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The pair contact process with diffusion (PCPD) has been recently investigated extensively, but its
critical behavior is not yet clearly established. By introducing biased diffusion, we show that the external
driving is relevant and the driven PCPD exhibits a mean-field-type critical behavior even in one
dimension. In systems which can be described by a single-species bosonic field theory, the Galilean
invariance guarantees that the driving is irrelevant. The well-established directed percolation (DP) and
parity-conserving (PC) classes are such examples. This leads us to conclude that the PCPD universality
class should be distinct from the DP or the PC class. Moreover, it implies that the PCPD is generically a
multispecies model and a field theory of two species is suitable for proper description.
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The steady state of an equilibrium system is character-
ized by its Hamiltonian and Gibbs measure. There is no
systematic generalization to the stationary state of non-
equilibrium systems so far. Since nonequilibrium systems
encompass all kinds of many-body systems without a
constraint of detailed balance, it may be hopeless to find
a universal formalism applied to general nonequilibrium
systems. At this point, model studies or case-by-case stud-
ies are rather useful to accumulate our knowledge on
nonequilibrium systems.

Our experience on equilibrium systems illustrates the
scale-free fluctuation or power law behavior at the critical
point where the continuous phase change occurs. The
scale-free nature is worthwhile to be studied not only
because of its theoretical attraction, but also because of
ubiquity in nature—the clustering of galaxies [1], 1/f
noise [2], and percolation structure [3], to name only a
few. This scale-free nature is also expected at criticality
under nonequilibrium circumstances. As a prototype of
nonequilibrium critical phenomena, absorbing phase tran-
sitions (APTs) have been studied extensively [4]. APT is a
transition from an active phase to an absorbing phase in
nonequilibrium steady states. The absorbing states are
defined as the configurations where the system cannot
escape by the prescribed dynamic rules. As in equilibrium
systems, this transition is possible only at the thermody-
namic limit because the finite systems eventually fall into
the absorbing states.

In epidemiology, for example, the virus extinct state is
an absorbing state. Actually, the disease spreading is mod-
eled and dubbed the contact process (CP) by Harris [5].
The CP shows a phase transition from the virus infested
state (active state) to the quiescent state (absorbing state).
This transition is known to belong to the directed percola-
tion (DP) universality class. Actually, many types of mod-
els belong to the DP class and it is conjectured that a phase
transition occurred in a system with a single absorbing
state should share the critical behavior with the DP [6,7].

As in equilibrium critical phenomena, a symmetry or
conservation may play an important role in determining the
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universality class. Accordingly, many nonequilibrium sys-
tems with symmetric absorbing states or conservation laws
are studied. As expected, the additional symmetry or con-
servation brings forth a series of new universality classes.
Unfortunately, the absorbing states with higher symmetry
or complex conservation are usually unstable with respect
to an infinitesimal activity even in one dimension.
Therefore, it is difficult to find a nontrivial scaling other
than the mean-field type, except for a few well-established
universality classes such as the DP and the directed Ising or
the parity-conserving (PC) classes.

In this context, the critical behavior of the pair contact
process with diffusion (PCPD) [8] is rather surprising.
Although the PCPD has no symmetry in absorbing states
and no conservation law, the PCPD seems to form a new
universality class. Actually, some authors asserted that
PCPD eventually flows into the DP fixed point after a
huge crossover time [9]. However, the extensive numerical
experiments [10] indicate that the PCPD belongs to a new
universality class other than the DP or the PC. In addition,
the long-term memory present in the PCPD has been
suggested as a source for this new universality class [11].
Nevertheless, the universality issue on the PCPD is still a
hot controversy and it is not yet clearly settled down [8].
There have been some analytic attempts to analyze the
PCPD through a single-species bosonic field theory, but
no satisfactory results have appeared as of yet [12].

