-CA-'B)!CA"!
cC D| = —(D—CA-'B)~'CA""!

. . £+1
the inverse matrix of Lf 1 can be expressed as

0

—1
[Le] = [('-5”) 8] +{n=bT[L"] 5} ad”,

is additionally required to estimate the EP. Moreover, extra
information on the relaxation time is necessary for under-
damped systems. Therefore, a precise estimation of the EP
may be possible via MEB even for various complicated phys-
ical processes, in particular biological systems.

In future research, it will be interesting to develop a method
to estimate the stochastic EP at the level of a single trajectory
for general Langevin dynamics rather than the averaged EP
over an ensemble of trajectories. Moreover, the extension of
the EP estimation to an open quantum system will be another
intriguing problem. The quantum TUR recently proposed in
Ref. [54] could be a good candidate for an estimator of
the EP of an open quantum system, if one can measure the
coherent-effect term in the formulation. It is also worthwhile
to mention the recently proposed method for directly inferring
the stochastic differential equations from a given trajectory
ensemble [55,56]. It would be interesting to compare the
accuracy and efficiency of EP estimation between MEB and
the inferring method.
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APPENDIX A: DERIVATION OF EQ. (27)

Here we focus on the derivation of the integral MEB. The
derivation for the rate MEB is essentially the same as that of
the integral MEB. L;Hl) can be expressed as the following
block matrix form:

e _[LO
i T | T ’
b h

where b' = [(Li)es11s - s (Lesre] and b= (L)err o1 =
fOT dt(A; e11BiA; ¢41)q. From the Schur complement, the de-

terminant of the block matrix Lf“l) in Eq. (A1) is given by

(AD)

det(LD) = det (L) [ =T (L) 'B].  (A2)
The determinant of Ll(.l) for any ¢ is positive since it is
a positive-definite matrix. This implies that the term & —
bT(L(l))’lb in Eq. (A2) is also positive. Moreover, via the
following inverse block matrix formula:

—1 —-1Ry-1
—A-'B(D-CA'B) } (A3)

(D — CA~'B)!

(A4)
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where d' = (—bT(le)_', 1). Using Eq. (A4), we can prove
Eq. (27) as follows:
ASMEB(+D _ <®ge+1)>T(Lge+1))71<®(e+1)>
= A5 (1= T[] ) a0

> ASMERO. (AS)

The positiveness of 7 — bT(LEK))’lb is used for showing the
last inequality of Eq. (AS5).

APPENDIX B: ANALYTIC SOLUTIONS OF A DRAGGED
BROWNIAN PARTICLE AND PULLED HARMONIC
CHAIN BY OPTICAL TWEEZERS

We consider a Brownian particle dragged by optical
tweezers of which dynamics is governed by the following
equation [13,57]:

X(1) = —pklx(r) — ()] + V2BE(1), (BI)

where B = uT and A(¢) is an arbitrary time-dependent pro-
tocol with the condition A(0) = 0. The initial state is set as
the equilibrium distribution of Eq. (B1) with A(0) = 0 and
thus (x(0)) = 0. To obtain the analytic solution of Eq. (B1),
we decompose x(¢) into the deterministic part (x(z)) and the
stochastic part X (¢) = x(¢) — (x(¢)). Taking the average of
both sides of Eq. (B1) leads to an equation for the determinis-
tic part as

(x(@)) = —pk[{x(2)) — A@)]. (B2)
Then, the solution of (x(¢)) is given by

(x(0)) = e (x(0) + 7, /0 dt'e” =IO

t
= A1) — / dr' eI, (B3)
0

where 7, = (uk)~! is a characteristic relaxation time. The
equation for the stochastic component X (¢) can be obtained
by simply substituting X (z) + (x(¢)) for x(¢) in Eq. (B1) as

X(t) = —1,'X(1) + V2BEQ@). (B4)

Since the initial state is in equilibrium, the distribution of X (¢)
does not change in time. Therefore, the distribution for all time
is given by the equilibrium distribution as

P(X,t) = ,/ge%ﬁxz. (B5)

By substituting x — (x(¢)) for X in Eq. (B5), we have

k
P(x,1) = ,/2’3—” ¢ 3Bl (B6)

Using Eqgs. (5) and (B3), the irreversible current is
J™(x, 1) = [—pk[x — A(t)] — B3, ]P(x, 1)
= pk[A(r) — (x(0))1P(x, 1)

t
= uk / dt'e /i (P, 1). (B7)
0

When A(t) = wt as in Sec. IV A, the irreversible current and
EP rate are

J(x, 1) = o[l — e /"]P(x, 1), (B8)
totpy _ T, 1) @ 2
o (t)_[dx BPe = # (1 —e /)2 (B9)

