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We examine the finite-size-scaling amplitudes of the free energy in incommensurate phases on a torus
with periodic and twisted boundary conditions. We show that these amplitudes are equivalent to those
of the six-vertex model with electric and magnetic defect lines. The twist angle generates magnetic de-
fect lines, while the electric defect lines are generated by competition between the domain-wall separa-
tion and the finite system size. We calculate the amplitudes exactly for the free-fermion model and the
spin-3 XXZ chain, and conjecture the form of these amplitudes for a more general model. Numerical
calculations employing the Bethe Ansatz confirm our conjecture.

PACS numbers: 05.50.+q, 64.70.Rh, 68.35.Rh

The discovery that many two-dimensional critical sys-
tems are conformally invariant gives much insight into
their critical behavior.! All information about critical
exponents and universal behavior is contained in the con-
formal charge ¢ and the operator content. Conformal in-
variance relates the universality class of a system to the
finite-size corrections to the free energy.2™* This relation
has been applied successfully to two-dimensional models
on strips of finite widths employing the transfer-matrix
method® and also on finite-by-finite lattices employing
Monte Carlo simulations.® Unfortunately, it is not easy
to know a priori which conformal charge is associated
with a given system or indeed whether conformal invari-
ance is present at all.

In this Letter, we investigate the finite-size-scaling
(FSS) amplitudes of the free energy in two-dimensional
incommensurate phases.” Numerical data for the FSS
amplitudes in incommensurate phases appear super-
ficially as if they do not converge in the thermodynamic
limit®-'° [see Fig. 1(a)l. The apparently random behav-
ior of the FSS amplitudes makes it difficult to get any in-
formation about the critical exponents from FSS behav-
ior of the free energy in incommensurate phases, in con-
trast to ordinary phases. We explain why these ampli-
tudes are scattered and present a systematic way of
analyzing the data.

The incommensurate phase is a critical phase with a
continuously varying domain-wall density d. Domain-
wall density correlation functions decay algebraically
with a modulation such that domain walls are placed at
distances / =1/d on average. The critical index of the
domain-wall density, x, varies continuously with incom-
mensurability. The existence of an extra length scale
(the domain-wall separation /) raises some concerns
about the conformal invariance of the incommensurate
phase.’"' We show that competition between the
domain-wall separation and the system size introduces
electric defect lines but leaves conformal invariance in-
tact.

Previously we investigated the FSS behavior in the
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FIG. 1. (a) Numerical data for the FSS amplitudes of the
free-fermion model for the domain-wall density d =% on an
infinite cylinder of width NV with periodic boundary conditions.
cv is proportional to the FSS amplitudes; cnv=(6/
7L)N*(fw —fn), where ¢ is the anisotropy factor. f is the ex-
actly known ground-state energy for finite systems (Refs. 7 and
10) and f is the bulk term. (b) Classification of numerical
data for different values of mismatch parameter x. Arrows in-
dicate the exact values of the conformal charge c- obtained
from Eq. (6). Lines between data points are only guides to the
eye.
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free-fermion model, '°

N N
Hrr=m Zn on On —é Z] (67 ons1ta, o+), (1)
n= n=
and found an unusual boundary effect arising from
mismatch between system size and domain-wall separa-
tion. On discrete lattices, the FSS amplitudes depend on
how well the lattice size (V) matches an integral multi-
ple of the domain-wall separation /. Since the number of
domain walls present in a system with periodic boundary
conditions is always an integer, the density in finite sys-
tems rarely matches the bulk density d exactly. Thus
there is almost always a deficit (or excess) of domain
walls in finite systems. We introduce a mismatch pa-
rameter k defined by Nd =n+« (n is the integer closest
to Nd and — + <x=< ¥ ). The value of n is the number
of domain walls in the ground state of the finite system,
so x represents the deficit of domain walls. Figures 1(a)
and 1(b) show how this mismatch influences the FSS
amplitudes. The amplitudes obey the laws of conformal
invariance, but with conformal charge altered by missing
domain walls.
Recently the FSS spectrum of the spin- XXZ
Heisenberg chain,
N
FHxxz=—13 X lofori+1+onon+1+Acioii],

n=1

(2)
has been studied extensively by several authors,'2"'# us-
ing the conformal theory and the Bethe Ansatz method.
Its operator content is explored for various boundary
conditions. Twisted boundary conditions lof+ =0
xexp(*i2n¢)] connect the operator content of the
XXZ chain to those of some other models like the g-state
Potts models.'>!* The twist angle ¢ generates magnetic
defect lines in the Coulomb-gas language. '’

This paper considers a model which combines the
chemical potential m (or magnetic field) of the domain
walls in the free-fermion model with the domain-wall in-
teraction A of the XXZ chain;>'!

