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Geometry-induced rectification for an active object
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Studies of the rectified current induced by active particles have received great attention due to its possible
application to a microscopic motor in biological environments. Insertion of an asymmetric passive object amid
many active particles has been regarded as an essential ingredient for generating such a rectified motion. Here,
we report that the reverse situation is also possible, where the motion of an active object can be rectified by
its geometric asymmetry amid many passive particles. This may describe a unidirectional motion of apolar
biological agents with asymmetric shape. We also find a weak but less dispersive rectified motion in a passive
mode without energy pump-in. This “moving by dissipation” mechanism could be used as a design principle for
developing more reliable microscopic motors.
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Introduction. Most biological systems are active in that
they are self-propelled, i.e., driven by mechanical forces gen-
erated via an internal mechanism consuming chemical fuels
[1]. This is in marked contrast to passive systems such as
a Brownian particle, whose stochastic motions are governed
by external reservoirs. The activeness leads to various unique
features clearly distinguished from those of passive systems.
For example, active systems show time-scale-dependent diffu-
sivity due to colored noise [2–6], aggregation due to repulsive
force [7], efficiency enhancement [8–10], and unconventional
entropy production [10–14].

In much of the literature, this self-propelled motion has
been encoded into velocity-dependent driving forces Fdrv =
−∇v�(v) at the phenomenological level, where v is the ve-
locity of an active particle and �(v) is a symmetric velocity
potential. Specific examples are the Rayleigh-Helmholtz (RH)
[15–17], depot [18–21], and Schienbein-Gruler (SG) models
[22,23] proposed to describe the driving forces of various ac-
tive systems such as molecular motors, bacteria, and moving
cells, respectively. For each case, the driving force Fdrv is
given by

Fdrv = −�(v)v, with �(v) =
⎧⎨
⎩

γ̂ + ωv2 RH
γ̂

1+ζv2 depot
γ̂ v0/|v| SG,

(1)

where v0 is a velocity unit defined in Eq. (5) and γ̂ , ω,
and ζ are tunable parameters. Here, we take ω, ζ > 0 for
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the stability, while γ̂ can be any real number. When Fdrv

is applied to a particle with mass M, immersed in a liq-
uid with friction coefficient γ > 0 and temperature T , the
steady-state velocity distribution is given by the exponential
form ∼ exp[−M�̃(v)/(kBT γ )] with the effective potential
�̃(v) ≡ �(v) + γ v2/2. The driving force is denoted to be in
the active (passive) mode when �̃(v) is minimum at v �= 0
(v = 0) [1]. In one dimension, the velocity distribution has
symmetric double peaks in the active mode as shown by
the left red curve in Fig. 1(a). These two peaks represent a
nonzero self-propelling velocity. This active mode appears for
γ̂ < γc, where γc = −γ for the RH and the depot models and
γc = 0 for the SG model. For γ̂ > γc, the velocity distribution
becomes unimodal with no finite self-propelling velocity [see
Fig. 1(a)], which indicates the passive mode. Note that the
system is still out of equilibrium even in the passive mode due
to the driving force. Even in the active mode, a self-propelled
particle does not prefer any particular direction like in a stan-
dard run-and-tumble motion [1]; thus there exists no rectified
motion (no net particle current) in the long-time limit. The
zero current is a natural consequence of the symmetry of the
effective potential, �̃(v) = �̃(−v).

In the meantime, the rectification of thermal fluctuations
in a Brownian motor has been reported [24,25]. The essential
ingredient for the nonzero current of the examples is the in-
terplay of a nonequilibrium condition (temperature gradient)
and a geometric asymmetry of the motor. Another interesting
example is a “passive” ratchet surrounded by many “active”
bacteria, which was found to exhibit a persistent rotational
motion (rectified current) in recent experiments [26,27] and
numerical simulations [28]. This triggered a flurry of sub-
sequent research [29–35], due to a realistic applicability for
designing a microscopic motor in biological environments.
Note that this situation also combines nonequilibriumness
(activity) and spatial asymmetry of the ratchet.

In this Research Letter, we introduce the reverse situa-
tion, where an asymmetric active particle is immersed in a
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FIG. 1. (a) Schematic of the steady-state velocity distribution Ps(v) in one dimension for driving forces Fdrv in Eq. (1). When γ̂ < γc

(γ̂ > γc) with a symmetric particle shape, the velocity distribution is symmetric bimodal (unimodal) as shown by the left (right) red curve,
which indicates the active (passive) mode. When the shape of a particle is asymmetric, one peak is amplified over the other for the active mode,
while the peak position moves slightly aside with reduced variance for the passive mode (see the blue curves). (b) Schematic of the model.
The t particle is immersed in a reservoir with temperature T and moves along the horizontal direction (one-dimensional motion). The reservoir
consists of N identical r particles. The driving force Fdrv is applied to the t particle. (c) The steady-state velocity distributions for the RH model
in the active mode, obtained by numerical simulations. Those for other models and for the passive case are shown in Figs. S1 and S3 of the
Supplemental Material [41].

reservoir of passive particles. This problem has been one of
the important topics in the active-matter community, but a
rigorous theoretical approach has not been addressed to date
[36,37]. We find that the geometric asymmetry plays a crucial
role for the rectified motion along with nonequilibriumness
caused by Fdrv. We derive analytically the explicit formula
for the rectified current and compare it with numerical results
via extensive molecular dynamics simulations. Interestingly,
a rectified current exists even in the passive mode, in partic-
ular, for γ̂ > 0, where the energy only dissipates (no energy
pump-in). We coin the term “moving by dissipation” for this
rectifying mechanism when γ̂ > 0. In practice, this type of
rectification provides a weak but reliable (less dispersive)
directed motion even in highly fluctuating thermal environ-
ments.

