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We show that quantum coherence can enhance the performance of a continuous quantum heat engine in the
Lindblad description. We investigate the steady-state solutions of the particle-exchanging quantum heat engine,
composed of degenerate double quantum dots coupled to two heat baths in parallel, where quantum coherence
may be induced due to interference between relaxation channels. We find that the engine power can be enhanced
by the coherence in the nonlinear response regime, when the symmetry of coupling configurations between dots
and two baths is broken. In the symmetric case, the coherence cannot be maintained in the steady state, except
for the maximum interference degenerate case, where initial-condition-dependent multiple steady states appear
with a dark state.
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Introduction. Quantum thermodynamics is an emerging
field in view of the significant progress of technology which
allows one to scale down heat-energy converting devices to
nanoscale where quantum effects become crucial [1]. Exam-
ples of such quantum heat engines (QHEs) include lasers,
solar cells, and photosynthetic organisms, where, along with
a few-level quantum structure [2–4], a phenomenon of quan-
tum coherence plays an important role [5–10]. In particular,
coherence in system-bath interactions that originates from the
interference may enhance the power [11–13] and efficiency
at maximum power [14] of the laser and solar cell and is
responsible for highly efficient energy transfer in photosyn-
thetic systems [15]. These effects have been confirmed in the
experimental studies of polymer solar cells [16]. The noise-
induced coherence is different from the internal coherence
in the system Hamiltonian [17], which was recently demon-
strated in the nitrogen-vacancy-based microscopic QHE in
diamond [18], and manifests as an improved efficiency in
spectroscopic pump-probe measurements [19].

So far, the majority of quantum coherence effects has
been studied in continuously working bosonic devices
[11,12,14,15,20]. Here, we focus on the fermionic QHE au-
tonomously working without an external source, such as
driving laser, made up of repulsively interacting double
quantum dots with the degenerate energy levels, coupled to
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fermionic baths in parallel, depicted in Fig. 1. In contrast to
previous studies [21–24], we introduce a parameter for the
strength of interference between relaxation channels, which
plays a crucial role. We derive the condition for maintaining
quantum coherence in the steady state and investigate the
engine performance, controlled by the tunneling coefficients
between dots and baths and the interference strength.

We find that the power enhancement of the QHE can be
achieved in the nonlinear response regime [25]. When cou-
pling configurations assigned to each bath are symmetric, a
quantum coherence initially induced by interference between
relaxation channels would eventually disappear in the long-
time (steady-state) limit. The exceptional case emerges for the
degenerate energy level configuration at the maximum inter-
ference strength, when the dynamics is found to be localized,
manifested as a mathematical singularity in the evolution op-
erator evoking the so-called dark state [26], characterized by
multiple steady states with finite quantum coherence depend-
ing on a given initial state. This singularity also emerges in
more general settings with coherent dynamics originated from
the energy-level degeneracy and parallel couplings, including
a single bath case. Note that a spurious quantum coherence
can be observed for a very long time (quasistationary state
regime) near the maximum interference.

When the coupling configuration symmetry is broken in
terms of either tunneling coefficients or interference strengths,
a genuine new steady state emerges with nonvanishing quan-
tum coherence, producing a quantum current between two
baths through dots in addition to the conventional classical
current. This quantum current yields an extra contribution to
the engine power, which can be positive in a specific parame-
ter regime.

Model. We first derive the quantum master equation (QME)
[27] for the density operator ρ̂S(t ) of the fermionic QHE in the
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limit of weak coupling to hot (h) and cold (c) baths, where
a temperature difference Th − Tc > 0 and a potential bias
μc − μh > 0 are applied. For simplicity, we assume a single
energy level for each quantum dot with the degenerate energy
levels E1 = E2 = E and infinitely large repulsion between
particles in dots. The system then can be described using three
two-particle eigenstates: |0〉 denotes empty dots, and |1〉 and
|2〉 stand for the occupation of dots 1 and 2, respectively, by
a single particle. In addition, coherent hopping between dots
is also forbidden and the only source of coherence is due to
coupling to thermal baths.

The interaction between system and bath a(= h, c) is given
by Ĥa

SB = ∑
d,k ga

dkb̂a†
k |0〉〈d| + H.c., where b̂a†

k is the operator
creating a single particle with momentum k in bath a, and ga

dk

is the tunneling coefficient between dot d (= 1, 2) and bath
a. After tracing out bath degrees of freedom with the Born-
Markov and the rotating wave approximations (RWA) [27,28],
we obtain the QME which reads [29]

∂t ρ̂S =−i[ĤS, ρ̂S]+
∑

a

4∑
α,β=1

�a
αβ

(
L̂αρ̂SL̂†

β − 1

2
{L̂†

β L̂α, ρ̂S}
)

,

(1)

where the system Hamiltonian is ĤS = E (|1〉〈1| + |2〉〈2|) and
the Lindblad operators are L̂1 = |1〉〈0|, L̂2 = |2〉〈0|, L̂3 = L̂†

1,
and L̂4 = L̂†

2. Note that we neglected the Lamb shift term (see
the Supplemental Material [30]). The dissipation matrix �a is
given by

�a =

⎛
⎜⎜⎜⎜⎝

wa
1+ φa

√
wa

1+wa
2+ 0 0

φa∗√wa
1+wa

2+ wa
2+ 0 0

0 0 wa
1− φa∗√wa

1−wa
2−

0 0 φa
√

wa
1−wa

2− wa
2−

⎞
⎟⎟⎟⎟⎠, (2)

where wa
d± represents the transfer rate of a particle between

dot d and bath a; the subscript + (−) denotes the inflow
(outflow) with respect to the dot. These rates are given by
wa

d+ = 2π |ga
d |2Na and wa

d− = 2π |ga
d |2Na, where ga

d = ga
d (E ),

Na = Na(E ) is the Fermi-Dirac distribution in bath a and
Na = 1 − Na (see the derivation in Sec. S1 of the Supplemen-
tal Material (SM) [30]).

The off-diagonal terms in Eq. (2) represent interference
between particle transfer associated with different dots. The
interference effect is manifested as the nonzero off-diagonal
terms of ρ̂S, e.g., 〈1|ρ̂S|2〉 �= 0. The coherence may not vanish
even in the long-time limit due to the degeneracy; otherwise,
it could be washed away under the RWA. In realistic exper-
iments, however, the energy levels fluctuate in time due to
fluctuations of gate voltages, which is not included in the sys-
tem Hamiltonian. One expects that energy fluctuations around
the degeneracy will result in partial coherence or dephasing
[31], which can be phenomenologically added to our QHE
model. Considering an observation of the exponentially de-
caying coherent current in a quantum-dot experiment [32],
we introduce a phenomenological parameter φa represent-
ing a dephasing effect due to fluctuating energy levels in
Eq. (2), assigned to each bath and which can be estimated
experimentally (see Sec. S1 C of the SM [30]); |φa| = 1
stands for permitting the full interference of relaxations with
bath a, while φa = 0 corresponds to no quantum effect of
system-bath interactions. In earlier bosonic QHE models, φa

is governed by the angle between dipole moments corre-
sponding to two dots which ensures that |φa| � 1 [11]. For
convenience, φa is treated as a real number. Note that the
second term in Eq. (1) is a standard form of the quantum
dynamical semigroup [27], which guarantees the positive and
trace-preserving dynamics since �a in Eq. (2) is the positive-
semidefinite matrix for |φa| � 1.

