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Swarmalators with thermal noise
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We investigate a population of swarmalators, mobile versions of phase oscillators that both sync in time and
swarm through space. We focus on an XY -type model of identical swarmalators running on a one-dimensional
ring and subject to thermal noise. We uncover four distinct collective states, some of which capture the behavior
of real-world swarmalators such as vinegar eels and sperm. Among these, the most intriguing is the “mixed state,”
which blends two of the other states. We present a comprehensive phase diagram from the Fourier mode analysis
with a high accuracy, which is in excellent agreement with numerical simulation results. Our model serves as a
tractable toy model for thermal systems that both self-synchronize and self-assemble interdependently.
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I. INTRODUCTION

Swarmalators, short for “swarming” oscillators, are mobile
phase oscillators that can both synchronize in time and swarm
through space [1]. They were recently introduced to model the
numerous systems in which synchronization and swarming
coexist and interact. Examples are sperm [2], vinegar eels [3],
magnetotactic bacteria [4], starfish embryos [5], Japanese tree
frogs [6], Janus particles [7], Quincke rollers [8], and robotic
swarms [9].

Research on swarmalators began to gain traction about
15 years ago when Iwasa and Tanaka introduced a univer-
sal model of chemotactic oscillators that produced diverse
states [10,11]. O’Keeffe et al. later introduced a generalized
Kuramoto model that produced five collective states that are
commonly observed in nature [1]. This swarmalator model
is being used as a springboard to further study the collec-
tive behavior of swarmalators. The effects of pinning [12],
forcing [13], and various types of coupling (delayed [14],
finite-range [15], stochastic [16], mixed sign [17–20]) as well
as other phenomena/scenarios [21–26] have been explored.
For reviews of swarmalators, see [27,28].

Theoretical results on swarmalators are scarce due to the
complexity of the system, which is characterized by nonlinear
couplings of numerous degrees of freedom. For a system of
N particles, each with position x ∈ Rd and phase θ ∈ S1, the
analysis of the nonlinear coupled ordinary differential equa-
tions is challenging. What is missing in the swarmalator field
is the “right” or natural toy model such as the Ising model
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for equilibrium phase transition studies [29] or the Kuramoto
model for synchronization studies [30], which captures the
essential ingredients while remaining simple enough to solve.

This paper focuses on a simple one-dimensional (1D) swar-
malator model [31,32] that could fill this “modeling gap”
in studies of swarmalation, as Verberk [33] has dubbed the
interplay between swarming and synchronizing oscillations.
The model confines the swarmalators to run on a 1D ring,
which makes it analytically tractable yet it still produces real-
world behavior; its collective states capture the behavior of
real-world 1D swarmalators, such as bordertaxic vinegar eels
and sperm, and also capture the rotational analog of two-
dimensional (2D) and three-dimensional swarmalators, such
as magnetic Janus particles and dielectric Quinke rollers.

In a recent study [32], the 1D swarmalator model with
“quenched” disorder was explored, wherein the natural fre-
quencies of each swarmalator were chosen randomly and then
fixed for all times (nonidentical swarmalators). The authors
utilized a “toroidal” Ott-Antonsen (OA) ansatz on a special
submanifold of state space to identify four distinct long-lived
states [32]. Meanwhile, systems in nature are typically influ-
enced by their surrounding environment, corresponding to a
heat bath, which implies that natural systems are stochastic
and affected by thermal noise. In this context, it is pertinent to
investigate the effects of “temporal/thermal” disorder on the
collective properties of the system.

To this end, we introduce thermal noise into the 1D swar-
malator model and explore its collective behavior. Here, we
restrict our analysis to the case of identical swarmalators only,
leaving the generalization to nonidentical ones with thermal
noise for future study, as this would significantly complicate
the analysis. We note that our case with identical oscillators
can be also interpreted as a coupled XY model for a magnetic
spin system [34], which provides various interesting nonequi-
librium steady states.

We analyze the model both numerically and analytically.
It is well known that the analytic OA ansatz fails in the
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presence of thermal noise [35–38]. Consequently, the Fourier
mode analysis does not close with a finite number of terms,
which leads to an infinite hierarchy of coupled equations.
Nevertheless, as the contributions from higher modes become
increasingly negligible to the synchronization order param-
eters, the coupled equations can be suitably truncated and
solved numerically to evaluate the order parameters highly
accurately. Our results compare very well with numerical
simulations by integrating the equations of motion directly.
We also analytically derive the instability condition for the
completely disordered phase and employ a perturbation theory
in order to reach out to a partially ordered phase. Our analysis
is consistent with numerical results.