Model. Consider a triangular shaped particle (t particle)
with mass M and vertical cross section L immersed in a reser-
voir with temperature T as illustrated in Fig. 1(b). Here, we
constrain the t-particle motion along the horizontal direction
only, where its translational motion is essentially equivalent
to a rotational motion in the setup for various experimental
and theoretical studies [26,27,38,39]. Its apex angle, position,
and velocity are denoted as 2θ , x, and v, respectively. The
reservoir consists of N identical circular shaped particles (r
particles) with mass m and radius R which move inside a
two-dimensional square box with side length l with periodic
boundary conditions. We assume that m � M and R � L �
l . The stochastic motion of the t particle is induced by elas-
tic collisions with r particles, which are equipped with the
Langevin thermostat. Details of the collision dynamics and
its numerical implementation [24,40] are described in the
Supplemental Material [41]. Note that our analysis can be
straightforwardly extended to an arbitrary convex shape.

Without any driving force, the t particle reaches a ther-
mal equilibrium with zero mean velocity. However, with a
one-dimensional force in Eq. (1) applied on the t particle,
the system can be driven out of equilibrium. The resulting
phenomena due to the driving forces are briefly summarized

in Fig. 1(a). The asymmetric shape of the t particle in the
active mode breaks the symmetry of the peaks as shown by the
left blue curve of Fig. 1(a); thus the active motion is rectified
with a nonzero average current. This leads to the “rectified
run-and-tumble” trajectory for the asymmetric active particle
as shown by the blue lines in Fig. S2 of the Supplemental
Material [41]. In the passive mode, the asymmetric shape of
the t particle moves the position of the unimodal peak slightly
aside, representing a weak rectified current compared with
that in the active mode as shown by the right blue curve of
Fig. 1(a).

Theoretical analysis of the model. To understand the
emergence of the nonzero current analytically, we present a
perturbation theory for the t particle dynamics for small m/M,
which is reasonable in realistic situations. We also assume that
r particles are always in equilibrium. Then, our model can be
described by the kinetic theory introduced in Refs. [24,25]
with the addition of an external driving force.

The probability density of the t particle velocity v at time t ,
P(v, t ), can be described by the following Boltzmann master
equation:

∂P(v, t )

∂t
= (Lres + Ldrv)P(v, t ), (2)

where Lres and Ldrv are operators representing the effects of
the reservoir and the driving force, respectively. More specifi-
cally, Lres can be written as

Lres =
∞∑

n=1

(−1)n

n!

∂n

∂vn
an(v), (3)

where a Kramers-Moyal coefficient an(v) is defined as
an(v) ≡ ∫

rnW (v + r|v)dr with the transition rate W (v′|v)
from v to v′ induced by elastic collisions with r parti-
cles [25,42,43]. The explicit calculation of an(v) is presented
in Sec. II of the Supplemental Material [41]. Ldrv is given by

Ldrv = − ∂

∂v

Fdrv

M
, (4)
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with Fdrv = −�(v)v in Eq. (1).
It is convenient to introduce dimensionless variables

ν ≡ v/v0 (v0 ≡
√

kBT /M ) and τ = γ t/M, (5)

where the t particle friction coefficient γ is obtained as

γ ≡ 4Lρ

√
mkBT

2π
(1 + sin θ ), (6)

with the r particle density ρ = N/l2 (see Sec. II of the Sup-
plemental Material [41]). Then, Eq. (2) is rewritten as

∂P(ν, τ )

∂τ
=

∞∑
n=1

(−1)n

n!

∂n

∂νn
An(ν)P(ν, τ ), (7)

where An(ν) is the modified Kramers-Moyal coefficient de-
fined as

An(ν) = M

γ vn
0

an(v0ν) − G(ν)νδn,1 (8)

with P(ν, τ ) = v0P(v, t ) and G(ν) = �(v0ν)/γ .
We perform a perturbation expansion with the small pa-

rameter ε ≡ √
m/M. Up to O(ε), we find in Sec. II of the

Supplemental Material [41]

A1(ν) ≈ −[1 + G(ν)]ν + ā(1 − ν2)ε,

A2(ν) ≈ 2 + 6āνε,

A3(ν) ≈ −12āε,

An(ν) = O(ε2), for n � 4, (9)

where the asymmetric factor ā =
√

2π
4 (1 − sin θ ) � 0. Using

Eqs. (7) and (9) and the expansion of P(ν, τ ) ≈ P(0)(ν, τ ) +
εP(1)(ν, τ ), we can set up the equations as follows:

∂τ P(0)(ν, τ ) = L0P(0)(ν, τ ),

∂τ P(1)(ν, τ ) = L1P(0)(ν, τ ) + L0P(1)(ν, τ ), (10)

where L0 and L1 are given by

L0 = − ∂

∂ν

[
−[1 + G(ν)]ν − ∂

∂ν

]
,

L1 = −ā
∂

∂ν

[
(1 − ν2) − 3

∂

∂ν
ν − 2

∂2

∂ν2

]
. (11)

The steady-state distribution of the zeroth order is then

P(0)
s (ν) = 1

N e− ∫ ν ds[1+G(s)]s (12)

with the normalization factor N . The next order is obtained by
solving L0P(1)

s (ν) = −L1P(0)
s (ν). A straightforward analysis

yields

P(1)
s (ν) = āg(ν)P(0)

s (ν) with

g(ν) = 2G(ν)ν −
∫ ν

0
ds G(s)[1 + 2G(s)]s2. (13)

Note that g(ν) is an odd function of ν, i.e., g(−ν) = −g(ν), as
G(ν) is even in ν in all models considered here. This is also
consistent with the normalization condition

∫ ∞
−∞ dsP(1)

s (s) =
0.