To solve the QME, it is convenient to
map the density operator to a vector: P =

(ρ00, ρ11, ρ22, ρ12, ρ21, ρ01, ρ02, ρ10, ρ20) T, where ρi j =
〈i|ρ̂S| j〉. The last four components vanish in the long-time
limit because there is no dynamics producing the coherence
between the empty and occupied states so that only dephasing
is allowed, as seen in Sec. S2 of the SM [30]. Thus, we write
the corresponding Liouville equation as

∂t P = L P, (3)

where L is a 5 × 5 matrix with the reduced vector P =
(ρ00, ρ11, ρ22, ρ12, ρ21) T. Introducing Wd = ∑

a wa
d+, W d =∑

a wa
d−, 	 = ∑

a φa
√

wa
1+wa

2+, and 	 = ∑
a φa

√
wa

1−wa
2−,

the L matrix then reads

L=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−W1 − W2 W 1 W 2 	 	

W1 −W 1 0 −	/2 −	/2

W2 0 −W 2 −	/2 −	/2

	 −	/2 −	/2 −W 1+W 2
2 0

	 −	/2 −	/2 0 −W 1+W 2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)
Steady-state solutions. From the steady-state condition,

LP(∞) = 0, we find the relations as

ρ11(∞) = W1W 2 − 	(W2 + W 2 − W1)ρ12(∞)

W1W 2 + W 1W2 + W 1W 2
,

ρ22(∞) = W 1W2 − 	(W1 + W 1 − W2)ρ12(∞)

W1W 2 + W 1W2 + W 1W 2
, (5)

with the population conservation (ρ00 + ρ11 + ρ22 = 1) and

ρ12(∞) = ρ21(∞) = 2	 − (2	 + 	)[ρ11(∞) + ρ22(∞)]

W 1 + W 2
.

(6)
Note that the classical solution is recovered from Eq. (5),
when the coherence term vanishes [ρ12(∞) = 0]. This clas-
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sical incoherent condition is determined by Eq. (6) as

2	W 1W 2 − 	(W1W 2 + W 1W2) = 0, (7)

which is obviously satisfied for the trivial case with 	 = 	 =
0 (or, equivalently, φa = 0). Note that the equilibrium case
(Th = Tc and μh = μc) also satisfies this incoherent condition
due to Wd/W d = 	/	 with Nh = Nc.

In general, Eqs. (5) and (6) leads to a 2 × 2 matrix equa-
tion for ρ11 and ρ22 as

Lss

(
ρ11(∞)

ρ22(∞)

)
=

(
W1 − (2		)/(W 1 + W 2)

W2 − (2		)/(W 1 + W 2)

)
, (8)

with

Lss =
⎛
⎝W1 + W 1 − 	(2	+	)

W 1+W 2
W1 − 	(2	+	)

W 1+W 2

W2 − 	(2	+	)
W 1+W 2

W2 + W 2 − 	(2	+	)
W 1+W 2

⎞
⎠.

(9)
Unless the determinant |Lss| vanishes, the steady-state solu-
tion is uniquely defined, which is given explicitly in Eq. (S29)
of the SM [30].

We next consider a special r-symmetric configuration
[22], where the couplings are symmetric for both baths, i.e.,
gh

2/gh
1 = gc

2/gc
1 ≡ r, leading to wa

2±/wa
1± = r2. We take r > 0

for simplicity. Assuming an additional symmetry for the co-
herence parameter as φh = φc ≡ φ, one can show Wd/W d =
	/	 even in nonequilibrium (Nh �= Nc), satisfying the in-
coherence condition in Eq. (7). However, at the maximum
interference (|φ| = 1), the matrix Lss becomes singular with
|Lss| = 0 and multiple steady-state solutions emerge, which
will be discussed later. With the broken symmetry (φh �= φc),
the quantum coherence survives with a nonclassical solution
[ρ12(∞) �= 0]. In a more general case with gh

2/gh
1 �= gc

2/gc
1,

the classical solution is still possible by adjusting φh and
φc appropriately to satisfy the incoherent condition, but Lss

cannot be singular.
Steady-state currents. A particle current Ja

d representing the
time increment of the particle density of dot d due to bath a
can be obtained from Eq. (1) as

Ja
d = wa

d+ ρ00 − wa
d− ρdd − φa

√
wa

1−wa
2−

(ρ12 + ρ21

2

)
. (10)

In the steady state, Ja
d should be balanced by two reservoirs

such that Jh
d (∞) = −Jc

d (∞) ≡ Jd (∞) and the total current
is given by J = ∑

d Jd (∞). Transferring an electron from
bath h to bath c, the electron gains the energy governed by
the difference between the chemical potentials μc − μh, and
thus the QHE power yields P = (μc − μh)J . As the heat flux
from bath h is given by Q̇h = (E − μh)J , the QHE efficiency
does not vary with the particle current as η = P/Q̇h = (μc −
μh )/(E − μh).

The particle current can be further separated into the clas-
sical and the quantum parts as

Jd (∞) = Jcl
d + �d ρ12(∞), (11)

where φa = 0 is set for the classical part in Eqs. (5) and (10)
as

Jcl
1 = �N

|L0| (2π )2
∣∣gh

1

∣∣2∣∣gc
1

∣∣2
W 2, Jcl

2 = �N

|L0| (2π )2
∣∣gh

2

∣∣2∣∣gc
2

∣∣2
W 1,

(12)

FIG. 1. A schematic illustration of the QHE, composed of two
heat baths and a two-dot system. The dot energies, E1 and E2 (in
this work, E1 = E2), are higher than the chemical potentials, μh and
μc. wa

d± represents the transfer rate of a particle between dot d and
bath a, and φa

√
wa

1±wa
2± denotes the interference amplitude. Inset: A

circuit analogy of resistors in parallel.

with the external (bath) bias �N ≡ Nh − Nc and |L0| =
W1W 2 + W 1W2 + W 1W 2 [L0 = Lss(φa = 0)], and Jcl

d > 0 en-
suring the positive power requires �N > 0.

The second term represents the quantum current Jq
d ≡

�d ρ12(∞), induced by the coherence, and quantum speed
�d and ρ12(∞) are given in Sec. S3 of the SM [30]. Note
that the quantum current for each dot can be both positive
and negative, depending on the parameter values, as well as
the total quantum current Jq = ∑

d Jq
d (see Fig. S1 of the SM

[30]).
As ρ12(∞) is also proportional to bias �N , the QHE can

be viewed as an analog of an electronic circuit with parallel
resistors R1 and R2 under the external potential bias (see the
inset of Fig. 1). The conductance σd of dot d is defined by
the Ohm’s law of Jd (∞) = σd�N , which is the reciprocal
of resistance as σd = R−1

d . The conductance is also divided
into the classical and quantum parts as σd = σ cl

d + σ
q
d from

Eq. (11). The classical part σ cl
d is always positive, while the

quantum part can be either positive or negative. In Fig. 2, we
plot the relative quantum conductance σ

q
d /σ cl

d in the (φc, φh )

FIG. 2. Relative quantum conductances of (a) dot 1 and (b) dot
2, denoted as σ

q
1 /σ cl

1 and σ
q
2 /σ cl

2 , respectively, in the (φc, φh) plane.
Here, we used Nh = 0.2 and N c = 0.1, and the r-symmetric configu-
ration with |ga

1|2 = 8π/(1 + r2) and |ga
2|2 = 8πr2/(1 + r2) at r = 4.

Along the line of symmetry (purple), ρ12(∞) = 0, while �d = 0
defines the black line. The quantum conductances vanish along both
lines. Note that a back flow [Jd (∞) < 0] occurs near φh = −φc =
±1 in (a), where the negative quantum current overmatches the
positive classical current.
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plane in the r-symmetric configuration. Near but off the
symmetric line of φh = φc, we find the total quantum conduc-
tance σ q = ∑

d σ
q
d > 0, which means that the performance of

the QHE can be enhanced beyond the classical limit in this
parameter regime.

For small �N , we expand the relative quantum conduc-
tance as

σ
q
d /σ cl

d = S0
d + S1

d �N + · · · , (13)

where S0
1 ∼ −(φh − φc)2, S0

2 = S0
1/r2, and S1

d ∼ φh(φh −
φc) for the r-symmetric configuration (see Sec. S3 of the SM
[30] for details). Interestingly, σ

q
d is always nonpositive in

the linear response regime (S0
d � 0), but may become posi-

tive due to S1
d in the nonlinear regime as �N increases for

φh(φh − φc) > 0. Note that S1
d can dominate over S0

d near the
symmetric line (φh = φc). For r > 1, the negative quantum
effect (S0

d ) is relatively stronger for dot 1, which has a weaker
coupling with baths, as also seen in Fig. 2, which might be
applicable to a filtering circuit.