The derivation procedure for the underdamped Langevin
equation (48) is essentially the same as that of the overdamped
equation. By decomposing x(z) into (x(¢)) and X (¢) = x(¢) —
(x(¢)) and v(¢) into (v(¢)) and V() = v(¢) — {x(t)), we have

d? 1 d k

d7(x(t)) = —m—ME(X(I)) - ZW([)) —ot],  (B1O)
iV(t) = —LV(I) — EX(I) + ~/2B&(1). (B11)
dt mu m

For this underdamped case, B=T u~' m™2. The
second-order differential equation (B10) can be solved
with the boundary conditions (x(0)) =0 and (v(0)) =
d/dt(x(t))]|;=0 = 0. The result is

(X)) = Cpe™ + C e + ot — 2,
uk

where ai = —1/Q2mu) +/1/2mu)* —k/m and Ci =

Folag/(uk) + 1]1/(a+ — a—). As the initial state is in equi-
librium, the distribution of X (¢) and V (¢) in Eq. (B11) for all
time is the following equilibrium distribution:

P(X,V,t) =,/ g,/’i—:exp [—g(k)ﬁ +mV2)]. (B13)

Therefore, P(x, v, t) is given by substituting x — (x(¢)) for X
and v — (v(¢z)) for V in Eq. (B13), as was done in Eq. (B6).
From Eq. (5), the irreversible current is written as

(B12)

. . t
JTx,v,t)=0, JT(x,v,1)=— {u( )>P(x, v,1). (Bl4)
mp
Finally, the EP rate is evaluated as
O.lOt(t) — /‘deiﬁ(x, v, t)z — (U(t)>2 (B15)
BP(x,v,t) uT

The analytic solution of Eq. (50) can be obtained in a
similar way. By decomposing x;(¢) into X;(¢) = x;(t) — (x;(¢))
and rearranging the terms of Eq. (50), we have

(x(1)) = —uKx(t)) 4+ pki (1), (B16)
X(t) = —uKX (1) + vV2BE(®). (B17)

The expression of (x;(t)) can be obtained by solving
Eq. (B16), and it is certain that (x;(¢)) is a function of time.
Since the initial state is the equilibrium state of Eq. (B17), the
PDF is given by the Boltzmann factor exp[—BU (X)], where
UX)= %X TKX is the potential energy of the harmonic
chain. Thus, by substituting X = x — (x) into the Boltzmann
factor, the PDF is written as

o= 51— O)Klx—(x ()]

P(x,t) = , (B18)
JdetrK™1/8)
™ (x, 1) = [pkA(t) — uKx(@)1P(x, 1). (B19)

013194-10



MULTIDIMENSIONAL ENTROPIC BOUND: ESTIMATOR OF ...

PHYSICAL REVIEW RESEARCH §, 013194 (2023)

The tight weight vector is then given by

. . Jii"(x,t)
Aj(x, 1) = Cl(t)—MTP(x’ 0

- cim[ukm(z) —u Zlmx,-(r))}. (B20)
J

Note that Jiirr (x,1)/P(x,t) depends on time but not position.
Thus, the MEB estimator evaluated by measuring displace-
ment, i.e., Af(x, 1) = 1, results in the correct EP.

APPENDIX C: COMPONENT-COMBINED MEB

In this section, we present the derivation of the component-
combined MEB, which is useful when the diffusion matrix
has off-diagonal elements. To this end, similar to Eq. (14),
we consider the following linear combination of weight
vectors as

4
Ag, 1) =) kuAu(g,1). (Ch)

a=1 |

20" (@ (ON{KLO (kO (1)) — [k (O ()L (T)k]}

After substituting A in Eq. (10) with A“(q, 1) in Eq. (C1),
we have

[y di [ dgAVq.0)"T" (. D)]’

Astol 2
O 2 A, AT @ 1),
T/@® 2

where the components of (©“ (7)) and L®)(t) are given as

(P (1)) = / “di / dqA.(q,1)"J™ (g, 1), (C3)
0
(LO@)) s = /0 di(Aa(q. )" BAS(G. )y (CH)

Note that L® (1) is a positive-definite matrix since zL© (1 )z =
Jo dt(1>-, B?Aq(q, t)za||2)q. > 0 for an arbitrary nonzero
vector z, positive-definite matrix B, and nonzero vector A,.
Then the optimal condition for A8 (k) can be written as

Vi ASO (k) =

which is similar to Eq. (19). The solution of Eq. (C5) is k* =
(LO(1)~" - (©@“(1)). By plugging this k* into Eq. (C2), we
obtain the component-combined MEB as

AS® > ASO k) = (@ ()LD (x) O (z)). (C6)

This is the integral form of the component-combined MEB.
Following a similar way, we can derive the rate form of the
component-combined MEB as

5 (6)

o) = (@)L ) © ), (7

where the components of (Q(Z)(r)) and L () are given by

(OO(0)) = / dqAa(a. DT (g. 1), (C8)
(LOM))ap = (Aa(q, 1) BA4(g, 1)), (C9)

Similarly to Eq. (36), in the case where the estimation of the
diffusion matrix requires a heavy computational cost, we can
directly obtain L“)(¢) by evaluating

LOM))ap = (Aalg, 1) BAg(g, 1)

1
= lim = ([Au(g. )" 0 6)I[As(q, D) 0 5q)).
(C10)

Then (L®)(7)),. 4 can be estimated by integrating Eq. (C10)
over time fromt =0tof = t.