II. SWARMALATORS ON A 1D RING

We consider a population of N coupled identical swarmala-
tors on a 1D ring, of which the dynamics are governed by

ẋi = J

N

N∑
j=1

sin(x j − xi ) cos(θ j − θi ) + ξ x
i , (1)

θ̇i = K

N

N∑
j=1

sin(θ j − θi ) cos(x j − xi ) + ξ θ
i , (2)

where xi and θi denote the position and phase of the ith
swarmalator, respectively, and are both periodic with a period
of 2π . One may add an identical natural frequency ω for phase
in Eq. (2), but it can be eliminated by taking a simple trans-
formation of θi → θi + ωt . Likewise, the identical directed
velocity v can be also set to zero without loss of generality.
ξ x

i and ξ θ
i represent thermal noise with zero mean, and are

characterized by〈
ξ x

i (t )ξ x
j (t ′)

〉 = 2Dxδi jδ(t − t ′), (3)

〈
ξ θ

i (t )ξ θ
j (t ′)

〉 = 2Dθ δi jδ(t − t ′), (4)

where Dx and Dθ denote the “temperature” of the heat bath for
x and θ variables, respectively. The two noises are indepen-
dent of each other, i.e., 〈ξ x

i ξ θ
j 〉 = 0. J and K are the coupling

parameters.
This 1D swarmalator model has been previously studied in

the absence of thermal noises for identical swarmalators [31]
and for random nonidentical ones [32]. The novelty of this
paper lies in the presence of thermal noises without quenched
disorder for identical swamalators.

Equation (2) models position-dependent synchronization,
wherein the sine terms induce the swarmalators to reduce their
phase difference for K > 0, while the cosine term implies that
the synchronization tendency is stronger for oscillators that
are closer in space. Equation (1) is the mirror image of Eq. (2),
which models phase-dependent swarming or aggregation for
J > 0. This can be thought of as synchronization occurring
on a torus, as both position and phase are circular variables
(xi, θi ) ∈ T 1. In this sense, it can be referred to as a gener-
alized version of the thermal Kuramoto model [36] for two
coupled populations of identical oscillators.

This model can be also seen as a nonequilibrium gener-
alization of the widely recognized XY model for a magnetic
spin system [34], wherein spins possess two degrees of free-

FIG. 1. Scatter plots of the four states: (a) (0,0) state for (J, K ) =
(0, 0); (b) (S, 0) state for (J, K ) = (2.09, 0.31); (c) (S1, S2) state for
(J, K ) = (2.04, 0.36); (d) (S, S) state for (J, K ) = (2.52, 2.07). We
set the temperature Dx = Dθ = 0.15 and the number of swarmalators
N = 1000.

dom, x and θ , that are coupled. For the special case of J = K
and Dx = Dθ , the dynamics described by Eqs. (1) and (2) is
equivalent to that of an equilibrium (EQ) system in contact
with a thermal reservoir of temperature Dx with the Hamilto-
nian

H = − J

2N

N∑
i, j=1

cos(x j − xi ) cos(θ j − θi ), (5)

where an EQ (magnetic) phase transition is expected as J
varies. For J �= K , the Hamiltonian structure is lost and the
system cannot relax to an equilibrium state. This is a typical
nonequilibrium (NEQ) situation in the presence of exter-
nal nonconservative forces, where various NEQ (magnetic)
phases can emerge. For Dx �= Dθ , this model may describe
a heat engine under the thermal gradient.

Yet another way to interpret the model is as a 1D Vicsek-
type model [39] where θ corresponds to an orientation, as
opposed to an internal phase variable.

III. ORDER PARAMETERS

In order to gain insight into the order parameters character-
izing collective behaviors, numerical simulations are carried
out by integrating Eqs. (1) and (2) for various parameter
values. Four distinct steady states were identified, and their
typical states are visualized in Fig. 1: (a) uniformly dis-
tributed, (b) linearly correlated between x and θ , (c) mixed
between (b) and (d), and (d) two well-defined isotropic clus-
ters separated by a distance of π in both directions. To provide
a more complete understanding of the behavior of the swar-
malators under different parameter values, we represent the
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FIG. 2. Swarmalators are represented as colored points on a unit
circle, for the four distinct states, where x corresponds to their
angular position on the unit circle and the color represents their
phase given by θ . We used the same parameter values as shown
in Fig. 1: (a) (0,0) state for (J, K ) = (0, 0); (b) (S, 0) state for
(J, K ) = (2.09, 0.31); (c) (S1, S2) state for (J, K ) = (2.04, 0.36);
and (d) (S, S) state for (J, K ) = (2.52, 2.07). Dx = Dθ = 0.15 and
the number of swarmalators N = 1000.

four distinct states of the model using swarmalators drawn as
colored points on a unit circle (see Fig. 2). This provides a
visual representation of the angular positions and phases of
the swarmalators for each state.