Although ρ12(∞) becomes finite off the symmetric line
(φh �= φc), the quantum current may vanish again when �d =
0 in Eq. (11), which is denoted by black lines in Fig. 2. This
can happen by balancing the quantum contributions from the
stochastic part and the interference part, which are represented
by the first two terms and the third term in the right-hand side
of Eq. (10), respectively. The quantum enhancement occurs
only between two lines of �d = 0 and ρ12(∞) = 0. For gen-
eral cases outside of the r-symmetric configuration, these two
lines are simply tilted (see Fig. S1 in the SM [30]), but the
general features of the QHE are essentially unchanged.

Coupling-configuration symmetric case. We focus on the
symmetric case with φh = φc = φ in the r-symmetric config-
uration, where W2 = r2W1, W 2 = r2W 1, 	 = rφW1, and 	 =
rφW 1, yielding Wd/W d = 	/	. Then, the QME in Eq. (1)
can be reduced to the single effective bath case, defined by
a single coherence parameter φ and a rate W1. A single bath
typically enforces the system to reach a classical equilibrium
state in the long-time limit. However, with degenerate energy
levels, the off-diagonal (coherent) terms in the dissipation
matrix � in Eq. (2) cannot be ignored even under the RWA.
Thus, these coherent terms slow down the quantum dynamics
significantly (|φ| < 1), approaching the classical steady state
via a long-lived quasistationary state with nonzero coherence.

We first calculate the eigenvectors vi and the corresponding
eigenvalues λi of the Liouville matrix L. Details are given in
Sec. S4 of the SM [30]. We find the steady-state eigenvector
v T

1 = (ᾱ, α, α, 0, 0) with λ1 = 0, where α = W1/(2W1 + W 1)
and ᾱ = 1 − 2α, which corresponds to the classical fixed
point. Other eigenvalues are negative except for |φ| = 1, and
thus the classical fixed point represents the unique steady
state. At |φ| = 1, however, another eigenvector v4 also has
the zero eigenvalue, allowing multiple fixed points spanned by
v1 and v4. Note that |Lss| = r2(1 − φ2)(2W1 + W 1)W 1 from
Eq. (9), which vanishes at these singular points of |φ| = 1.

Defining a matrix V = (v1, v2, v3, v4, v5), the formal so-
lution for P(t ) reads

P(t ) = V(1, χ2eλ2t , χ3eλ3t , χ4eλ4t , χ5eλ5t ) T, (14)

FIG. 3. Dynamic trajectories starting from (ρ12, ρ11) = (0, 0) for
various φ with r = 1, W1 = 0.25, and W 1 = 0.75, yielding α =
0.2 and α = 0.6. Numerical data are denoted by various symbols
for φ = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1 (from left to right). The time
interval between the same symbols is set to be 0.2 and the gray
arrows denote the direction of the dynamics. The classical fixed
point is at (ρ12, ρ11) = (0, 0.2), while the coherent fixed point is at
(0.125,0.125).

where χi depends on the initial condition P(0). At |φ| = 1,
λ1 = λ4 = 0, the steady state P(∞) depends on P(0). In
Fig. 3, we display typical dynamic trajectories in the (ρ12, ρ11)
space with r = 1, starting from the empty initial condition of
ρi j (0) = 0 except for ρ00(0) = 1. As expected, all trajectories
end up in the single (classical) fixed point in the long-time
limit except for |φ| = 1, where the new coherent fixed point
appears with ρ12(∞) �= 0. Note that the dynamics for φ � 1
detours around the coherent fixed point for a significantly long
time (quasistationary state), approaching the classical fixed
point, which allows for experimental observation even in the
presence of small decoherence.

The additional zero eigenvalue (λ4 = 0) at the singular
points (|φ| = 1) implies another conservation law in addition
to the probability conservation. Specifically, we find r2ρ̇11 +
ρ̇22 − rρ̇12 − rρ̇21 = 0 for φ = 1 from Eq. (4), or r2ρ11(t ) +
ρ22(t ) − rρ12(t ) − rρ21(t ) = I0 for all time t , where I0 is
a constant determined by the initial condition. We obtain
the steady-state solutions using Eq. (5) and the conserva-
tion law, written as ρ11(∞) = α − [rᾱ − 1−r2

r α] ρ12(∞) and

ρ22(∞) = α − [ ᾱ
r + 1−r2

r α] ρ12(∞), with

ρ12(∞) = ρ21(∞) = r

1 + r2

1

1 − α

(
α − I0

1 + r2

)
, (15)

which depends on the initial state. In Fig. 3, we set r = 1
and I0 = 0, so the coherent fixed point is determined by the
intersection of two lines, ρ11 = ρ12 and ρ11 = α − ᾱρ12. For
I0 �= 0, the coherent fixed point is shifted along the curve
of ρ11 = α − ᾱρ12. The case of φ = −1 yields the same
results except for changing the signs of ρ12 and ρ21 (see
Eq. (S61) of the SM [30]). Note that the coherence can be
finite and initial-state dependent even for �N = 0 (equilib-
rium). This may raise a doubt that the quantum current Jq

d
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might not vanish in equilibrium, which is not the case since
the quantum speed �d is proportional to bias �N (in fact,
�d = φ( 1+r2

r )Jcl
d in Eq. (S62) of the SM [30]). The relative

quantum conductance can be positive even in the linear re-
sponse regime, i.e., S0

d can be positive, depending on the
initial state.

The phenomena of multiple fixed points responsible for
a dark state emergence are observed in both fermionic [22]
and bosonic [26,33] systems. Here, the system state can be
recast in a rotated orthonormal basis as |0〉, |+〉 = (|1〉 +
r|2〉)/Nr , and |−〉 = (r|1〉 − |2〉)/Nr with Nr = √

1 + r2.
Then, the system Hamiltonian is given as ĤS = E (|+〉〈+| +
|−〉〈−|) and the interaction Hamiltonian becomes Ĥa

SB =
Nr

∑
k ga

1kb̂a†
k |0〉〈+| + H.c. at the singular points. Note that

the state |−〉 remains unchanged under the evolution operator,
which corresponds to the dark state at φ = 1, i.e., any initial
population in the dark state remains intact or 〈−|ρ̂S|−〉 =
(r2ρ11 + ρ22 − rρ12 − rρ21)/N2

r should be conserved. We
can easily extend our result to the degenerate multiple dots
with multiple occupancy allowed. As the dark state decouples
with baths, it may be useful to protect quantum information
from decoherence [34].

Note that the Lindblad description of degenerate quantum
dots coupled to a single bath also yields multiple steady states
with coherence at the maximum interference, in contrast with
the common knowledge that a system coupled to a single bath
should reach the incoherent thermal equilibrium, regardless
of its initial state. Thus, the phenomenological parameter φ is
natural to guarantee the thermal steady state for |φ| < 1. Near
the singular points, one may observe a long-living quasista-
tionary state with the information of initial-state-dependent
coherent solutions.

Conclusion. We investigated all possible steady-state so-
lutions for the continuous quantum-dot QHE coupled to
terminals in parallel for various tunneling coefficients and
interference strengths. Here, the interference strength plays a
similar role of the alignment of dipoles [35] in the bosonic
system and acts as a source of decoherence. We found that
unless the interference is completely negated, the steady states
possess the coherence, which generates an extra quantum
current, resulting in the enhanced QHE performance in a
specific region of the parameter space, where the nonposi-
tive linear quantum conductance is overcome by nonlinear
contributions. We remark that a fine tuning of the parameter
values is necessary for a significant enhancement such as the
near symmetric coupling parameters. More enhanced QHE
may require further investigation for the origin of nonlin-
ear quantum conductance. Recently, the single-quantum-dot
(fermion) heat engine was realized experimentally [36]. Since
double-quantum-dot systems coupled to baths in parallel have
been studied experimentally [37–39], the parallel-double-dot
engine is also expected to be synthesized to confirm the en-
hancement of the QHE performance by thermal noises.
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S1. QUANTUM MASTER EQUATION

A. Model

We start with the Hamiltonian for the system (quantum dots) interacting with heat baths, which

are given by

Ĥ = ĤS + ĤB + ĤSB , (S1)

where ĤS, ĤB, and ĤSB denote the Hamiltonians for the quantum-dot system, heat baths and

interactions between the system and baths, respectively. The Hamiltonian of double quantum dots

is given by

ĤS = E1d̂†1d̂1 + E2d̂†2d̂2 + E12d̂†1d̂1d̂†2d̂2 , (S2)

where E1 and E2 denote energies for dot 1 and dot 2, respectively, and E12 is the Coulomb repulsion

between electrons at dots. In the case of the degenerated dots, E1 = E2 ≡ E. Here d̂d (d̂†d) is

the fermionic operator annihilating (creating) a single particle at dot d. We assume that only a

single spinless fermion is allowed for each dot. Note that coherent hoppings between dots are not

allowed.