In this Letter, we introduce external driving (biased
diffusion) in various models including the PCPD and nu-
merically observe its effect on the critical scaling. The
external driving may serve as a crucial test on the univer-
sality class of the general absorbing-type models and also
reveal important features of their critical scaling. With this
test, we show later that the PCPD class should be distinct
from the DP or the PC class and that the PCPD is generi-
cally a two-species reaction-diffusion model.

The role of driving is usually irrelevant in single-species
reaction-diffusion systems with absorbing states (SRDA).
The simplest examples are the pair annihilation or coagu-
lation models represented by 24 — 0 or 2A — A. These
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models can be solved exactly even with biased diffusion,
which turns out to be irrelevant to the long time decay
dynamics of the particle density [13].

In the field theoretical sense, it is easily predictable
within the bosonic formalism introduced by Doi,
Grassberger, and others [14]. Since the particle density is
so low in the long time limit, it would not be harmful to
adopt the bosonic formalism where multiple occupations
are allowed at a site. After taking a suitable modification of
the dynamic rules for bosonic particles and developing the
coherent-state path integral from the master equation [15],
one can obtain the proper action S which can be treated by
the systematic many-body analysis, such as renormaliza-
tion group (RG) calculation [16]. Including biased diffu-
sion (drift), the action for the pair annihilation or
coagulation model is given as

S = fdtdx[gb(a, —DV2 +v-V)p + A d¢?

+10%¢%] ey

where D is the diffusion constant and v is the drift velocity,
while A; and A, are properly scaled reaction parameters.
The particle density field is denoted by ¢ and its response
field by @. The driving term can be simply gauged away by
a Galilean transformation such as ¢(7, x) — o(f, x — vi)
and &(t, x) — &(t, x — vt). Therefore, one can conclude
that the driving is irrelevant for the pair annihilation or
coagulation model in the long time regime.

The argument based on the Galilean invariance can be
applied to more general SRDA exhibiting absorbing phase
transitions. Near the transition, the particle density is low
enough to assure the validity of the bosonic field theory.
The only exceptions are found in some multispecies
diffusion-reaction systems, where the hard core exclusion
becomes crucial [17,18]. The DP class is well known to be
described by a single-species bosonic field theory as well
as the PC class. Therefore, one can expect that the external
driving does not change the critical scaling.

To confirm our expectation, we study the driven branch-
ing annihilating random walks with one (DBAW 1) and two
(DBAW?2) offspring in one dimension. The models without
the external driving, the BAW1 and the BAW2, belong to
the DP and the PC class, respectively. The evolution dy-
namics for the driven models with fully biased diffusion
are summarized using stoichiometric notation as

AFSPA, AAD Y,
AQ 77 AA, for one offspring, )

AQP U»AAA, for two offsprings.

For simplicity, the branching process is also taken to be

biased, but this choice does not change our conclusion.
We perform Monte Carlo simulations starting with the

fully occupied initial condition. The particle density p(z) is

measured as a function of time ¢ in a lattice of size L =
2 X 10° and L = 10° for the DBAW1 and the DBAW?2,
respectively. Up to the observation time, all samples are
alive in our simulations. Since a power law decay p(t) ~
t~? is expected at criticality, one should look for a flat line
in the p(#)#® vs t plot to locate the critical point. In Fig. 1,
we find p. = 0.18825(5) with 6§ = 0.159(1) for DBAW 1
and p. = 0.5332(2) with 6§ = 0.285(1) for DBAW2. The
values of the critical exponent ratios agree perfectly well
with the known values for the DP and the PC class. The
driven systems with partial bias also show the same critical
behaviors. This is exactly what we expected from the
Galilean invariance argument for the SRDA.