One may consider the Kuramoto synchronization (or XY
magnetic) order parameters [30] for each variable x and θ as

Zx ≡ Rxei�x = 1

N

N∑
j=1

〈eix j 〉, (6)

Zθ ≡ Rθei�θ = 1

N

N∑
j=1

〈eiθ j 〉, (7)

where Rx and Rθ measure the magnitude of synchronization
(real and non-negative) in x and θ , respectively, and �x and
�θ are their mean angles (real). 〈· · · 〉 denotes the thermal
(noise) average. However, they are not effective order parame-
ters, as they vanish in all four phases. This is due to the special
coupling structure in Eqs. (1) and (2), which are invariant
under the “π” transform of x j → x j + π and θ j → θ j + π for
any j, as noted in Refs. [31,32]. It implies that the dynamics
of any (x, θ ) state is equivalent to that of the (x + π, θ + π )
state. In particular, the number of swamalators in each cluster
in (c) and (d) appears to be equal, as is expected for large N in
accordance with combinatorial theory. Thus, the contributions
from each cluster cancel out, leading to Zx = Zθ = 0 in the
N → ∞ limit. Likewise, the same conclusion can be drawn
for (b).

Thus, it is necessary to explore alternative order parame-
ters that can be used to quantify the correlation between two

variables, which were proposed previously in [31] and [32],
as

W+ ≡ S+ei�+ = 1

N

N∑
j=1

〈ei(x j+θ j )〉, (8)

W− ≡ S−ei�− = 1

N

N∑
j=1

〈ei(x j−θ j )〉, (9)

where S± is real and non-negative by definition and �± is real.
This particular form of the correlation measure can be inferred
from the linearity of correlations between x and θ with slopes
of ±1, as seen in Fig. 1. With these order parameters, the
four distinct steady states can be clearly distinguished as fol-
lows: (a) Disordered (incoherent) state with (S+, S−) = (0, 0).
(b) Phase wave state with (S, 0) or (0, S), where the value
of S depends on coupling parameters. The (S, 0) and (0, S)
states are equally probable, analogous to the magnetically
ordered up and down states in the Ising model. (c) Mixed state
with (S1, S2) or (S2, S1), where S1 �= S2 and both are finite.
Finally, (d) synchronized (ordered) state with (S, S), where
both correlations in Eqs. (8) and (9) are equal in magnitude.

IV. COORDINATE TRANSFORMATION

It is convenient to make coordinate transformations as

Xi ≡ xi + θi and Yi ≡ xi − θi, (10)

which imply that the new variables X and Y are both periodic
with a period of 4π . Subsequently, the dynamic equations in
Eqs. (1) and (2) can be simplified to

Ẋi = J+S+ sin(�+ − Xi ) + J−S− sin(�− − Yi ) + ξX
i , (11)

Ẏi = J−S+ sin(�+ − Xi ) + J+S− sin(�− − Yi) + ξY
i , (12)

with J± = (J ± K )/2, and S± and �± are defined in Eqs. (8)
and (9).

The new noises, ξX
i (t ) and ξY

i (t ), are defined as

ξX
i = ξ x

i + ξ θ
i and ξY

i = ξ x
i − ξ θ

i , (13)

that are not independent of each other in general. Simple
calculations lead to 〈ξX

i 〉 = 〈ξY
i 〉 = 0 and〈

ξX
i (t )ξX

j (t ′)
〉 = 2DX δi jδ(t − t ′), (14)

〈
ξY

i (t )ξY
j (t ′)

〉 = 2DY δi jδ(t − t ′), (15)

〈
ξX

i (t )ξY
j (t ′)

〉 = 2DXY δi jδ(t − t ′), (16)

where

DX = DY = Dx + Dθ ≡ D, (17)

DXY = Dx − Dθ ≡ d. (18)

The correlation between the two noises DXY disappears when
the two temperatures are equal (Dx = Dθ ).

It is worth noting that the dynamic equations in Eqs. (11)
and (12) are invariant under the transformation of Xi → Xi +
2π or Yi → Yi + 2π for any i, implying that the variables X
and Y can be treated as periodic with a period of 2π , instead
of 4π , if the initial distributions possess the same periodicity.
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When J = K (J− = 0) with Dx = Dθ (d = 0), the dynamic
equations decouple completely, leading to the EQ XY model
with two decoupled degrees of freedom for X and Y , which
can be solved exactly. By varying J , we find that the EQ
magnetic transition occurs at Jc = 2DX = 4Dx from the dis-
ordered state (0,0) (a), directly to the ferromagnetic ordered
state (S, S) (d) without an intermediate phase wave or mixed
state. Intermediate states (b) and (c) may emerge only when
the system is driven out of EQ, either by an external non-
conservative force (J �= K) or a thermal gradient caused by
multiple reservoirs (Dx �= Dθ ).

V. FOURIER MODE ANALYSIS

In the N → ∞ limit, the system state can be described by
a continuous probability density function (PDF) ρ(X,Y, t ) at
time t in terms of new variables X and Y . As discussed in the
preceding section, these variables can be treated as periodic
with a period of 2π , thus their range is set to (0, 2π ) with the
normalization condition as

∫ 2π

0

∫ 2π

0 dX dY ρ(X,Y, t ) = 1.
The Fokker-Planck equation [40], derived from the dy-

namic equations of (11) and (12) with Eqs. (17) and (18), is
given by

∂ρ

∂t
= − ∂

∂X
JX − ∂

∂Y
JY , (19)

where the probability currents JX and JY are

JX = (J+F+ + J−F−)ρ − D
∂ρ

∂X
− d

∂ρ

∂Y
, (20)

JY = (J−F+ + J+F−)ρ − D
∂ρ

∂Y
− d

∂ρ

∂X
, (21)

with

F+ ≡ S+ sin(�+ − X ), F− ≡ S− sin(�− − Y ). (22)

The Fourier series of the PDF ρ(X,Y, t ) in X and Y with
period 2π is given by

ρ(X,Y, t ) = 1

(2π )2

∞∑
n,m=−∞

αn,m(t )ein(X−�+ )eim(Y −�− ), (23)

where the extra factors �+ and �− are inserted for conve-
nience. As the PDF should be real, α∗

n,m = α−n,−m holds for
all (n, m) and the normalization condition yields α0,0 = 1.