The bath Hamiltonian is the sum of each bath Hamiltonian Ĥa
B of bath a , which can be also

written in terms of fermionic operators as

ĤB =
∑
a=h,c

Ĥa
B =

∑
a=h,c

∑
k

ωa
k b̂a†

k b̂a
k , (S3)

where b̂a
k (b̂a†

k ) denotes the operator annihilating (creating) a particle with momentum k and energy

ωa
k in bath a (for simplicity, we assume here that the momentum is a scalar variable). The interac-

tion Hamiltonian HSB is also the simple sum of the interaction Hamiltonian Ĥa
SB for each bath a,

which is also expressed with the fermionic operators as

ĤSB =
∑
a=h,c

Ĥa
SB =

∑
a=h,c

∑
d=1,2

∑
k

ga
dk b̂a†

k d̂d + h.c. , (S4)

which describes an electron hopping between dot d and bath a with a coupling strength ga
dk ≡

ga
d(ωa

k), depending on the momentum or energy.

In the limit of E12 → ∞ (infinite repulsion), the simultaneous occupation at both dots is pro-

hibited, thus the system state can be described with the three orthonormal bases of |0〉 (empty), |1〉

(single occupation in dot 1), and |2〉 (single occupation in dot 2). Then, the operator d̂d at dot d

S2



can be replaced by a jump operator |0〉〈d|. Using these bases, we rewrite

ĤS = E0|0〉〈0| + E1|1〉〈1| + E2|2〉〈2| , ĤSB =
∑

a

∑
d,k

ga
dk b̂a†

k |0〉〈d| + h.c. (S5)

where E0 means the empty-state energy (here, we set E0 = 0).

B. Derivation of the QME

We derive the QME with an assumption that dots and baths are weakly coupled [1]. Instead

of exploiting fermionic operators of dots, used in previous works [2–4], we use the jump oper-

ators. Starting from the von Neumann equation of the total system, ∂tρ̂ = −i
[
Ĥ, ρ̂

]
, where ρ̂(t)

is the density operator in the Schrödinger picture, the system dynamics expressed by the reduced

density operator, ρ̂S = trB ρ̂, is obtained by tracing out the bath degrees of freedom in the total

system dynamic equation. In the weak coupling limit where the interaction Hamiltonian is small

in comparison to the system and bath Hamiltonian, it is convenient to take the interaction picture,

where ρ̂′(t) = ei(ĤS+ĤB)tρ̂(t)e−i(ĤS+ĤB)t with ρ̂(t) = e−iĤtρ̂(0)eiĤt. Then, the von Neumann equation in

the interaction picture becomes

∂tρ̂
′ = −i

[
Ĥ′SB, ρ̂

′
]
, (S6)

where the interaction Hamiltonian in the interaction picture Ĥ′SB = ei(ĤS+ĤB)tĤSBe−i(ĤS+ĤB)t is ob-

tained from Eq. (S5) as

Ĥ′SB =
∑

a

∑
d,k

[
ga

dk eiĤBt b̂a†
k e−iĤBt |0〉〈d| e−iEdt + h.c.

]
. (S7)

Using a formal solution, ρ̂′(t) = ρ̂(0)− i
∫ t

0
dτ[Ĥ′SB(τ), ρ̂′(τ)], the equation for ρ̂′S = trB ρ̂

′ is written

as

∂tρ̂
′
S(t) = −trB

∫ t

0
dτ

[
Ĥ′SB(t),

[
Ĥ′SB(τ), ρ̂′(τ)

]]
, (S8)

where the initial condition satisfies trB[Ĥ′SB, ρ̂
′(0)] = 0. Substituting τ = t − s, we obtain

∂tρ̂
′
S(t) = −trB

∫ t

0
ds

[
Ĥ′SB(t),

[
Ĥ′SB(t − s), ρ̂′(t − s)

]]
. (S9)

Now we take the so-called Born-Markov approximation, where it is assumed that ρ̂′(t) ≈ ρ̂′S(t)⊗

ρ̂B with the canonical heat bath density operator,

ρ̂B = Z−1e−
∑

a(Ĥa
B−µan̂a)/Ta , (S10)
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with the temperature Ta, the chemical potential µa, and the number operator n̂a =
∑

k b̂a†
k b̂a

k for each

bath a, and the partition function Z = trBe−
∑

a(Ĥa
B−µan̂a)/Ta (the Boltzmann constant is set as kB = 1).

As the total density operator is given in the product form, this assumption implies that each bath

is always in its equilibrium, regardless of the system evolution. This happens when the bath time

scale τa
B is much smaller than the system time scale, thus the time scale separation between the

system and baths is taken for granted, leading to the approximate replacement of ρ̂′S(t− s)→ ρ̂′S(t).

Since the correlation trB

[
Ĥ′SB(t),

[
Ĥ′SB(t − s), ρ̂′(t)

]]
in Eq. (S9) may vanish for s � τa

B, the integral

upper bound can be extended to∞, yielding a simpler approximate dynamic equation as

∂tρ̂
′
S(t) = −trB

∫ ∞

0
ds

[
Ĥ′SB(t),

[
Ĥ′SB(t − s), ρ̂′S(t) ⊗ ρ̂B

]]
. (S11)

Inserting Eq. (S7) into Eq.(S11), one can write each term in the commutation in Eq. (S11) as

trBĤ′SB(t)Ĥ′SB(t − s)ρ̂′S(t) ⊗ ρ̂B =
∑
a,k

∑
d

[
|ga

dk|
2

(
Ca

k (s) e−iEd s |0〉〈0| + Da
k(s) eiEd s |d〉〈d|

)]
+ ga∗

1kga
2k Da

k(s) ei(E1−E2)teiE2 s |1〉〈2| + ga
1kg

a∗
2k Da

k(s) e−i(E1−E2)teiE1 s |2〉〈1|
]
ρ̂′S , (S12)

trBĤ′SB(t)ρ̂′S(t) ⊗ ρ̂BĤ′SB(t − s) =
∑
a,k

∑
d

[
|ga

dk|
2
(
Da

k(−s)e−iEd s |0〉〈d|ρ̂′S|d〉〈0| + Ca
k (−s)eiEd s |d〉〈0|ρ̂′S|0〉〈d|

)]
+ ga∗

1kga
2k

(
Da

k(−s)ei(E1−E2)te−iE1 s |0〉〈2|ρ̂′S|1〉〈0| + Ca
k (−s)ei(E1−E2)teiE2 s |1〉〈0|ρ̂′S|0〉〈2|

)
+ ga

1kg
a∗
2k

(
Da

k(−s)e−i(E1−E2)te−iE2 s |0〉〈1|ρ̂′S|2〉〈0| + Ca
k (−s)ei(E1−E2)teiE2 s |2〉〈0|ρ̂′S|0〉〈1|

)]
, (S13)

and the remainders are the Hermitian conjugates of Eqs. (S12) and (S13). Note that each bath

contributes additively to Eq. (S11). and the correlators for bath a are defined by

Ca
k (s) = trB eiĤB sb̂a†

k e−iĤB s b̂a
k ρ̂B and Da

k(s) = trB eiĤB s b̂a
k e−iĤB sb̂a†

k ρ̂B . (S14)

With the Fock-state description of bath particles in Eq. (S10), we find

Ca
k (s) = Na(ωa

k)eiωa
k s and Da

k(s) =
[
1 − Na(ωa

k)
]
e−iωa

k s (S15)

where Na is the Fermi-Dirac distribution in bath a, given as

Na(ω) =
exp[−(ω − µa)/Ta]

1 + exp[−(ω − µa)/Ta]
. (S16)

Since the integral over time s in Eq. (S11) yields the delta function, i.e.,∫ ∞

0
dse±i(ωa

k−Ed)s = πδ(ωa
k − Ed) , (S17)
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a single mode for each bath satisfying ωa
k = E survives in Eq. (S11) for the degenerate case with

E1 = E2 = E. Note that we have omitted the Lamb shift correction, which is the order of E−1,

negligible in the high energy limit.