The steady-state average of the nth moment of the velocity
is then obtained up to O(ε) as

〈νn〉s ≈
∫ ∞

−∞
dν νn[1 + āεg(ν)]P(0)

s (ν)

=
{

āε〈νng(ν)〉0 (n odd)
〈νn〉0 (n even), (14)

where 〈· · · 〉0 stands for the average over P(0)
s (ν). Note that the

average velocity and its all-odd moments are O(ε) and vanish
for the symmetric case (ā = 0). Thus the time-reversal sym-
metry breaking (rectified current) occurs only with a shape
asymmetry and a finite mass ratio. All even moments respon-
sible for the stochasticity are always O(1), the same as that for
ā = 0. The standard fluctuation is simply given by the second
moment; 〈(�ν)2〉s = 〈ν2〉s − 〈ν〉2

s ≈ 〈ν2〉0, up to O(ε). Equa-
tion (14) can be extended to a particle with arbitrary convex
shape with the general expression of ā and γ (see Eqs. (S17)
and (S22) in Secs. II and III of the Supplemental Material
[41]). This indicates that the rectified motion is a general
phenomenon for an active particle with asymmetric shape.

Examples. We first apply the analytic theory to a simple
soluble example with Fdrv = −γ̂ v to gain some insight. This
model describes a “cold damping” problem applicable to a
molecular refrigerator [44–46]. With Eqs. (12)–(14), we find

〈ν〉sim
s = āε

γ̂ /γ

(1 + γ̂ /γ )2
, 〈ν2〉sim

s = 1

1 + γ̂ /γ
(15)

with P(0)
s (ν) ∼ exp[−(1 + γ̂ /γ )ν2/2] (see Sec. III of the Sup-

plemental Material [41]). As expected, the rectification occurs
as a result of the interplay of nonequilibrium driving (γ̂ ) and
spatial asymmetry (ā), even though the driving force does not
favor any particular spatial direction. In this simple model,
only the passive mode (γ̂ > −γ ) is allowed due to the dy-
namic instability in the active region. We get a nonzero current
even when γ̂ > 0 without energy input by the driving force.
Thus this motion can be called “moving by dissipation” (mbd)
denoting that unidirectional motion is induced by purely dis-
sipative force. Note that the t particle can move in either
direction, depending on the sign of γ̂ , and slows down for
large positive γ̂ .

Now, we consider the more realistic models for active
dynamics given by Eq. (1). We calculated the steady-state
velocities 〈ν〉RH

s , 〈ν〉dpt
s , and 〈ν〉SG

s and their fluctuations for the
RH, the depot, and the SG models, respectively. The resulting
expressions are rather complex and are presented in Sec. III
of the Supplemental Material [41]. The velocities are plotted
as solid curves in Fig. 2, which show that current amplitude
is much bigger in the stabilized active mode (γ̂ /γ < −1 for
the RH and the depot models, and γ̂ < 0 for the SG model)
than in the passive mode. In fact, |〈ν〉s| grows indefinitely as
γ̂ → −∞, and its fluctuation also diverges. In the passive
mode, we find a weaker positive current for the RH and
the depot models as observed in the above simple example
for γ̂ > 0. In contrast, the SG model shows an interesting
crossover behavior from a positive to a negative current for
positive γ̂ with 〈ν〉SG

s = −2āε in the γ̂ → ∞ limit. Moreover,
the fluctuation magnitude of the SG model decays faster than
those of the other models: 〈ν2〉s ∼ γ̂ −2 (SG) and ∼γ̂ −1 (RH
and depot); see Sec. III and Fig. S8 of the Supplemental
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FIG. 2. γ̂ dependence of the rectified velocity. (a), (c), and (e) are the scaled steady-state velocities |〈ν〉s|/(āε) as a function of γ̂ /γ for
the RH, the depot, and the SG models for negative γ̂ , respectively. (b), (d), and (f) are for positive γ̂ . Solid curves are analytic results. Cyan �,
blue �, gold �, green �, and red ◦ points denote data for M = 5, 10, 20, 50, and 100, respectively, with m = 1 fixed.

Material [41]. Thus the SG type would be more appropriate
for designing reliable microscopic motors with both direc-
tional currents possible. As a reference, we estimate the order
of magnitude of the rectification speed using realistic param-
eters of physical systems in Sec. IV of the Supplemental
Material [41]. Note that this SG case was experimentally
studied in Ref. [47].

Numerical simulations. To confirm the validity of our
analysis, we performed extensive molecular dynamics simu-
lations. Figure 1(c) shows numerical data for the steady-state
velocity distributions of the t particle with a symmetric shape
(θ = π/2) and an asymmetric shape (θ = π/4) in the ac-
tive mode for the RH model. The rectification with broken
symmetry is clearly seen in the figure. Similar distributions
for the depot and the SG models are presented in Fig. S1 of
the Supplemental Material [41]. The passive-mode velocity
distributions with θ = π/4 and γ̂ > 0 are presented in Fig.
S3 of the Supplemental Material [41]; they are unimodal and
slightly asymmetric as expected.

Data points in Fig. 2 are the simulation results for the
rectified velocities of the asymmetric t particle with various
values of γ̂ and t-particle mass M = 5, 10, 20, 50, and 100.
All other parameters are fixed (see the caption of Fig. S1 of the
Supplemental Material [41]). We find that their overall behav-
iors agree well with the theoretical predictions qualitatively,
but with ∼40% overestimates for the simple (Fig. S5 of the
Supplemental Material [41]), the RH, and the depot models in
the small-ε limit. The origin of this difference is unclear yet,
but probably due to a reservoir finite-size effect, also noticed
in previous studies in similar systems [24,25]. For the SG
model, the numerical overestimate is much smaller, but the
convergence to the small-ε limit is quite slow for large positive
γ̂ /γ . This slow convergence is also found in the active mode
for the RH and the depot models.