N
H=Fxxz+m, oo, . 3)

n=|

The chemical potential m controls the domain-wall den-
sity d. For the ordinary XXZ chain'® (m=0), there is
no net polarization in the critical phase (—1<A<1),
i.e., d=1. This model with variable domain-wall densi-
ty is a quantum-mechanical prototype for physically
relevant incommensurate solid phases such as occur in
the chiral three-state Potts model and the axial next-
nearest-neighbor Ising model in two dimensions (for a

x2/2+2¢? 4
Z(x,¢)=exp(—Mwa)-q— Y pib;
=1

Zx
— +z,,
2n%(q) = 2 el

Zx
91' 7 —Zqu

review, see Ref. 7). The effect of dislocations on the
FSS amplitude is not studied here.

We carry out our analysis on a torus of length M in
the temporal direction (parallel to domain walls) and
width V. The partition function of the domain-wall sys-
tem on an N XM lattice with periodic boundary condi-
tions in the vertical (temporal) direction is

Z=Trexp(—M%#). 4)

In the infinite-cylinder limit (M — o), we show that the
finite-size corrections to the free energy (log of the parti-
tion function) of the free-fermion model and the XXZ
chain take the form

In=fe—(®/6)Lc/N*+ - -, (5)

where { is the anisotropy factor and ¢, the conformal
charge, is given by

K¢ 2 2r 2
——x2+ =2
2r x KG ¢

K¢ is the Gaussian coupling constant related to the
correlation-function critical exponent x by Kg=rnx.*
The exponent x is always 1 for the free-fermion model,
independent of the value of the domain-wall density. For
the XXZ chain, the mismatch parameter x =0 (%) for
even (odd) N because the ground-state domain-wall den-
sity d is always ¥ . In the model defined by Eq. (3), both
x and x vary continuously with the domain-wall density
d.'"'7 The exponent x also varies with the strength of
domain-wall interactions A. We find that the form of the
finite-size corrections in Egs. (5) and (6) remains un-
changed in this model. The mismatch parameter x con-
trols the strength of the electric defect line in the
Coulomb gas, while the angle ¢ in twisted boundary con-
ditions controls the magnetic defect line.'*> Notice that x
plays a similar role to the twist angle angle in vectorlike
twisted boundary conditions'> at d = 5 .

Consider first the free-fermion model. The dispersion
relation (k) =m —tcos(k) in this model. However,
our final results depend only on a few of the general
properties of the dispersion relation.'® We analyze the
partition function by an asymptotic expansion method
used by several authors for Ising and dimer models.% '8
Applying this technique to the free-fermion model, ' it is
straightforward to obtain the leading finite-size correc-
tions to the partition function. First, we introduce some
parameters: the aspect ratio s =M/N; the Fermi wave
vector kr satisfying & (kr) =0; the domain-wall density
d=kg/n; and the anisotropy factor (Fermi velocity)
¢{=&"(kr). The partition function, up to the O(1) term,
takes the form

c-1—6[ (6)

@)

’
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where g =exp(—ns¢), p1=—1 and p;=1 for i =2,3,4,
z,=inslx, z,=ins{¢, 6; is the Jacobi’s theta function of
the ith kind, and 7 is the Dedekind eta function.*!®

Note that exp(— MNf ) is the bulk term in the parti-
tion function, while its coefficient is the O(1) term. The
form of the O(1) term in the partition function is univer-
sal. The only model dependence enters through the an-
isotropy factor ¢ which modifies the aspect ratio by
s — s¢ as usual for anisotropic systems in the conformal
theory.! At ¢=0 (periodic boundary conditions), the
same formula has been obtained by Bhattacharjee for
the generalized dimer model.® We observe that the
O(1) part of the partition function simplifies to

x2/2+42¢2
ZO(I)(K,(D) -'qm'eg [iz".’q 1/2] 03(2z¢,q2) . (8)

This expression is similar to Z 0 of the six-vertex mod-
el (or the Coulomb gas).*?® In fact, when x =¢=0, Eq.
(8) becomes identical to Z 2" of the six-vertex model at
the free-fermion point (A=0) with periodic boundary
conditions, aspect ratio s¢, and an even number of sites.*

Using the definition of the 6 function*!'® we rewrite
the above equation in a form reminiscent of the Cou-
lomb-gas partition function

1 T U0 2Am=0?  (g)

ZO(I)( ) ) =
9 n2(q) eme€Z

where e and m are integers and called the electric and
magnetic charge, respectively, in the Coulomb-gas lan-
guage.?' So x and ¢ represent the electric and magnetic
defect in the Coulomb-gas system. The partition func-
tion of the Coulomb gas (or the six-vertex model)
parametrized by the Gaussian coupling constant K¢ is*

Zg 1) = (Kg/2n)e?+ (2n/Kg)m? ' 10)
ﬂz(Q) em€Z
The six-vertex parameters A and K; are related by
A= —cos(u) and Kg =2(x—pu).'¢
By comparing our result Eq. (9) with the Coulomb-
gas form Eq. (10), it is tempting to generalize Eq. (9) off
the free-fermion point (i.e., to nonzero A)

1 (Kg/2n) (e — )2+ Q2n/Kg) (m —¢)?