Changing
∑

k → N
∫

dk with a proper normalization N and integrating over k, we calculate

the transition rates. First, consider the incoherent terms such as |d〉〈0|ρ̂′S|0〉〈d| and |0〉〈d|ρ̂′S|d〉〈0|.

For transitions between |0〉 and |d〉 due to bath a, the transitions rates are obtained as

wa
d+ = 2π|ga

d|
2Na(E) and wa

d− = 2π|ga
d|

2Na(E) , (S18)

where Na = 1 − Na and ga
d = ga

d(E). Note that ga
d(E) = ga

dk with ωa
k = E. The + sign in Eq. (S18)

stands for the transition from |0〉 to |d〉 and the − sign stands for the opposite direction. Now

we consider interference terms such as |0〉〈2|ρ̂′S|1〉〈0| or |1〉〈0|ρ̂′S|0〉〈2|. Due to the phase factor

exp[±i(E1 − E2)t], the interference terms vanish in long-time limit unless E1 = E2 (rotating wave

approximation). In this work with E1 = E2 = E, we find the nonvanishing interference terms as√
wa

1+
wa

2+
e±iθa

and
√

wa
1−w

a
2−e
±iθa

, (S19)

where θa is the difference of phase angles between ga
1 and ga

2, defined as ga∗
1 ga

2 = |ga
1||g

a
2|e

iθa
.

Defining the Lindblad operators as

L̂1 = |1〉〈0| , L̂2 = |2〉〈0| , L̂3 = |0〉〈1| , L̂4 = |0〉〈2| , (S20)

the dynamic equation for the density operator in Eq. (S11) is rewritten as

∂tρ̂
′
S =

∑
a

[
wa

1+

(
L̂1ρ̂

′
SL̂†1 −

1
2

{
L̂†1L̂1, ρ̂

′
S

})
+ wa

2+

(
L̂2ρ̂

′
SL̂†2 −

1
2

{
L̂†2L̂2, ρ̂

′
S

})
+wa

1−

(
L̂3ρ̂

′
SL̂†3 −

1
2

{
L̂†3L̂3, ρ̂

′
S

})
+ wa

2−

(
L̂4ρ̂

′
SL̂†4 −

1
2

{
L̂†4L̂4, ρ̂

′
S

})
+

√
wa

1+
wa

2+
eiθa

L̂1ρ̂
′
SL̂†2 +

√
wa

1+
wa

2+
e−iθa

L̂2ρ̂
′
SL̂†1 (S21)

+

√
wa

1−w
a
2−e
−iθa

(
L̂3ρ̂

′
SL̂†4 −

1
2

{
L̂†4L̂3, ρ̂

′
S0

})
+

√
wa

1−w
a
2−e

iθa

(
L̂4ρ̂

′
SL̂†3 −

1
2

{
L̂†3L̂4, ρ̂

′
S

})]
,

where { , } denotes the anticommutator. We introduce a phenomenological prefactor φa for the in-

terference terms in Eq. (S21) by replacing eiθa
→ φa with |φa| ≤ 1 to take into account decoherence

effects by other unknown environmental noises [5]. Note that the phase difference θa is absorbed

into φa. In the Schrödinger picture with ρ̂S(t) = e−iĤStρ̂′S(t)eiĤSt, Eq. (S21) is rewritten as a matrix

form in Eqs. (1) and (2) of the main text.
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C. Origin and experimental relevance of φa

Before solving Eq. (1), we discuss the origin of φa and its experimental relevance. In the deriva-

tion of Eq. (S21), we assumed the degenerate levels, E1 = E2 = E, which allows electrons in dots

to retain coherence induced by Eq. (S19) even in the long-time limit. In realistic situations, how-

ever, there may exist fluctuations in energy levels, influenced by uncontrollable external noises,

which may damage the induced coherence (dephasing).

Experimental quantification of the dephasing effect induced by fluctuating energies was re-

ported by measuring the tunnelling current through coherently coupled quantum dots under a

pulse train [6], where the coherent current is reduced by a factor of exp
(
−τp/τD

)
with the pulse

duration time τp and the dephasing time τD (see Eq. (2) in [6]). In the experiment, coherent and

incoherent processes are separated in time and the coherent process is allowed while the pulse is

applied during τp. Thus, given the dephasing rate, the decaying of the coherent current depends

on the duration time of coherent process. By varying τp, the dephasing time τD can be estimated

by fitting experimental data for the tunnelling current in the above exponential form.

In our model, where quantum dots interact with baths coherently, a single-electron tunnelling

between a bath and dots itself is a coherent process. Every term in r.h.s of Eq. (S21) can be regarded

as micro currents due to the single tunnellings and thus, interference terms with
√

wa
1±w

a
2± represent

coherent currents, which may suffer from dephasing in the presence of energy fluctuations. We

assume that the energy fluctuation is not so strong as to modify transition rates wa
d±, whereas it

evokes an exponentially decaying factor for interference terms in functions of the dephasing time

and the coherent tunnelling time. To estimate the tunnelling time, suppose a round trip of a single

electron; starting from bath a, it hops into dots and comes back to bath a. For simplicity, we ignore

the other bath, then the typical time scale for the trip can be obtained by the sum of the inverse

transition rates, i.e. 1/wa
d+

+ 1/wa
d−. The average tunnelling (coherent) time τa is then estimated as

τa ∼
1
2

max
{(

2π|ga
1|

2NaNa
)−1

,
(
2π|ga

2|
2NaNa

)−1
}
, (S22)

which plays a role of the coherent time τp in the above example. Then, the interference terms

should be dressed with a dephasing factor φa as

eiθa
√

wa
1±w

a
2± → φa

√
wa

1±w
a
2± with |φa| ∼ exp (−τa/τD) . (S23)

From Eqs. (S22) and (S23), one can see that φa can be controlled through the coupling coeffi-

cient ga
d which can be tuned by adjusting a gate voltage between dot d and bath a [7]. Similar to the
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above example, it is possible to test the exponential decay form of Eq. (S23) by varying τa (actually

ga
d) in experiments for double quantum dots coupled to baths in parallel [8–10]. It is reasonable to

assume that the dephasing time τD does not depend on τa in the same experimental set-up and thus

one can estimate τD by fitting experimental data into the exponential form. With this information

on τD, one can investigate the φa-dependence of the coherent current in experiments by simply

tuning gate voltages.