The order parameters in Eqs. (8) and (9) can be expressed
in terms of Fourier coefficients as

S+ =
∫

dX dY ei(X−�+ )ρ(X,Y, t ) = α−1,0 = α∗
1,0, (24)

S− =
∫

dX dY ei(Y −�− )ρ(X,Y, t ) = α0,−1 = α∗
0,1. (25)

It should be noted that, as S± is real, α1,0 and α0,1 must
also be real. Substitution of Eq. (23) into the Fokker-Planck
equation of Eq. (19) yields time-dependent mode-coupled
equations as

α̇n,m − i(n�̇+ + m�̇−)αn,m

= −[D(n2 + m2) + 2dnm]αn,m

+ 1
2 (nJ+ + mJ−)S+(αn−1,m − αn+1,m)

+ 1
2 (nJ− + mJ+)S−(αn,m−1 − αn,m+1), (26)

where S+ = α1,0 and S− = α0,1. These equations form an infi-
nite hierarchy of coupled equations, which cannot be reduced
to a finite number of equations unlike the Kuramoto model
without thermal noise, where the OA ansatz holds.

VI. STEADY-STATE SOLUTIONS

The steady-state solutions (fixed points) ρs(X,Y ) can be
obtained by setting α̇n,m = �̇± = 0 in Eq. (26). There exists
the trivial solution αn,m = 0 for any pair of (n, m) except
for α0,0(= 1), resulting in S+ = S− = 0 and ρs

(a) = 1/(2π )2

[disordered state (a)].
The solutions of the phase wave state (b) can be obtained

exactly by the choice of S+ = 0 or S− = 0. With S− = 0, we
find the steady-state equations for αn,0 as

0 = −Dnαn,0 + 1
2 J+S+(αn−1,0 − αn+1,0), (27)

which are decoupled from all other coefficients αn,m for m �=
0. With the use of the recurrence relation of the modified
Bessel function, it is straightforward to find the solution of
Eq. (27) as

αn,o = I|n|
( J+S+

D

)
I0

( J+S+
D

) , (28)

where In is the modified Bessel function. The order parameter
value S+ can be determined self-consistently by the above
equation for n = 1 with α1,0 = S+. Note that S+ depends only
on J+/D, independent of J−/D. For small S+, we obtain

S+ ≈
√

2(J+/2D − 1), (29)

implying that the phase wave state is physically meaningful
only for J+/D � 2. All other coefficients are set to zero,
which satisfy the steady-state condition, resulting in ρs

(b) =
1

(2π )2 e(J+S+/D) cos(X−�+ )/I0( J+S+
D ). There exists also the sym-

metric solution with S+ = 0.
The steady-state solutions for the mixed state (c) and

the ordered state (d) cannot be derived analytically. In-
stead, we truncate higher-order Fourier modes in the dynamic
equation (26) by keeping the modes of (n, m) up to order
�(= |n| + |m|). Then, steady-state solutions are calculated by
numerical iterations with �̇± = 0. The solutions well con-
verge with increasing � and saturate around � = 10. This fast
convergence is due to the exponential decay of αn,m with � in
the steady state. These iteration results are shown by the black
solid lines (S+) and the purple ones (S−) in Figs. 3(a)–3(d)
for various values of J and K with Dx = Dθ = 0.15. Both the
mixed state and the ordered state are well established and the
exact solution of the phase wave state matches with numerical
results perfectly well. We note that all coefficients αn,m turn
out to be real in all steady states, even if one starts from a
complex initial state.

In the EQ situation (J− = 0 and d = 0), the exact solution
is possible due to decoupling of the dynamic equations, yield-
ing S+ = S− ≡ S, which has the same value of S+ in the phase
wave state. The steady-state PDF is given by a simple product
of those of the phase wave states for X and for Y , and the
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FIG. 3. Plots of S± as a function of K for (a) J = 0.2, (b) J = 0.4,
(c) J = 3.0, and (d) J = K , respectively, with temperatures Dx =
Dθ = 0.15. The region for the (S1, S2) mixed state in (c) is enlarged
and shown in more detail in the inset figure. Symbols represent the
data obtained from numerical simulations with N = 104, and the
black (purple) solid line in each panel is given by the exact solutions
and iteration results for S+ (S−) given in Sec. VI.

steady-state solutions are given by

αn,m = I|n|
(

JS
D

)
I|m|

(
JS
D

)
[
I0

(
JS
D

)]2 . (30)

Finally, we remark that the vanishing Kuramoto order pa-
rameters Rx and Rθ in Eqs. (6) and (7) are guaranteed in our
Fourier mode analysis, as Rx and Rθ correspond to half-integer
Fourier modes such as α1/2,±1/2, which do not exist as a
Fourier mode with periodicity of 2π .