In addition to the emergence of the rectified current, we
stress that the geometry-induced current is characterized by
suppressed fluctuations in the mbd region. To highlight the
usefulness of the mbd mechanism, we compare two simulated
trajectories of the same t particle driven by either constant
force (Fdrv = f ) or the SG force. The two forces are tuned to

yield almost the same average velocity. The blue (red) curve
in Fig. 3 is the trajectory averaged over 100 realizations when
the t particle is driven by the constant (SG) force. The two
trajectories have the same overall slope, but the trajectory
from the constant force is much noisier. This strongly suggests
that the mbd mechanism can be utilized as a motor mechanism
when an accurate motion is required in highly fluctuating en-
vironments. However, the rectification speed is quite small as
O(ε) in the passive mode; thus its usefulness is rather limited.
Note that the origin of the moving by dissipation, motion
induced by a geometric asymmetry, is different from that in
Refs. [48,49], motion induced by an asymmetric dissipative
force.

Conclusion and discussion. Our study clearly demonstrates
that the self-propelled motion of an active object can be rec-
tified by its shape asymmetry in passive environments. Our
conclusion is applicable to an active object with arbitrary
convex shape, driven by a general velocity-dependent force
induced by a symmetric velocity potential �(v). We also
show that this rectification is possible even in the passive
mode without a self-propelled velocity. Especially, for γ̂ >

0, the motion is driven by the mbd mechanism, which can
provide a design principle for developing more reliable micro-
scopic motors. We note that the active particle motion is also

FIG. 3. Trajectories of the t particle averaged over 100 realiza-
tions driven by a constant force f = 5.1 × 10−3 γ v0 (blue) and the
SG force with γ̂ /γ = 9.88 (red). τ has a dimensionless time unit as
defined in Eq. (5).
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modeled by introducing a self-propulsion velocity through
energy conversions by chemical fuels or reactions [7,50]. We
find a similar rectification behavior by numerical simulations,
shown in Fig. S6 of the Supplemental Material [41].

It is also imaginable that some microorganisms or nanoma-
chines driven by chemical fuels make use of this rectification
mechanism by changing their shape asymmetrically to move
in an intended direction. Moreover, the magnitude and di-
rection of the t particle velocity can be controlled by simply
changing its shape, i.e., θ as shown in Fig. S9 of the Supple-
mental Material [41]. This suggests that the shape change of
microorganisms might have an important role in controlling
their movement.

Finally, we remark that our result is restricted to one-
dimensional motion but is still relevant to important problems
such as a molecular motor walking along a microtubule, blood
cell movement inside a capillary vessel, and a rotary molecu-

lar gear. In higher dimensions, the rectification will disappear
eventually in the long-time limit due to a possible rotational
diffusion, but may generate an intricate interplay between the
rotation diffusive time scale and the rectification speed, which
is left for future study.
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I. MOLECULAR DYNAMICS SIMULATIONS

We consider a triangular shaped particle (t-particle) with mass M in a reservoir with N

identical circular reservoir particles (r-particles) as shown in Fig. 1 (b) of the main text. The

t-particle moves only in the horizontal direction, while the r-particles move inside the two-

dimensional box with periodic boundary conditions. Interactions between the r-particles

are modeled as hard-disk elastic collisions. For convenience, an elastic collision between

a r-particle and the t-particle is assumed to occur when the r-particle center touches the

boundary of the t-particle [1, 2].

We adopt the Langevin thermostat to maintain the reservoir temperature T [3]. Thus,

the equation of motion of the i-th r-particle (i = 1, · · · , N) is given by [2]

v i = ẋi, mv̇ i = F col
i − γthv i + ξi, (S1)

where x i and v i are the two-dimensional position and velocity vectors of the i-th r-particle,

respectively, γth is the dissipation coefficient for the thermostat, and F col
i describes the

interaction force induced by collisions with the t-particle and other r-particles. ξi is the

Gaussian white noise vector satisfying 〈ξi(t)ξ
ᵀ
j (t
′)〉 = 2γthkBTδijδ(t − t′)I, where I is the

N ×N identity matrix and kB is the Boltzmann constant.

The t-particle motion is affected by the elastic collisions with r-particles and also by the

driving force in Eq. (1) of the main text. As we constrain the t-particle motion in one

dimension (horizontal direction), the equation of motion of the t-particle is

v = ẋ, Mv̇ = −F col
x + Fdrv, (S2)

where x and v are the position and the velocity of the t-particle, F col
x is the horizontal

component of the total collision force (F col =
∑

iF
col
i ), and the one-dimensional driving

force Fdrv = −Γ(v)v.

For numerical simulations, we set the parameter values as l = 300, N = 200, kBT = 4,

R = 0.5, L = 4, γth = 1, m = 1, ω = 0.01, and ζ = 0.2. The apex angle θ = π/2 is taken for

the symmetric shape (vertical rod) and θ = π/4 for a typical asymmetric shape. We vary

γ̂ and M to investigate the dependence on the driving force strength (γ̂) and also on the

mass ratio (m/M). By solving the equations of motion in Eqs. (S1) and (S2) numerically

with kinematic considerations for all involved collisions, we generate numerical data for the
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FIG. S1. The steady-state velocity distributions for (a) the depot and (b) the SG models in the

active mode. Red and blue curves are plots for θ = π/2 (symmetric) and π/4 (asymmetric),

respectively. All distributions including Fig. 1(c) of the main text are obtained from numerical

simulations with parameter values of l = 300, N = 200, kBT = 4, R = 0.5, L = 4, γth = 1, m = 1,

M = 20, γ̂ = −0.14, ω = 0.01, and ζ = 0.2. To obtain these distributions, we averaged over 8×105

velocity data from 104 trajectories in the steady state; 80 data are taken from each trajectory with

the time interval ∆t = 500 > M/γ ' 300.
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FIG. S2. (a), (b), and (c) are trajectories of the t-particle in the active mode of the RH, the

depot, and the SG models, respectively. Red and blue curves denote trajectories for the symmetric

(θ = π/2) and the asymmetric (θ = π/4) case, respectively. The symmetric-shaped particle shows a

usual run-and-tumble motion with zero-mean velocity, while the asymmetric-shaped particle shows

a rectified run-and-tumble motion.
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FIG. S3. The steady-state velocity distribution for (a) the RH, (b) the depot, and (c) the SG

models in the passive mode with positive γ̂. We take γ̂/γ = 0.152 (red) and γ̂/γ = 4.42 (blue) for

the RH and the depot models, and γ̂/γ = 0.341 (red) and γ̂/γ = 9.88 (blue) for the SG model.