S2. EIGENVECTORS AND EIGENVALUES OF THE LIOUVILLE OPERATOR

The density operator can be written in a form of vector: P = (ρ00, ρ11, ρ22, ρ12, ρ21, ρ01, ρ02, ρ10, ρ20)T,

with ρi j = 〈i|ρ̂S| j〉. Then, the equation of motion is given by ∂tP = Ltot P, where the Liouville

operator Ltot has a form of

Ltot =

 L 0

0 Lirr + E

 , (S24)

where the upper 5 × 5 block is given by L =
∑

a La and the first term of the lower 4 × 4 block

Lirr =
∑

a La
irr. Each term in the summation is given as

La =



−
(
wa

1+
+ wa

2+

)
wa

1− wa
2− φa∗

√
wa

1−w
a
2− φa

√
wa

1−w
a
2−

wa
1+

−wa
1− 0 −φa∗

√
wa

1−w
a
2−/2 −φ

a
√

wa
1−w

a
2−/2

wa
2+

0 −wa
2− −φa∗

√
wa

1−w
a
2−/2 −φ

a
√

wa
1−w

a
2−/2

φa
√

wa
1+

wa
2+
−φa

√
wa

1−w
a
2−/2 −φa

√
wa

1−w
a
2−/2 −

(
wa

1− + wa
2−

)
/2 0

φa∗
√

wa
1+

wa
2+
−φa∗

√
wa

1−w
a
2−/2 −φ

a∗
√

wa
1−w

a
2−/2 0 −

(
wa

1− + wa
2−

)
/2


,

(S25)

La
irr =



−
(
wa

1+
+ wa

2+
+ wa

1−

)
/2 −φa∗

√
wa

1−w
a
2−/2 0 0

−φa
√

wa
1−w

a
2−/2 −

(
wa

1+
+ wa

2+
+ wa

2−

)
/2 0 0

0 0 −
(
wa

1+
+ wa

2+
+ wa

1−

)
/2 −φa

√
wa

1−w
a
2−/2

0 0 −φa∗
√

wa
1−w

a
2−/2 −

(
wa

1+
+ wa

2+
+ wa

2−

)
/2


,

(S26)

and the second term of the lower block E is

E =



iE 0 0 0

0 iE 0 0

0 0 −iE 0

0 0 0 −iE


. (S27)
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It is easy to see that each 2 × 2 subblock of La
irr has negative eigenvalues only for |φa| ≤ 1, thus

ρ01, ρ02, ρ10, and ρ20, associated with Lirr will vanish in long-time limit as the pure imaginary E

contributes to a modulation only.

From now on, we focus on the 5×5 matrix L with the reduced vector P = (ρ00, ρ11, ρ22, ρ12, ρ21)T,

satisfying the dynamic equation ∂tP = L P. For convenience, we take φa as a real number. We

introduce collective parameters for the sake of brevity as

Wd =
∑

a

wa
d+ , Wd =

∑
a

wa
d− , Φ =

∑
a

φa
√

wa
1+

wa
2+
, Φ =

∑
a

φa
√

wa
1−w

a
2− , (S28)

and then Eq. (4) of the main text is obtained.

From Eq. (8), we find the steady-state solution by inverting the 2 × 2 matrix Lss when its

determinant |Lss| , 0 as

ρ11(∞) =
W1W2 − Φ

[
2ΦW2 + Φ (W1 −W2)

]
/
(
W1 + W2

)
|Lss|

,

ρ22(∞) =
W1W2 − Φ

[
2ΦW1 + Φ (W2 −W1)

]
/
(
W1 + W2

)
|Lss|

,

ρ12(∞) = ρ21(∞) =
2ΦW1W2 − Φ

(
W1W2 + W1W2

)
|Lss|

(
W1 + W2

) , (S29)

with

|Lss| = W1W2 + W1W2 + W1W2 − Φ
(
2Φ + Φ

)
, (S30)

and ρ00 can be obtained from the probability conservation of ρ00 = 1 − ρ11 − ρ22. This steady-state

solution should correspond to the eigenvector v1 of the L matrix with the eigenvalue λ1 = 0, where

v1 = (ρ00(∞), ρ11(∞), ρ22(∞), ρ12(∞), ρ12(∞))T . (S31)

The other eigenvectors and eigenvalues are reported as below for completeness. The two eigen-

vectors, v2 and v3, have the degenerate eigenvalues λ2 = λ3 = −
(
W1 + W2

)
/2, where

v2 = (0, 0, 0, 1,−1)T and v3 =

0, 1,−1,
W2 −W1

2Φ̄
,

W2 −W1

2Φ̄

T

. (S32)

The eigenvalues of the remaining two eigenvectors are the two roots of the characteristic equation

of λ2 + λ
(
W1 + W1 + W2 + W2

)
+ |Lss| = 0. Thus, we find the eigenvalues λ4 and λ5 as

λ4,5 =
−

(
W1 + W1 + W2 + W2

)
± U

2
, (S33)
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with U =

√(
W1 + W1 + W2 + W2

)2
− 4|Lss|, where λ4 and λ5 correspond to the + and − sign,

respectively. The explicit expressions for v4 and v5 are shown as

v4(5) =

1,−λ4(5) + W2 + W2 −W1

2λ4(5) + W1 + W2

,−
λ4(5) + W1 + W1 −W2

2λ4(5) + W1 + W2

,
2Φ + Φ

2λ4(5) + W1 + W2

,
2Φ + Φ

2λ4(5) + W1 + W2

T

.

(S34)

Note that |Lss| = 0 yields the additional zero eigenvalue, λ4 = 0 and we expect multiple steady-state

solutions given by a linear combination of v1 and v4.

S3. STEADY-STATE CURRENTS

In this section, we calculate steady-state currents explicitly. The net particle currents Ja
d from

bath a to dot d can be calculated from the Liouville equation in Eqs. (3) and (4) of the main text

by sorting out the contributions to the time increment of the particle density of each dot d (ρ̇dd)

from each bath a. Then, we can easily identify

Ja
d(t) = wa

d+ ρ00(t) − wa
d− ρdd(t) − φa

√
wa

1−w
a
2−

(
ρ12(t) + ρ21(t)

2

)
(S35)

where the first term in the right-hand-side represents particle transfer from bath a to the empty dot

d, the second term represents particle transfer form the occupied dot d to bath a, and finally the

third term represents the interference between relaxation channels to both dots. In the steady state,

the particle density at dots is stationary, so the currents from both baths should be balanced in such

a way that Jh
d(∞) = −Jc

d(∞) ≡ Jd(∞).

We can divide the particle current into the classical and quantum part as

Jd(∞) = Jcl
d + Jq

d = Jcl
d + Ψdρ12(∞), (S36)

where the quantum current Jq
d is given as a product of the quantum speed Ψd and the coherence

ρ12(∞). The classical current is easily obtained by simply setting φa = 0 in Eq. (S35) and Eq. (5)

of the main text, and using the rates wa
d+

= 2π|ga
d|

2Na and wa
d− = 2π|ga

d|
2Na, yielding

Jcl
1 =

1
|L0|

(
wh

1+W1 − wh
1−W1

)
W2 =

∆N
|L0|

(2π)2|gh
1|

2|gc
1|

2W2 , (S37)

Jcl
2 =

1
|L0|

(
wh

2+W2 − wh
2−W2

)
W1 =

∆N
|L0|

(2π)2|gh
2|

2|gc
2|

2W1 , (S38)

where |L0| = |Lss|φa=0 = W1W2 + W1W2 + W1W2 and the external bias ∆N = Nh − Nc > 0. Note

that Jcl
d is always positive. The quantum part, Jq

d = Ψd ρ12(∞), is also obtained from Eq. (S35) and
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Eq. (5) of the main text, yielding

Ψ1 =
Φ

|L0|

[(
wh

1+W1 − wh
1−W1

)
+ wh

1−W2 +
(
wh

1+ + wh
1−

)
W2

]
− φh

√
wa

1−w
a
2− , (S39)

Ψ2 =
Φ

|L0|

[(
wh

2+W2 − wh
2−W2

)
+ wh

2−W1 +
(
wh

2+ + wh
2−

)
W1

]
− φh

√
wa

1−w
a
2− , (S40)

and the coherence term ρ12(∞) = ρ21(∞) is obtained from Eq. (S29), after some algebra, as

ρ12(∞) =
∆N(2π)2

|Lss|

|gh
1||g

h
2|φ

h
(
|gc

2|
2W1 + |gc

1|
2W2

)
− |gc

1||g
c
2|φ

c
(
|gh

2|
2W1 + |gh

1|
2W2

)
W1 + W2

, (S41)

which is valid except for the singular case of |Lss| = 0 (see Sec. S4 for the singular case). In

contrast to the classical current, the quantum current Jq
d can be both positive and negative, which

can vanish either by the zero quantum speed (Ψd = 0) or by the zero coherence (ρ12 = 0). In

Fig. 2 of the main text, the lines of Ψd = 0 and ρ12(∞) = 0 are plotted in the (φc, φh) plane for the

r-symmetric configuration. Note that the Ψd = 0 lines can be different from each other. For the

total quantum current Jq =
∑

d Jq
d = Ψρ12(∞) with Ψ =

∑
d Ψd, the lines of Ψ = 0 and ρ12(∞) = 0

are shown in Fig. S1, where Jq > 0 is accomplished only in the shaded area with the same signs

of Ψ and ρ12(∞). Therefore, the engine performance can be enhanced due to the extra positive

quantum current in a specific region of the parameter space.