VII. LINEAR STABILITY ANALYSIS OF THE
DISORDERED STATE

The disordered (incoherent) state is characterized by
αn,m = 0 for any pair of (n, m) �= (0, 0). We take a small
perturbation to the disordered state such that αn,m = εcn,m for
(n, m) �= (0, 0) with a small parameter ε. From the dynamic
equation (26) with S+ = εc1,0 and S− = εc0,1, we find, up to
the linear order in ε,

ċ1,0 = −D

(
1 − J+

2D

)
c1,0,

ċ0,1 = −D

(
1 − J+

2D

)
c0,1, (31)

ċn,m = −[D(n2 + m2) + 2dnm]cn,m for other (n, m).

Thus, the stability condition is simply given by J+/D <

2 as D(n2 + m2) + 2dnm = Dx(n + m)2 + Dθ (n − m)2 > 0.
As the other steady states are defined only for J+/D > 2,
the disordered state should be globally stable for J+/D < 2,
which agrees perfectly well with numerical data obtained by
iterations of the dynamic equation (26).

VIII. NUMERICAL SIMULATIONS

We perform numerical simulations by integrating Eqs. (11)
and (12) for various values of J and K with temperatures Dx =
Dθ = 0.15 for N = 104. We used the Euler method with step
size δt = 0.01 for Mt = 105 time steps, where the initial Mt/2
steps of each run were discarded as a transient, after which S+
and S− were measured and averaged over remaining time for
ten independent samples.

Figure 3 shows simulation data (symbols) for S± versus
K when J = 0.2, 0.4, 3.0 and when J = K . All data are in
full agreement with exact solutions and iteration results in
Sec. VI. Note that the transition from the disordered state to
other steady states should occur at J+ = 2D, derived as the
instability threshold in the preceding section. With D = 0.3,
this transition point is located at J + K = 4D = 1.2, which is
fully consistent with data. Small finite-size effects in simula-
tion data can be seen near the transition from the disordered
state.

IX. PHASE DIAGRAM

Figure 4 presents the phase diagram in the (e−J+ , e−J− )
plane for convenience, when the temperatures are equal (Dx =
Dθ , i.e., d = 0). In this case, the dynamic equations (1) and (2)
are symmetric under the interchange of x ↔ θ and K ↔ J .
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FIG. 4. Phase diagram in the (e−J+ , e−J− ) plane with Dx = Dθ =
0.15 (D = 0.3 and d = 0). Each phase is indicated by a distinct color.
The mixed phase colored in red is enlarged in the inset for better
visibility. The disordered phase becomes unstable at J+ = 2D and all
four phases converge at a single multicritical point with its coordinate
of (e−2D, e−D ). The pink line (J− = 0) represents the equilibrium
(EQ) line, corresponding to the two decoupled XY models with the
magnetic transition at J+ = 2D. It is noteworthy that direct transi-
tions are possible from the disordered phase to the ordered phase
through the blue solid line in nonequilibrium situations.

Thus, the phase diagram for e−J− > 1 can be easily deduced
from that for e−J− < 1. In order to locate the phase boundary
more precisely, we use the exact solutions and the iteration
results with terms up to the order � = |n| + |m| = 20. The
phase diagram reveals several noteworthy features. First, the
mixed phase (S1, S2) colored in red clearly exists and sepa-
rates the phase wave phase (S, 0) and the ordered phase (S, S)
completely, though the mixed state region itself is quite small
in size. Typical routes shown in Fig. 3 with one parameter
fixed can be easily inferred from the phase diagram shown in
Fig. 4: The phase diagram illustrates the relationship between
the two parameters and provides a visual representation of the
various routes that can be taken. By fixing one parameter and
referring to the phase diagram, the corresponding route can be
easily identified.

In Fig. 5, the order parameter values are plotted along a
vertical line in the phase diagram at e−J+ = 0.3 in the range
of 0.40 � e−J− � 0.46. The value of S remains constant in the
phase wave phase (S, 0), as predicted by the exact solution in
Sec. VI. This value is also observed at the EQ point (e−J− = 1)
in the ordered phase. As e−J− is increased, the system goes
through the mixed and the ordered phase in succession before
arriving at the EQ point.

Second, the disordered phase (0,0) appears for J+/D < 2
for all values of J−, consistent with the linear stability analysis
result presented in Sec. VII. Third, all four phases converge
at a single multicritical point where J+/D = 2 and J−/D =
1. The value of J− at the multicritical point will be derived
exactly through a perturbation theory near the disordered state
in the following section.