The distributions are unimodal with weak asymmetry.
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FIG. S4. Trajectories of the t-particle averaged over 5000 realizations for various values of γ̂ for

the simple model with Fdrv = −γ̂v.

t-particle trajectories in the phase space of (x, v). After discarding initial transient data

before t = 10M/γ, we calculate the steady-state velocity distribution Ps(v) as well as its

first and second moments, i.e. 〈v〉s and 〈v2〉s.

With γ̂ = −0.14 and M = 20, the numerically obtained Ps(v) are plotted in Fig. 1(c) of

the main text and in Fig. S1 both for the symmetric and the asymmetric cases in the active

mode of the three different models. Typical run-and-tumble trajectories of the t-particle are

shown in Fig. S2. We also present numerical data in the passive mode with γ̂ > 0 in Fig. S3.

The averaged trajectories for the simple model (Fdrv = −γ̂v) are shown for various values
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for γ̂ < 0 and (b) for γ̂ > 0. Solid curves are analytic results. Cyan �, blue M, gold O, green �,

red ◦ points denote data for M = 5, 10, 20, 50, and 100, respectively.

of γ̂ in Fig. S4, which are qualitatively consistent with Eq. (15) of the main text.

We measure the average velocities of the asymmetric t-particle for the simple, the RH,

the depot, and the SG model for various γ̂ ranging from -0.13 to +0.29 with the t-particle

mass M = 5, 10, 20, 50, 100, which are plotted in Fig. S5 and Fig. 2 of the main text. For

convenience, we use the scaled axes of γ̂/γ and 〈ν〉s/(āε). We note that the t-particle friction

coefficient γ is obtained numerically by measuring the diffusion of the t-particle without a

driving force and using the Einstein relation γ = kBT/D with the steady-state position

fluctuation 〈(∆x)2〉s = 2Dt [4, 5]. The result is γ ≈ 0.067.

We also consider a driving force Fdrv = γvself cosφ with a fluctuating variable φ(t), satis-

fying the dynamic equation of φ̇ = η with a Gaussian white noise η(t) where 〈η(t)〉 = 0 and

〈η(t)η(t′)〉 = 2Dφδ(t− t′). This case corresponds to a one-dimensional version of the active

Brownian particle dynamics with a constant speed vself and diffusive angular motion [6, 7].

In this model, nonequilibrium activeness is given by finite vself (≥ 0). The numerical data

for the average velocity are plotted against vself in Fig. S6, which are similar to the results

for three other models in the active mode, i.e. negative velocity increasing with the activity
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FIG. S7. γth-dependence of γ. The gray dotted line denotes the theoretical value of γ directly

calculated from Eq. (6) of the main text.

strength.

γth-dependence of γ – The friction coefficient γ was derived analytically in SM II and

given as γ = 4Lρ
√
mkBT/(2π)(1 + sin θ) in Eq. (6) of the main text. Note that this result

does not depend on the thermostat dissipation coefficient γth, as it should be with an ideal

heat reservoir with a high Knudsen number, no sound wave effect, and so on. However, in

molecular dynamic simulations, the reservoir effect is modeled by kinematic collisions with a

finite number of reservoir particles with a Langevin thermostat in a finite box, which causes

a spurious γth-dependence [2].

Simulation results with M = 20 and γ̂ = 0 are plotted in Fig. S7 by estimating γ through
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measuring the position fluctuation and using the Einstein relation, i.e. γ = 2kBTt/〈∆x2〉s.

It clearly depends on and increases with γth. The theoretical value for the given set of

parameters is γ ' 0.0484. Interestingly, one can see that the numerical estimate approaches

the theoretical value for small γth. With γth = 1 (used in most of our simulations), we

find γ ≈ 0.067 which is ∼ 40% bigger than the theoretical value. One may ascribe this

overestimate to an effectively higher r-particle density ρ near the t-particle for large γth. After

colliding with the t-particle, a r-particle tends to move away but its velocity distribution

relaxes back to equilibrium quickly with large γth (smaller relaxation time). This makes a

little higher r-particle density near the t-particle, compared to a smaller γth case. With a

higher effective ρ, one can expect a bigger γ from the above theoretical formula.

II. KRAMERS-MOYAL COEFFICIENTS

The Kramers-Moyal coefficients {an(v)} (“jump moments”) for a single object with an

arbitrary convex shape in an ideal heat reservoir were derived in [1, 8]. We first show this

derivation briefly here for completeness.

Consider a collision event of a r-particle with velocity vr with the Brownian object (t-

particle) with velocity v on its surface point parametrized by the orientation angle φ mea-

sured from the horizontal (x) axis. After this collision, the t-particle will take the post-

collision velocity vφ(v,vr) determined by the given kinematics. Then, the transition rate of

the t-particle velocity from v to v′ is given as

W (v′|v) =

∫
dφd2vrδ(v

′ − vφ(v,vr))wφ(v,vr)P (vr), (S3)

where P (vr) is the equilibrium velocity distribution of r-particles, wφ(v,vr) is the rate of

such a collision event, and δ is the Dirac delta function. We assume that the r-particles are

always in thermal equilibrium with temperature T (ideal reservoir), regardless of collision

events, leading to the Maxwellian velocity distribution as

P (vr) =
m

2πkBT
exp

(
− m

2kBT
|vr|2

)
. (S4)

The collision rate wφ(v,vr) can be obtained by the product of the collision cross section

and the incoming r-particle flux rate normal to the collision surface. The cross section can

be written as SFφ with the total circumference of the t-particle surface S and its angular