As can be seen in Eqs. (S37), (S38), and (S41), both the classical and quantum current are

proportional to the external bias ∆N. Thus, it is natural to define the conductance σd for dot d as

Jd(∞) ≡ σd ∆N, which is also divided into the classical and quantum contribution as σd = σcl
d +σ

q
d.

The classical conductance σcl
d can be easily obtained from Eqs. (S37) and (S38), which is always

positive (σcl
d > 0). The quantum conductance can be obtained from Eqs. (S39), (S40), and (S41).

It would be interesting to study the total quantum conductance σq =
∑

d σ
q
d in the linear response

regime for small bias ∆N. For convenience, we introduce the mean bias N ≡ (Nh + Nc)/2 with

N ≡ 1 − N. After some algebra, we find

lim
∆N→0

σq = −
(2π)2

[
|gh

1||g
h
2|φ

h
(
|gc

2|
2W

eq
1 + |gc

1|
2W

eq
2

)
− |gc

1||g
c
2|φ

c
(
|gh

2|
2W

eq
1 + |gh

1|
2W

eq
2

)]2(
|gh

1|
2 + |gc

1|
2
) (
|gh

2|
2 + |gc

2|
2
) (

W
eq
1 + W

eq
2

)
|Lss|

eq
, (S42)

where W
eq
d = 2πN

(
|gh

d|
2 + |gc

d|
2
)

and |Lss|
eq from Eq. (S30) as

|Lss|
eq = (2π)2(1 + N)N

[(
|gh

1|
2 + |gc

1|
2
) (
|gh

2|
2 + |gc

2|
2
)
−

(
|gh

1||g
h
2| φ

h + |gc
1||g

c
2| φ

c
)2
]
.

Note that the quantum conductance in Eq. (S42) cannot be positive, implying the current enhance-

ment is not possible in the linear response regime.
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ϕc

ϕh

ρ12 = 0Ψ = 0

ρ12 < 0ρ12 > 0
Ψ < 0

(a)

ϕc

ϕh

Ψ = 0

ρ12 < 0
Ψ < 0
ρ12 > 0

(b)
ρ12 = 0

Ψ > 0
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FIG. S1. Lines of vanishing quantum currents (Jq = Ψ ρ12(∞) = 0) in the (φc, φh) plane. The purple

line represents ρ12(∞) = 0 and the green line represents Ψ = 0. The engine performance is enhanced by

the extra quantum current in the shaded regions (Jq > 0). We used Nh = 0.25, Nc = 0.1 and tunneling

coefficients as gh
1 = gc

1 = 1/
√

2π for dot 1 and (a) gh
2 = gc

2 = 4/
√

2π (r-symmetric configuration with r = 4)

and (b) gh
2 = 12/

√
2π and gc

2 = 4/
√

2π (r-symmetry broken) for dot 2.

Next, we will investigate the nonlinear regime in the r-symmetric configuration (ga
2 = rga

1),

where the algebra becomes simplified. From Eqs. (S37) and (S38), we can easily see that the

classical currents for two dots are simply related as Jcl
2 = r2Jcl

1 . For convenience, we set the

tunnelling coefficients as

|ga
1|

2 =
ka

1 + r2 , |ga
2|

2 =
r2ka

1 + r2 , (S43)

which satisfies the r-symmetric condition. Then, we find

σcl
1 =

2π
1 + r2

khkc

khÑh + kcÑc
, σcl

2 = r2σcl
1 , (S44)

where Ña = 1 + Na. After some algebra, we also find the relative quantum conductance σq
d/σ

cl
d as

σ
q
1

σcl
1

=
r2

1 + r2

2
(
φh − φc

)
L

khkc

khN
h

+ kcN
c

[
φc

{(
kh + kc

)
−

(
khNh + kcNc

)
Nh

}
N

c

−φh
{(

kh + kc
)
−

(
khNh + kcNc

)
Nc

}
N

h
]

+
1

1 + r2

2
(
φh − φc

)
L

khkc

khN
h

+ kcN
c

(
φhkhN

h
+ φckcN

c
) (

Nh − Nc
)
, (S45)
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σ
q
2

σcl
2

=
1

1 + r2

2
(
φh − φc

)
L

khkc

khN
h

+ kcN
c

[
φc

{(
kh + kc

)
−

(
khNh + kcNc

)
Nh

}
N

c

−φh
{(

kh + kc
)
−

(
khNh + kcNc

)
Nc

}
N

h
]

+
r2

1 + r2

2
(
φh − φc

)
L

khkc

khN
h

+ kcN
c

(
φhkhN

h
+ φckcN

c
) (

Nh − Nc
)
, (S46)

where L reads

L =

(
khN

h
+ kcN

c
) (

khÑh + kcÑc
)
−

(
khφhN

h
+ kcφcN

c
) (

khφhÑh + kcφcÑc
)
. (S47)

In the expansion of σq
d/σ

cl
d = S0

d + S1
d ∆N + O(∆N2), the leading terms are given by

S0
1 = −

r2

1 + r2

2khkc(1 − N2)
Leq

(
φh − φc

)2
, S0

2 = −
1

1 + r2

2khkc(1 − N2)
Leq

(
φh − φc

)2
, (S48)

where Leq =
(
1 − N2

) [(
kh + kc

)2
−

(
khφh + kcφc

)2
]
.

Setting φc = φ − ∆φ and φh = φ with a finite φ, we obtain

S1
1 =

r2

1 + r2

2khkcφ∆φ + O(∆φ2)
Leq +

1
1 + r2

2khkcφ∆φ + O′(∆φ2)
Leq

≈
2khkcφ∆φ

(1 − N2)
(
kh + kc)2 (

1 − φ2) , (S49)

and

S1
2 =

1
1 + r2

2khkcφ∆φ + O(∆φ2)
Leq +

r2

1 + r2

2khkcφ∆φ + O′(∆φ2)
Leq

≈
2khkcφ∆φ

(1 − N2)
(
kh + kc)2 (

1 − φ2) , (S50)

where O and O′ are higher order terms and the expansion of Leq yields

Leq ≈
(
1 − N2

) [(
kh + kc

)2 (
1 − φ2

)
+ 2kc

(
kh + kc

)
φ∆φ

]
.

We find that both linear coefficients are negative and S0
1 = r2S0

2. For r > 1, the negative contri-

bution from dot 1 (weaker coupling) is stronger. As the second-order coefficients are positive for

φ∆φ > 0 and stronger than the linear coefficients for very small ∆φ, the nonlinear contribution

may overcome the linear response to make the quantum conductance positive.