Finally, we point out that direct transitions from the dis-
ordered phase to the ordered phase are possible not only
along the EQ line but also at J+ = 2D (blue line in Fig. 4)

FIG. 5. Plots of S± versus e−J− for e−J+ = 0.3. Symbols repre-
sent the data obtained from iteration results with � = 20, and the
lines are a guide to the eyes.

in nonequilibrium situations. This feature represents a major
difference from the system with quenched disorder only [32],
where the direct transition is possible only at the symmet-
ric point J = K (e−J− = 1). It would be of interest to study
the existence and location of a multicritical point when both
quenched and thermal disorder are present simultaneously,
which is left for future study.

We also studied the case with two different temperatures
(Dx �= Dθ ). In this case, the dynamic equations are symmet-
ric with Dx ↔ Dθ , in addition to x ↔ θ and K ↔ J . The
qualitative features of the phase diagram are similar to those
depicted in Fig. 4. We find the multicritical point, the J− value
of which is given by J− = D + d , while the J+ value remains
unchanged at 2D (see Sec. X).

X. PERTURBATION THEORY NEAR
THE DISORDERED STATE

For convenience, we rewrite the mode-coupled equa-
tions (26) with �̇± = 0 as

α̇n,m = − [u(n2 + m2) + 2znm]αn,m

+ (n + vm)α1,0(αn−1,m − αn+1,m)

+ (vn + m)α0,1(αn,m−1 − αn,m+1) (32)

with new parameters

u = 2D/J+, v = J−/J+, and z = 2d/J+, (33)

where time t is scaled by a factor of 2/J+ for simplicity. We
consider u, v � 0 only, because only the trivial disordered
phase is possible for u < 0 and there is a reflection symme-
try under v ↔ −v. Also the positivity of diffusion constants
(Dx > 0, Dθ > 0) demands |z| < u.

As the ordering begins to emerge for u � 1, we introduce
a small positive parameter δ such that u = 1 − δ

2 . From the
exact relation of Eq. (28) for the phase wave state, we obtain
the steady-state values for the Fourier coefficients αn,0 in
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lower orders of δ as

αn,0 ≈ δ|n|/2

|n|!
(

1 + |n|(|n| − 2)

3(|n| + 1)
δ + O(δ2)

)
, (34)

where we utilized the expansion of In(a) for small a and
S2

+ ≈ δ(1 − δ/3 + δ2/72) + O(δ3). Along the EQ line, it is
also straightforward to obtain from Eq. (30)

αn,m = αn,0α0,m ≈ δ(|n|+|m|)/2

|n|!|m|! [1 + O(δ)], (35)

which demonstrates the rapid exponential decay of the steady-
state Fourier coefficients with � = |n| + |m|. These analytic
results motivate us to assume that αn,m in lower orders for
general steady states can be expressed as

αn,m ≈ δ(|n|+|m|)/2(an,m + bn,mδ), (36)

with a0,0 = 1 and b0,0 = 0 for normalization and an,m =
a−n,−m and bn,m = b−n,−m.

A. Steady states

Insert this leading order into Eq. (32) with α̇n,m = 0 for
steady states; we can then determine an,m order by order in δ.
Up to the order of δ3/2, we obtain relations between an,m by

a2,0 = 1

2
a2

1,0, a0,2 = 1

2
a2

0,1, (37)

a1,1 = 1 + v

1 + z
a1,0a0,1, a1,−1 = 1 − v

1 − z
a1,0a0,1, (38)

a1,0 − 2a1,0a2,0 + 2va0,1[a1,−1 − a1,1] = 0, (39)

a0,1 − 2a0,1a0,2 + 2va1,0[a1,−1 − a1,1] = 0, (40)

a3,0 = 1

3
a1,0a2,0, a0,3 = 1

3
a0,1a0,2, (41)

a2,1 = 1

5 + 4z
[(2 + v)a1,0a1,1 + (1 + 2v)a0,1a2,0], (42)

a1,2 = 1

5 + 4z
[(2 + v)a0,1a1,1 + (1 + 2v)a1,0a0,2], (43)

a2,−1 = 1

5 − 4z
[(2 − v)a1,0a1,−1 + (1 − 2v)a0,1a2,0], (44)

a1,−2 = 1

5 − 4z
[(2 − v)a0,1a1,−1 + (1 − 2v)a1,0a0,2]. (45)

There are also relations for b1,0 and b0,1, which are shown in
the Appendix.

By combining the first four equations, four distinct so-
lutions can be obtained, each of which represents a fixed
point such as (a1,0, a0,1) = (0, 0), (1,0), (0,1), (

√
a,

√
a) with

a = [1 + 4v(v − z)/(1 − z2)]−1. The (0,0) fixed point is asso-
ciated with the disordered phase (a), while the (1,0) and (0,1)
points denote two equally probable states of the phase wave
phase (b). The (

√
a,

√
a) point corresponds to the symmetric

ordered phase (d). All other coefficients an,m up to � = 3 can
be calculated by inserting the fixed-point solutions into the
above equations. Up to this order, the mixed phase (c) does
not appear.