7



fraction Fφ (“form factor”). For the triangular shape here, we can easily find

S = L+
L

sin θ
,

Fφ =
L

S
δ(φ− π

2
) +

L

2S sin θ
δ(φ− π − θ) +

L

2S sin θ
δ(φ− 2π + θ). (S5)

Meanwhile, the particle flux rate is determined by the normal component of the relative

velocity of two particles times the r-particle density. Thus, the collision rate can be written

as

wφ(v,vr) = SFφ ρ |(vêx − vr) · êφ⊥| H ((vêx − vr) · êφ⊥) (S6)

with the r-particle density ρ, the unit vectors êx(êy) of the x(y) axis, and the unit vec-

tor êφ⊥ = (sinφ)êx − (cosφ)êy normal to the surface. The Heaviside step function H(x)

guarantees a collision by excluding the outgoing flux: H(x) = 1 for x > 0, and 0 for x < 0.

The post-collision velocity vφ(v,vr) of the t-particle is determined by the elastic kine-

matics, such that the kinetic energy and the x-component momentum are conserved, while

the y-component momentum is not conserved due to the constraint of the t-particle motion

only in the x direction. Instead, by assuming only the normal force reacting on the col-

liding r-particle, the r-particle momentum parallel to the surface is conserved. These three

conservation laws read

1

2
Mv2 +

1

2
m|vr|2 =

1

2
Mv2

φ +
1

2
m|v′r|2,

Mv +mvr · êx = Mvφ +mv′r · êx, (S7)

mvr · êφ‖ = mv′r · êφ‖,

where v′r is the post-collision velocity of the r-particle and êφ‖ = (cosφ)êx + (sinφ)êy is the

unit vector parallel to the surface with the orientation angle φ. It is straightforward to find

the solution for vφ as

vφ(v,vr) = v + (vr · êx − v − vr · êy cotφ) /β, (S8)

where β = (1 + ε2 sin2 φ)/(2ε2 sin2 φ) with ε =
√
m/M .

By inserting Eqs. (S4), (S6), and (S8) into Eq. (S3) and integrating it over vr, we find

W (v + r|v) = −Sρr
∫
dφF (φ)H (−r sinφ)

√
α2

π
β2 sinφ exp

(
−α2 (v + βr)2) (S9)
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with the jump amplitude r (v′ = v + r) and α =
√
m/2kBT sinφ. The Kramers-Moyal

coefficients an(v) defined in Eq. (3) of the main text is then split into two parts

an(v) = Sρ

√
2kBT

πm

(
−
∫ 0

−∞
dr

∫
α>0

dφ+

∫ ∞
0

dr

∫
α<0

dφ

)
F (φ)α2β2rn+1e−α

2(v+βr)2

. (S10)

Using the following integral formula

a2b2

∫ ∞
0

drrn+1e−a
2(v+br)2

=
e−a

2v2

2|ab|n

[
Γ
(

1 +
n

2

)
Φ

(
1 +

n

2
,
1

2
, a2v2

)
− 2v

|ab|
b

Γ

(
3 + n

2

)
Φ

(
3 + n

2
,
3

2
, a2v2

)]
,

(S11)

we finally obtain

an(v) =Sρ

∫
dφF (φ)

1

2

√
2kBT

πm
(−αβ)−ne−α

2v2

×
[
Γ
(

1 +
n

2

)
Φ

(
1 +

n

2
,
1

2
, α2v2

)
+ 2αvΓ

(
3 + n

2

)
Φ

(
3 + n

2
,
3

2
, α2v2

)] (S12)

with the Gamma function

Γ(z) =

∫ ∞
0

dxxz−1e−x (S13)

and the Kummer’s function

Φ(a, b, z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

dteztta−1(1− t)b−a−1. (S14)

The modified Kramers-Moyal coefficients An(ν) defined in Eq. (8) of the main text be-

comes

An(ν) = Sρ

(
M

γ

)∫
dφF (φ)

1

2

√
2kBT

πm
(−ηβ)−ne−η

2ν2

[
Γ
(

1 +
n

2

)
Φ

(
1 +

n

2
,
1

2
, η2ν2

)
+2ηνΓ

(
3 + n

2

)
Φ

(
3 + n

2
,
3

2
, η2ν2

)]
−G(ν)νδn,1 (S15)

where η = v0α = ε sinφ/
√

2.

In the small mass-ratio limit (ε� 1), An(ν) can be expanded in terms of ε as

An(ν) = Sρ

(
M

γ

)
(−1)n2

3
2
n

√
kBT

2πm

[
Γ
(

1 +
n

2

)
〈sinn φ〉F εn +

√
2Γ

(
3 + n

2

)
〈sinn+1 φ〉F νεn+1

+ Γ
(

1 +
n

2

)
〈sinn+2 φ〉F

(
−n+

1

2
(1 + n)ν2

)
εn+2 +O(εn+3)

]
−G(ν)νδn,1 , (S16)

where the geometric factors are given as

〈sinn φ〉F ≡
∫ 2π

0

dφ sinn φ Fφ =
L

S

[
1− (− sin θ)n−1

]
(n = 1, 2, . . .) (S17)
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with the form factor Fφ in Eq. (S5). It would be easily generalized for an arbitrary convex

shape by calculating the corresponding form factor. The friction coefficient γ is determined

from the average equation of motion for the t-particle as M〈v̇〉 = −γ〈v〉, which is identical

to the condition on the first Kramer-Moyal coefficient as a1(v) = −(γ/M)v or equivalently

A1(ν) = −ν −G(ν)ν to the lowest order in ε. From Eq. (S16), it is easy to identify

γ = 4Sρ

√
mkBT

2π
〈sin2 φ〉F = 4Lρ

√
mkBT

2π
(1 + sin θ) . (S18)

With this γ, the first few coefficients An(ν) can be easily obtained up to O(ε) and given in

Eq. (9) of the main text with the asymmetric factor ā as

ā =

√
2π

4

〈sin3 φ〉F
〈sin2 φ〉F

=

√
2π

4
(1− sin θ) . (S19)

Note that both γ and ā depend on the form factor, thus the shape of the active object.