Approaching to φh = φc = ±1, the leading order of Leq becomes linear in ∆φ, thus S1
d remains

finite, while S0
d goes to zero. Therefore, a strong enhancement of the current is expected.
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S4. FULLY SYMMETRIC CASE

We consider the most symmetric case with φh = φc = φ in the r-symmetric configuration,

where we find simple relations as W2 = r2W1, W2 = r2W1, Φ = rφW1, and Φ = rφW1. Then, the

Liouville matrix becomes

L =



−(1 + r2)W1 W1 r2W1 rφW1 rφW1

W1 −W1 0 −rφW1
2

−rφW1
2

r2W1 0 −r2W1
−rφW1

2
−rφW1

2

rφW1
−rφW1

2
−rφW1

2
−(1+r2)W1

2 0

rφW1
−rφW1

2
−rφW1

2 0 −(1+r2)W1
2


. (S51)

The eigenvectors and the corresponding eigenvalues of L can be obtained from more general results

in Sec. S2 or by directly diagonalizing Eq. (S51). The first three eigenvectors are given as

vT
1 = (α, α, α, 0, 0) , vT

2 = (0, 0, 0, 1,−1) , vT
3 =

(
0, 1,−1,

r2 − 1
2rφ

,
r2 − 1
2rφ

)
, (S52)

where α = W1/(2W1 + W1), ᾱ = 1 − 2α, and the corresponding eigenvalues are λ1 = 0, λ2 =

−1+r2

2 W1 and λ3 = −1+r2

2 W1, respectively. The fourth and the fifth eigenvectors are given as

vT
4(5) =

1,−λ4(5) + r2(W1 + W1) −W1

2λ4(5) + (1 + r2)W1

,−
λ4(5) + W1 + W1 − r2W1

2λ4(5) + (1 + r2)W1

,
rφ

(
2W1 + W1

)
2λ4(5) + (1 + r2)W1

,
rφ

(
2W1 + W1

)
2λ4(5) + (1 + r2)W1


(S53)

and the corresponding eigenvalues are

λ4 =
−

(
1 + r2

) (
W1 + W1

)
+ U

2
, λ5 =

−
(
1 + r2

) (
W1 + W1

)
− U

2
(S54)

with U =

√[
(1 + r2)

(
W1 + W1

)]2
− 4r2(1 − φ2)

(
2W1W1 + W

2
1

)
.

One can notice that the maximum interference condition (|φ| = 1) yields λ4 = 0, implying that

the steady state is not determined uniquely. In fact, any state spanned by v1 and v4 can become

a steady state, depending on the initial condition. For |φ| < 1, all four eigenvalues are negative

except λ1 = 0, so we have a unique steady state represented v1, which is identical to the classical

steady state at φ = 0.

Defining a matrix V = (v1, v2, v3, v4, v5) with its inverse V−1, the formal solution P(t) at time t

with an initial vector P(0) = (ρ00(0), ρ11(0), ρ22(0), ρ12(0), ρ21(0))T, reads

P(t) = VV−1eL t VV−1P(0) , (S55)
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or P(t) = V
(
1, χ2eλ2t, χ3eλ3t, χ4eλ4t, χ5eλ5t

)T
, where we used ρ00(0) + ρ11(0) + ρ22(0) = 1. All χi’s

can be calculated from Eq. (S55) if the initial condition P(0) is given.

Let us consider the simple case of r = 1, where the eigenvectors and the eigenvalues are given

by vT
1 = (ᾱ, α, α, 0, 0), vT

2 = (0, 0, 0, 1,−1), vT
3 = (0, 1,−1, 0, 0), vT

4 =

(
1,−1

2 ,−
1
2 ,

U1+W1

2φW1
, U1+W1

2φW1

)
, and

vT
5 =

(
1,−1

2 ,−
1
2 ,

W1−U1

2φW1
, W1−U1

2φW1

)
, with λ1 = 0, λ2 = −W1, λ3 = −W1, λ4 = −(W1 + W1) + U1 and

λ5 = −(W1 + W1) − U1 , where U1 =

√
(W1 + W1)2 − (1 − φ2)2W1W1 + W

2
1). Then the inverse

matrix V−1 is obtained as

V−1 =



1 1 1 0 0

0 0 0 1
2 −1

2

0 1
2 −1

2 0 0
α(U1−W1)

U1
−
ᾱ(U1−W1)

2U1
−
ᾱ(U1−W1)

2U1

φW1
2U1

φW1
2U1

α(U1+W1)
U1

−
ᾱ(U1+W1)

2U1
−
ᾱ(U1+W1)

2U1
−
φW1
2U1
−
φW1
2U1


. (S56)

If the initial condition is given by ρ11(0) = ρ22(0) and ρ12(0) = ρ21(0), Eq. (S55) is simplified since

χ2 = χ3 = 0 and thus ρ11(t) = ρ22(t) and ρ12(t) = ρ21(t). It is straightforward to obtain the dynamic

equation  ρ11(t)

ρ12(t)

 = αA(φ, t) + M(φ, t)

 ρ11(0)

ρ12(0)

 , (S57)

where the vector A is given by

A(φ, t) =
1
2

 2 − R+(φ, t) + W1
U1

R−(φ, t)
φ(2W1+W1)

U1
R−(φ, t)

 , (S58)

and the Matrix M,

M(φ, t) =
1
2

 R+(φ, t) − W1
U1

R−(φ, t) −
φW1
U1

R−(φ, t)

−
φ(2W1+W1)

U R−(φ, t) R+(φ, t) + W1
U1

R−(φ, t)

 . (S59)

Here, R±(φ, t) = eλ4t ± eλ5t. The data in Fig. 3 of the main text are calculated from Eq. (S57) with

the initial state of ρ11(0) = ρ12(0) = 0.

At the singular point (φ = 1), the multiple steady states emerge, depending on the initial condi-

tion. As the two eigenvalues (λ1 = λ4) become zero, there should be a conservation law associated

with λ4, in addition to the probability conservation responsible for λ1. From the structure of the Li-

ouville matrix in Eq. (S51), one can easily find the conservation law of r2ρ̇11 + ρ̇22− rρ̇12− rρ̇21 = 0

for φ = 1. This implies that the quantity r2ρ11(t) + ρ22(t) − rρ12(t) − rρ21(t) = I0 does not change
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in time. Using the relation of Eq. (5) of the main text and this conservation law, we obtain the

multiple fixed points as

ρ11(∞) = α − [rᾱ −
1 − r2

r
α] ρ12(∞) , ρ22(∞) = α − [

ᾱ

r
+

1 − r2

r
α] ρ12(∞) ,

ρ12(∞) = ρ21(∞) =
r

1 + r2

1
1 − α

(
α −

I0

1 + r2

)
, (S60)

where I0 = r2ρ11(0) + ρ22(0) − rρ12(0) − rρ21(0). Similarly, we get the extra conservation of

r2ρ11(t) + ρ22(t) + rρ12(t) + rρ21(t) = I′0 for φ = −1 and the corresponding multiple fixed points are

given as

ρ11(∞) = α + [rᾱ −
1 − r2

r
α] ρ12(∞) , ρ22(∞) = α + [

ᾱ

r
+

1 − r2

r
α] ρ12(∞) ,

ρ12(∞) = ρ21(∞) = −
r

1 + r2

1
1 − α

(
α −

I′0
1 + r2

)
, (S61)

where I′0 = r2ρ11(0) + ρ22(0) + rρ12(0) + rρ21(0).

We can also calculate the steady-state currents. From Eqs. (S37)-(S40), we obtain

Ψ1 =
Φ

|L0|
(1 + r2)

(
wh

1+W1 − wh
1−W1

)
= φ

1 + r2

r
Jcl

1 ,

Ψ2 =
Φ

|L0|

(
1 +

1
r2

) (
wh

2+W2 − wh
2−W2

)
= φ

1 + r2

r
Jcl

2 , (S62)

where

Jcl
1 =

2π|gh
1|

2|gc
1|

2∆N

|gh
1|

2Ñh + |gc
1|

2Ñc
, Jcl

2 = r2Jcl
1 , (S63)

with Ña = 1 + Na. For |φ| < 1, the classical solution becomes the unique steady state (ρ12(∞) = 0),

thus the steady-state current is purely classical. However, at |φ| = 1, we have a nonzero ρ12(∞)

in Eqs. (S60) and (S61) and the steady-state current contains the quantum part as Jd(∞) = Jcl
d +

Ψdρ(∞), thus, for φ = ±1,

Jd(∞) = Jcl
d

(
1 ±

1 + r2

r
ρ12(∞)

)
. (S64)

Note that these currents are the same for φ = ±1 with the initial conditions of I0 = I′0. In equilib-

rium, the quantum current vanishes as well as the classical current even if ρ12(∞) , 0, because the

quantum speed Ψd vanishes at ∆N = 0 as in Eq. (S62).
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