We also report the fixed-point values of (b1,0, b0,1), which
represent the O(δ3/2) term of (α1,0, α0,1) as (0,0), (−1/6, 0),
(0,−1/6), and (b, b) for four fixed points, respectively. The

value of bn,m is discussed in the Appendix. All other terms are
higher order than O(δ3/2), and thus can be set to zero.

B. Linear stability analysis of the phase wave state

The steady-state solution of the phase wave state is quite
simple as a1,0 = 1, a2,0 = 1/2, a3,0 = 1/6, b1,0 = −1/6
with all other coefficients an,m = 0, up to the order of δ3/2.
In order to check its stability, we take a small perturbation to
this state by adding εcn,m to the steady-state values of αn,m

except for (0,0). Then, it is straightforward to find up to the
linear order in ε from Eq. (32) as

ċ1,0 = −c2,0

√
δ, (46)

ċ0,1 = 1
2 c0,1δ + v(c1,−1 − c1,1)

√
δ, (47)

ċ2,0 = −4c2,0 + 2[2c1,0 − c3,0]
√

δ, (48)

ċ0,2 = −4c0,2 + 2v[c1,−2 − c1,2]
√

δ, (49)

ċ1,1 = −2(1 + z)c1,1 + (1 + v)[2c0,1 − c2,1]
√

δ, (50)

ċ1,−1 = −2(1 − z)c1,−1 + (1 − v)[2c0,1 − c2,−1]
√

δ, (51)

ċn,m = −(n2 + m2 + 2znm)cn,m + (n + vm)(cn−1,m

− cn+1,m)
√

δ for other (n, m) (52)

in the lower order of δ.
Note that most of cn,m vanish in the long-time limit for

small δ, as n2 + m2 + 2znm > 0. In contrast, c0,1 may diverge
depending on the details of Eq. (47), thus c1,1 and c1,−1 may
also diverge as their dynamics involve c0,1, as in Eqs. (50)
and (51). Consequently, we can drop vanishing terms as c3,0,
c1,−2, c1,2, c2,1, and c2,−1 in Eqs. (46)–(51), leading to the
closed equations for c1,0, c0,1, c2,0, c0,2, c1,1, and c1,−1. These
linear equations can be analyzed by the standard eigenvalue
analysis, yielding five negative eigenvalues and one eigen-
value λ = [(2v − z)2 − 1]δ. Hence, the stability condition is
given by

|2v − z| < 1, (53)

implying |J− − d| < 1
2 |J+| in terms of original parameters,

which predicts the location of the multicritical point precisely
as J− = D + d with J+ = 2D (see Fig. 4 and Sec. IX).

XI. EXAMPLES OF REAL-WORLD SWARMALATORS

In this section, we list some examples of real-world swar-
malators that exhibit some of the collective states we have
found (see [27] for an exhaustive list of real-world swarmala-
tors). The async (disordered state), sync (ordered state), and
phase wave states have all been observed in these systems.
The mixed state has not been explicitly observed, but due to
its close resemblance to the phase wave, it may in fact have
been realized but not observed.

(i) Vinegar eels are a type of nematode (a family of
worm microswimmers) commonly found in beer mats and
tree slime [3]. When suspensions of these eels are prepared on
glass disks they swarm around the 1D edges and synchronize
the beating of their tails, thereby satisfying the definition
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of a 1D swaramlator. Under certain conditions they form
metachronal waves, which are equivalent to the phase waves
states found here but winding number k > 1 [3].

(ii) Sperm is another type of microswimmer that can be
considered a 1D swarmalator. When sperms from ram semen
are confined to 1D circular geometries, they show a transition
from an isotropic state (equivalent to our async state) to a uni-
formly rotating vortex (equivalent to our phase wave state) [2].
Sperms that are free to move in 2D also form synchronous
clusters.

(iii) Caenorhabditis elegans are another type of mi-
croswimmers that also swarm and sync the gait of their tails.
When confined to 1D channels they form synchronous clus-
ters, which is analogous to the sync state [41].

(iv) Magnetic domain walls are characterized by a center of
mass x and a magnetic dipole vector with orientation θ . When
subject to external forcing, both x and θ undergo periodic
motion, so the walls can be considered swarmalators [42]. In
an experiment with N = 2 walls, different varieties of sync
phenomena can be observed.

(v) Bristle bots are homemade “automata” made from
toothbrushes and powered by a simple cell-phone motor [43].
When placed on a circular drum, they self-organize around
the ringlike edge. The incoherent state, the phase wave state,
and the synch state are observed in Figs. 9a, 9b, and 9c,
respectively, in Ref. [43].