III. ANALYTIC RESULTS FOR ACTIVE MODELS

Here we present the explicit calculations for the steady-state velocity and its fluctuation

up to O(ε) for the simple, the RH, the depot, and the SG models. We use the formulae

given in Eqs. (12), (13), and (14) of the main text with G(ν) = Γ(v0ν)/γ for each model as

Gsim(ν) = Γ̂, GRH(ν) = Γ̂ + Ων2, Gdpt(ν) = Γ̂/(1 + Zν2), GSG(ν) = Γ̂/|ν|, (S20)

with dimensionless parameters Γ̂ = γ̂/γ, Ω = ωv2
0/γ, and Z = ζv2

0.

First, for the simple model, we obtain

P sim,(0)
s (ν) =

1

N sim
e−

1+Γ̂
2
ν2

and gsim(ν) = 2Γ̂ν − Γ̂

3

(
1 + 2Γ̂

)
ν3, (S21)

with the normalization factor N sim =

√
2π/(1 + Γ̂). Then the steady-state velocity becomes

〈ν〉sims ≈ āε

[
2Γ̂〈ν2〉sim0 − Γ̂

3

(
1 + 2Γ̂

)
〈ν4〉sim0

]
= āε

Γ̂

1 + Γ̂
〈ν2〉sim0 = āε

Γ̂

(1 + Γ̂)2
, (S22)

where we used the Gaussian integral property of 〈ν4〉sim0 = 3(〈ν2〉sim0 )2 and 〈ν2〉sim0 = 1

1+Γ̂
. Its

second moment becomes

〈ν2〉sims ≈ 〈ν2〉sim0 =
1

1 + Γ̂
. (S23)
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For the RH model, we obtain

PRH,(0)
s (ν) =

1

NRH
e−

1+Γ̂
2
ν2−Ω

4
ν4

and gRH(ν) = 2Γ̂ν +

(
2Ω− 1

3
Γ̂− 2

3
Γ̂2

)
ν3 − 1

5

(
1 + 4Γ̂

)
Ων5 − 2

7
Ω2ν7, (S24)

with the normalization factor NRH =
∫∞
−∞ dν e

− 1+Γ̂
2
ν2−Ω

4
ν4

. Then, the steady-state velocity

becomes

〈ν〉RH
s ≈ āε

[
2Γ̂〈ν2〉RH

0 +

(
2Ω− 1

3
Γ̂− 2

3
Γ̂2

)
〈ν4〉RH

0 − 1

5

(
1 + 4Γ̂

)
Ω〈ν6〉RH

0 − 2

7
Ω2〈ν8〉RH

0

]
.

(S25)

The normalization NRH and the moments 〈νn〉RH
0 can be calculated numerically. It is useful

to rewrite all higher moments in terms of the second moment. Using the simple recurrence

relations as (n+ 1)〈νn〉RH
0 = (1 + Γ̂)〈νn+2〉RH

0 + Ω〈νn+4〉RH
0 for n = 0, 2, 4 . . . (easily derived

by the integration by parts), we find for finite Ω

〈ν〉RH
s ≈ āε

105Ω

[
60Ω− 9 + 10Γ̂− 16Γ̂2 −

(
(33 + 12Γ̂)Ω− (9− 10Γ̂ + 16Γ̂2)(1 + Γ̂)

)
〈ν2〉RH

0

]
.

(S26)

Thus, the average velocity can be calculated from the numerical estimation of the zeroth-

order second moment 〈ν2〉RH
0 , and its second moment is simply given by 〈ν2〉RH

s ≈ 〈ν2〉RH
0

up to O(ε). One can show their asymptotic behaviors for large Γ̂ as

〈ν〉RH
s ' āε

Γ̂
, 〈ν2〉RH

s ' 1

Γ̂
for Γ̂→ +∞

and 〈ν〉RH
s ' −16āε

105

(
Γ̂4

Ω2

)
, 〈ν2〉RH

s ' |Γ̂|
Ω

for Γ̂→ −∞ . (S27)

Note that the asymptotic behavior for positive Γ̂ is identical to that of the simple model.

For the depot model, we obtain

P dpt,(0)
s (ν) =

1

N dpt
e−

1
2
ν2 (

1 + Zν2
)− Γ̂

2Z

and gdpt(ν) = − Γ̂

Z
ν +

Γ̂(2Z + Γ̂)

Z

ν

1 + Zν2
+

Γ̂(1− Γ̂)

Z
√

Z
tan−1

(√
Zν
)
, (S28)

with the normalization factor N dpt. Then, the steady-state velocity of the depot model

becomes

〈ν〉dpt
s ≈ āε

[
− Γ̂

Z
〈ν2〉dpt

0 +
Γ̂(2Z + Γ̂)

Z

〈
ν2

1 + Zν2

〉dpt

0

+
Γ̂(1− Γ̂)

Z
√

Z

〈
ν tan−1

(√
Zν
)〉dpt

0

]
.

(S29)
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FIG. S8. Fluctuations as a function of γ̂/γ. Solid and dashed curves correspond to the simple and

the SG models in Eq. (S22) and Eq. (S32), respectively. Green �, blue N, red ×, and purple •

points denote numerical data for the simple, the RH, the depot, and the SG models, respectively.

with 〈ν2〉dpt
s ≈ 〈ν2〉dpt

0 . It is not possible to rewrite this expression in a simpler form, so we

perform numerical integrations directly. The asymptotic behaviors are similar to those for

the RH model in Eq. (S27).