APPENDIX D: EFFECT OF LIMITED SAMPLES OR TIME
RESOLUTION ON THE EP ESTIMATION

1. Limited number of trajectories

Though we use 10° trajectories in our simulation in
Sec. IV C, only several thousand repetitions are usually feasi-

[kTLO(T)k]?

0, (C5)

(

ble in real experiments [58]. Thus, in this section we examine
the effect of a limited number of trajectories on the estimated
EP. To this end, we perform additional simulations of the RNA
unfolding process for various trajectory numbers of 1000,
2000, 4000, 8000, and 10000 and estimate the EP using both
the MEB and NEEP methods. The results are plotted in Fig. 4.
Open and filled circles denote the MEB and NEEP results,
respectively. To plot the error bars, we first generated five
independent data sets for each number of samples and then

6.0
® NEEP
o o MEB
'_|5.5-
éq o o
- | © e o o
3 5.0 . e o
0N
<
4.5
4.0+ .
103 104

the number of samples

FIG. 4. Estimated EP of the RNA unfolding process as a function
of the number of trajectory samples. Open circles represent the MEB
results with four Gaussian bases (¢ = 4). Green filled circles denote
the NEEP results. The red solid line is the estimated EP via the
direct method, which is the same line as in Fig. 3(c). The other
parameters are the same as those used to plot Fig. 3(c). The error
bars represent the standard deviation of the EP estimations from five
different trajectory sets.
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FIG. 5. Estimated EP as a function of time resolution dz. Open
circles represent the MEB results with four Gaussian bases (¢ = 4).
Green circles and red crosses denote the results of the NEEP and
the direct method, respectively. The other parameters are the same as
those used to plot Fig. 3(c).

evaluated the average and standard deviation for the five sets.
The red solid line is the estimated EP via the direct method,
which is the same line as in Fig. 3(c). The figure shows the
tendency that both MEB and NEEP overestimate the EP for
small sample sizes. In fact, we recommend using both meth-
ods together to cross-check the reliability of the estimated
value.

2. Limited time resolution

The estimated EP depends on the time resolution dt (time
gap between two consecutive data points) of the measurement.
Since decreasing the time resolution (increasing dt) causes
a “coarse-graining” of the trajectory data, doing so typically
leads to a lower value of the EP. This can also be checked in
our simulations; here we simulate the RNA unfolding process
presented in Sec. IV C with various dt. Other parameters are
the same as those in the previous simulation. The results are
plotted in Fig. 5. The NEEP, the MEB, and the direct method
show the same decreasing behavior as dt increases. From an
extrapolation of the data, we can also estimate the EP value in

the dt — 0 limit. Accordingly, it is important to specify the
dt information in a given experiment or simulation.

APPENDIX E: NEEP ALGORITHM

Here we explain the training details of the NEEP and its
architecture configurations [33]. We apply the NEEP to one
step from x, to x;; ;. For brevity, we will use the notation
x; for x(¢). The NEEP is designed to maximize the following
objective function:

C(0) = (ASy(Xrpnr, Xy, 1) — e AFEreare)y (E1)

where ASy is an antisymmetric function with respect to the
exchange of x, and x4 A, as

ASoXinr X, 1) = ho(X, Xepnr, 1) — ho(Xrnr, X;, 1), (E2)

In Eq. (E2), the function %y is the output of a multilayer
perceptron (MLP) and 6 denotes the trainable parameters of
the MLP. The MLP has a scalar output unit and three hidden
layers of 512 units with the rectified linear unit activation
function. It is shown that ASy = AS™ with the optimized 6*
in Ref. [33].

In order to employ the cross-validation method, we split
the trajectory data into 20% for the validation set and 80% for
the training set. We train the MLP &y to maximize Eq. (E1)
by using the Adam optimizer [59] with learning rate 1074,
batch size 4096, and weight decay 5 x 1073, Before feeding
the input (x;4 s, X;, t) to the MLP, we normalize each element
of trajectory data x by using the following equation:

x (xt(i) — mean[x""]) /std[x")],

where x”) indicates the ith component of x, mean[x(] is the
mean of x®, and std[x"] is the standard deviation of x®. We
also normalize the time information t = 0...7 to be set as
t = —0.5...0.5 so that mean of the input vector (x;4a,, X, 1)
becomes a zero vector. The total number of training iterations
is 10*, and we evaluate C(8) values from the validation set
per every 500 (50) training iterations for the pulled harmonic
chain (RNA unfolding process). The best trained parameter
set 6* is determined from the case where the NEEP produces
the maximum value of C during the training process. The
results presented in Sec. IV are those evaluated at the best
trained parameter 6* over the total trajectory data.
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