XII. DISCUSSIONS

The joint action of swarming and synchronization defines
a new type of emergence about which little is known. The
paper is part of an effort to explore this unchartered terrain by
studying a simple 1D model of swarmalators subject to ther-
mal noise. We found four collective states, encapsulated their
stabilities in a phase diagram, illustrated their transitions with
order parameter curves S±(J, K ), and discussed realizations in
nature. These states were previously reported in a study of the
1D swarmlator model with quenched disorder [32], but the bi-
furcation structure for the thermal noise is different: As shown
in the phase diagram in Sec. IX, through the blue solid line,
the phase transition directly occurs from the (0,0) state to the
(S, S) state without going through the (S, 0) or (S1, S2), which
is very different from the 1D model with quenched disor-
der [32]. In other words, in the absence of thermal noise, there
is only one “tetracritical” point there, which means that the
direct phase transition from the (0,0) to the (S, S) state occurs
only at that point. However, when the thermal noise comes
in the system, such region for the direct phase transition (the
same as that for the EQ line) is found to enlarge, not only at the
multicrossing point, which is induced by the thermal noise.

We here considered identical swarmalators with the same
natural frequency, and showed that the four states can be
induced by means of only the thermal noise and nonequilib-
rium interactions. In other words, the nonequilibrium features

such as the four states stem from the thermal noise and the
interaction between the units in the system. We here claim
that the quenched disorder is not the inevitable component to
induce the four states. Specifically, we have unequivocally de-
tected the presence of the mixed state in the system. We have
conducted a stability analysis of the phase wave state using
the perturbation theory, and determined the multicritical point
where the four states converge. Our findings demonstrate a
great level of agreement with numerical results, indicating the
originality of our work.

The main theoretical takeaway of our work is that allowing
oscillators to swarm greatly enriches their collective behavior.
The Kuramoto model of regular oscillators with thermal noise,
for example, has a single transition: from incoherence to syn-
chrony [44]. The 1D swarmalator model on the other hand has
four collective states and four distinct transitions, as depicted
in Fig. 3. An interesting implication of this novel bifurcation
structure is that synchrony does not increase monontonically
with the phase coupling K (as happens in the Kuramoto
model). Holding J constant and turning up K can either leave
you stuck in the phase wave [Fig. 3(a)] or take you out of the
synchronous state into the mixed state [Fig. 3(b)]—in both
cases the overall phase synchrony decays.

A tantalizing goal for future work would be to find the
mixed state in a real-world system of swarmalators. While to
our knowledge it has not directly been reported, we suspect
the mixed state might be lurking within the recently reported
metachronal waves of vinegar eels [3]. As we mentioned,
metachronal waves are mimicked by our phase wave; since
the phase wave is visually similar to the mixed state, the
phase wave might have been misidentified. If experimenters
could extract the (xi, θi ) of each eel, then the S± could be
measured and in principle the mixed state could be detected.
The search for the mixed state could also include other biolog-
ical microwswimmers, magentic domain walls, or bristle bots.
There are also theoretical avenues to explore in the future. One
could study the effects of delayed coupling, external forcing,
or mixed sign interactions. Also, we can explore finite-size
scaling analysis with the goal of deriving the scaling expo-
nents that characterize the transition nature. Specifically, we
expect to derive β = 1/2 for the critical behavior of the order
parameter and ν = 2 for the finite-size scaling exponent.
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APPENDIX: RELATIONS FOR HIGHER-ORDER
COEFFICIENTS

Relations for higher-order coefficients are shown as

b2,0 = a1,0b1,0 + 1

2
[a2,0 − a1,0a3,0 + va0,1(a2,−1 − a2,1)],

b0,2 = a0,1b0,1 + 1

2
[a0,2 − a0,1a0,3 + va1,0(a1,−2 − a1,2)],
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b1,1 = 1

1 + z

[
(1 + v)(a1,0b0,1 + a0,1b1,0) + 1

2
{a1,1 − (1 + v)(a1,0a2,1 + a0,1a1,2)}

]
,

b1,−1 = 1

1 − z

[
(1 − v)(a1,0b0,1 + a0,1b1,0) + 1

2
{a1,−1 − (1 − v)(a1,0a2,−1 + a0,1a1,−2)}

]
,

b1,0 − 2(a1,0b2,0 + a2,0b1,0) + 2v[a0,1(b1,−1 − b1,1) + b0,1(a1,−1 − a1,1)] = 0,

b0,1 − 2(a0,1b0,2 + a0,2b0,1) + 2v[a1,0(b1,−1 − b1,1) + b1,0(a1,−1 − a1,1)] = 0.

For the fixed point (a1,0, a0,1) = (1, 0), we obtain a3,0 = 1/6 and a0,3 = 0 from Eq. (41) and all other coefficients are zero.
With these values, it is easy to derive that b1,0 = −1/6 and all other bn,m = 0. Note that this value is consistent with Eq. (34).

In the ordered phase with (a1,0, a0,1) = (
√

a,
√

a), the above equations for bn,m possess a symmetry under the exchange
of indices (n ↔ m) and also linearity, implying that b1,0 = b0,1, b2,0 = b0,2, and b1,1(v, z) = b1,−1(−v,−z). This observation
excludes the possibility of the mixed phase (S+ �= S−), at least up to this order. It is straightforward to get explicit expressions
for bn,m for the symmetric ordered phase, but they are too complicated to be displayed here.
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