For the SG model, we obtain

P SG,(0)
s (ν) =

1

N SG
e−

1
2
ν2−Γ̂|ν| and gSG(ν) = 2Γ̂

ν

|ν|
− 2Γ̂2ν − 1

2
Γ̂ν|ν|, (S30)

with the normalization factor N SG =
√

2πe
1
2

Γ̂2
erfc

(
Γ̂√
2

)
where the complimentary error

function is defined as erfc(x) = 2√
π

∫∞
x
ds e−s

2
. Then, the steady-state velocity becomes

〈ν〉SG
s = āε

(
2Γ̂〈|ν|〉SG

0 − 2Γ̂2〈|ν|2〉SG
0 −

1

2
Γ̂〈|ν|3〉SG

0

)
. (S31)

Again, we find useful recurrence relations as 〈|ν|n〉SG
0 = (n − 1)〈|ν|n−2〉SG

0 − Γ̂〈|ν|n−1〉SG
0 +

(2/N SG)δn,1 for n = 1, 2, . . . (by simple integrations by parts). Then, we obtain a simplified

form for 〈ν〉SG
s as

〈ν〉SG
s =

āεΓ̂

2

(
−3Γ̂ + (2 + 3Γ̂2)〈|ν|〉SG

0

)
=
āεΓ̂

2

(
−5Γ̂− 3Γ̂3 +

4 + 6Γ̂2

N SG

)
. (S32)

with the second moment

〈ν2〉SG
s ≈ 〈|ν|2〉SG

0 = 1 + Γ̂2 − 2Γ̂

N SG
. (S33)

Their asymptotic behaviors are given as

〈ν〉SG
s ' āε

(
−2 +

13

Γ̂2

)
, 〈ν2〉SG

s '
2

Γ̂2
for Γ̂→ +∞

and 〈ν〉SG
s ' −

3āε

2
Γ̂4, 〈ν2〉SG

s ' Γ̂2 for Γ̂→ −∞. (S34)
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IV. ESTIMATION OF THE PARAMETER VALUES FOR BIOLOGICAL OB-

JECTS

We estimate the parameter values in real experimental situations. Consider a bacterium

like E. coli in water-rich medium at room temperature. The small expansion parameter

ε =
√
m/M ' 5 × 10−6 with m = 3.0 × 10−26 kg (water molecule mass) and M = 10−15

kg (E. coli mass) [9]. The velocity unit v0 =
√
kBT/M ' 2.0 × 10−3 m/s with T = 300 K.

We take the asymmetric factor ā =
√

2π(1 − sin θ)/4 ' 0.2 for θ = π/4. As can be seen

in Eqs. (5) and (14) of the main text, the magnitude of the rectified velocity is given as

〈v〉s = v0āε〈νg(ν)〉0 with v0āε ' 2 nm/s.

As the self-propelling speed of a typical bacterium is ∼ 10 µm/s, the rectification effect

due to the shape asymmetry seems negligible in the passive mode where 〈νg(ν)〉0 ∼ O(1).

However, in the active mode, this factor can grow indefinitely as Γ̂ = γ̂/γ becomes larger

in the negative side, see Fig. 2 of the main text and Eqs. (S27) and (S34). For example, we

can read from Fig. 2 (a) of the main text that the rectification speed is ∼ 2µm/s at Γ̂ ' −2,

which is already comparable to the self-propelling speed.

For smaller (lighter) objects like a virus or a molecular motor, v0āε ' 2µm/s (2 mm/s)

for M = 10−18 (10−21) kg for a HIV-1 virus (ATP synthase). Their speed is big enough

for performing relevant biological operations, even in the passive mode including the mbd

(moving by dissipation) regime.

V. APEX-ANGLE-DEPENDENT BEHAVIOR

In the main text, we fix the apex angle θ = π/4. Here we discuss the role of the apex

angle for 0 < θ < π/2 on the magnitude and direction of the rectified velocity.

As we change θ from 0 to π/2, the friction coefficient γ increases as in Eq. (S18), while

the asymmetric factor decreases as in Eq. (S19). This leads to an interesting nontrivial

behavior of the steady-state velocity 〈ν〉s. Figure S9 shows γ̂ and θ dependent behavior

of 〈ν〉s, where γ̂ is rescaled by the friction coefficient for the symmetric particle γ|θ=π/2 =

8Lρ
√

(mkBT )/(2π). For the depot model, Figs. S9 (c) and (d) show that the magnitude

|〈ν〉s| monotonically increases as θ decreases (more asymmetric) for finite γ̂. However, for

the RH model, the velocity magnitude behaves non-monotonically and the direction change

13
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FIG. S9. γ̂ and θ dependence of the rectified velocity 〈ν〉s. Upper panels show the rescaled steady-

state velocity 〈ν〉s/ε as a function of the dimensionless parameter γ̂/γ|θ=π/2 and the apex angle θ

for (a) the RH, (c) the depot, and (e) the SG models. Lower panels show the θ dependence of the

velocity 〈ν〉s/ε for various values of the dimensionless parameter γ̂/γ|θ=π/2: (b) γ̂/γ|θ=π/2 = −0.1

(blue), −0.09 (orange), and −0.08 (green) for the RH model, (d) −0.01 (blue), 0 (orange), and 0.01

(green) for the depot model, and (f) −0.1 (blue), 0 (orange), 0.1 (green), 0.2 (red), 0.4 (violet),

and 0.6 (brown) for the SG model. The black dotted line indicates 〈ν〉s/ε = 0.

happens within a narrow range near γ̂/γ|θ=π/2 ≈ −0.09 as shown in Figs. S9 (a) and (b).

The SG model also exhibits a non-monotonic behavior of the velocity as shown in Figs. S9

(e) and (f).

Overall, we find that an active object moves faster in general as its shape becomes more

asymmetric (sharper) with fixed γ̂ for a wide range of γ̂. This indicates that an active object

can make use of the shape change to accelerate or decelerate its velocity. Furthermore,

as learned from the RH and SG models, it can easily change the direction of motion by

deforming their shape with a fine-tuned value of γ̂.
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