Zo(l)( 3 )=
9 T]z(Q) em€Z

an

At A=0, K; =r and we recover our free-fermion result
in Eq. (9). Taking the infinite-cylinder limit (s — o)
reveals the finite-size behavior in Egs. (5) and (6). This
form has been already shown to be correct for the XXZ
chain at d =% numerically'® and analytically.'> We
conjecture that Eq. (11) remains correct in the more
general model [Eq. (3)] where the Gaussian coupling
constant K¢ is still given by zx but x now depends on
both A and d.

The free-energy difference between when x=0 and
nonzero x represents the free energy of the x missing
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domain walls. So « plays the same role as steps in step
boundary conditions in the body-centered solid-on-solid
or the Gaussian model,* where the height at the site
N +1 is lower by « than at the site 1. This relation is
also apparent in the six-vertex model. The net polariza-
tion in the horizontal direction, P, [see Eq. (4.9) in Ref.
4], represents the number of up arrows which can be
identified by domain walls. The number of missing
domain walls x corresponds to the shift of the net polar-
ization P, from integer values by x. Since P, corre-
sponds to the electric charge in the Coulomb-gas formal-
ism, this shift in P, is identical to an electric defect in
the Coulomb-gas system. Hamer and Batchelor'’ re-
cently observed this effect in the XXZ chain. By investi-
gating the energy spectrum of the d = § sector with ex-
tra domain walls, they found that the free energy with n
extra domain walls is given by Egs. (5) and (6) after re-
placing x by n.

It is interesting to perform an inversion transformation
on Eq. (8) using Jacobi’s inversion formulas for @ func-
tions.'® The partition function becomes

Z9M (k)= 0:(3,,3)0:(G,G?) , (12)

1
n%(§g)
where G =exp(—n/s¢), z,=nx, and Z,=n¢. The as-
pect-ratio s— 0 limit is especially simple in Eq. (12).
Expanding the free energy for small § in the above equa-
tion, we find

f(x,¢)=fm—-”7/6§+--~ . (13)

There is no discreteness in the domain-wall density in
this geometry because the domain walls lie perpendicular
to the infinite-cylinder direction. Therefore the x-de-
pendent term disappears. The twisted boundary condi-
tions in the infinite-cylinder direction also do not contrib-
ute to the finite-size corrections of the free energy. As
usual in conformally invariant systems, the anisotropy
factor ¢ in the FSS amplitude is placed in the denomina-
tor, in contrast to the orthogonal cylinder geometry in
which § appears in the numerator.

We tested our conjecture through Bethe Ansatz calcu-
lations. The extra mass term in Eq. (3) does not alter
the Bethe Ansatz equations for allowed wave vectors, so
we solve precisely the same equations as in Refs. 13 and
14. Because we are interested in moving the ground-
state domain-wall density d away from the value % at
which exact solutions are known,'® we solve the equa-
tions numerically in general, and perturbatively in cer-
tain limits. The form of the FSS amplitude in Egs. (5)
and (6) agrees with our numerical calculations for
several different values of A and 4. In particular, we
show that the FSS amplitudes contain no dependence on
k or ¢ other than quadratic terms, there are no cross
terms, and that the coefficients of x and ¢ have an in-
verse relation. Table I displays a sampling of numerical
values of x =Kg/x obtained from our calculations.
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TABLE I. Numerical values of correlation-function critical
exponents x=Kg/x for several different values of pu
=cos ~'(—A) and domain-wall density d.

x(u,d) d=% d=1% d=1% d=1% d=0
u=n/2 1 1 1 1 1
u=n/3 4 1.2474 1.1839 1.1451 1
u=n/6 3 1.3938 1.2780 1.2143 1
u=0 2 1.4404 1.3062 1.2346 1

Note that x =2(xr — u)/x for the XXZ chain at d =1 .
Expansion away from the free-fermion model (A=0)
yields

=1 —opSinzd) (14)
T
for arbitrary d. For arbitrary A we obtain
2A
x oA (15)

in the small-d limit. Notice that x takes the free-
fermion value 1 in the d=0 limit in addition to the obvi-
ous A =0 limit.

In summary, we study a general model of the incom-
mensurate phase in two dimensions consisting of in-
teracting fermions. We show that ideas of conformal in-
variance do indeed apply to the incommensurate phase.
In addition, we conjecture that Eq. (11) describes FSS
amplitudes on a torus. We confirm the conjecture in the
infinite-cylinder limit through numerical Bethe Ansatz
calculations and perturbation theory. Our model can ac-
tually be mapped onto the six-vertex and Gaussian mod-
els. Twisted boundary conditions generate magnetic de-
fect lines, while mismatch between the domain-wall
spacing / and the system size IV creates electric defect
lines.
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