Now, we turn to the PCPD model and study the effect of
driving on its critical scaling. The model dynamics consists
of three configurational changes, such as (biased) diffusion
(Af — @A), pair annihilation (2A — @), and creation of a
particle by a pair (2A — 3A). The algorithm to simulate the
driven PCPD (DPCPD) in one dimension is as follows:
First, choose a particle at random. The chosen particle
attempts to hop to the right or to the left with probability
D and 1 — D, respectively. If the target site is vacant, the
hopping trial is accepted. If the target site is occupied,
(i) two particles annihilate with probability p or (ii) the
hopping attempt is rejected and the pair (chosen particle
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FIG. 1 (color online). Semilog plots of p(¢)® vs ¢ for DBAW1
(upper panel) and DBAW?2 (lower panel). We use 6 = 0.159 for
DBAWI1 and 0.285 for DBAW2. Since DBAW2 shows a long-
term correction to scaling, we also draw the effective exponents
in the inset of the lower panel and find 6 =~ 0.285(1) for DBAW?2
which is consistent with the PC value.
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and one at the target site) tries to create a particle at a
randomly chosen nearest neighbor site of the pair. When
the selected site is occupied, this branching attempt is
rejected. The time increases by 1/N(r), where N(z) is the
total number of particles at time ¢.

We measure the particle density p,(¢) and the nearest
neighbor pair density p () in a lattice of size L = 107 up
to t = 108 and average over ~80 independent samples. At
D = 1/2, the ordinary PCPD with normal diffusion is
recovered. In Fig. 2, after a huge crossover time around ¢ =
10°, we see a flat straight line at criticality [p, =
0.133522(2)] with 6 = 0.20(1) for both particle and pair
densities, which is in good agreement with the most reli-
able value for the PCPD [10].

To see the effect of driving in the PCPD, we perform
simulations at D = 1 (full bias). In Fig. 3, we find p. =
0.151031(1) with 8, = 0.49(1) for the particle density and
8, = 0.56(3) for the pair density, which are unambigu-
ously distinct from the value of the ordinary PCPD, & =
0.20. These results do not change for any partial bias. This
is a big surprise because it implies that the ordinary
Galilean invariance should not hold in the PCPD under
driving, which in turn cannot be described by a single-
species bosonic field theory.

Before going into a detailed discussion on its implica-
tions, we note that there is another surprise that the ex-
ponent values are almost identical to the values of the
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FIG. 2 (color online). A semilog plot of p(£)t® vs ¢ for the
ordinary PCPD with normal diffusion (D = 1/2). In the upper
(lower) panel, the data for the particle (pair) density are plotted.
We find a good flat line at criticality with 6 = 0.20.

ordinary PCPD in two dimensions (‘“‘mean-field”” values)
[19]. The upper critical dimension of the PCPD is expected
to be two and the decay dynamics presumably carries a
multiplicative logarithmic factor in two dimensions. We
plot p(1)/p,(7) versus ¢ in a semilog scale in Fig. 4, as in
the 2D case studied in [19]. It seems to confirm that
ps(t)/p,(t) ~ Int. Therefore, the critical scaling of p,
and p, exhibits exactly the same critical behavior found
at the 2D PCPD criticality. This may suggest that the upper
critical dimension of the DPCPD is one rather than two.
The reduction of the upper critical dimension by the biased
diffusion is not rare. The most prominent example is the
sandpile model related to the self-organized criticality. It is
well known that the directed toppling rules lower the upper
critical dimension from four to three [20]. However, the
situation is not so simple here. The decay dynamics inside
the absorbing phase remains one dimensional, i.e., p; ~
=12 and p, ~ 1732, Therefore, only the critical scaling
carries the 2D character, while the absorbing phase is of 1D
characteristic. The underlying mechanism for this surpris-
ing scaling behavior is under investigation.

Now, we come back to the implication given by the
relevancy of the external driving. It implies that the
PCPD under driving cannot be described by a single-
species bosonic field theory. This reminds us of the inter-
pretation of the PCPD as a cyclically coupled DP and
annihilation process suggested by Hinrichsen [21], where
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FIG. 3 (color online). Plots of p,(£)1** vs t for the particle
density and p,(1)1*% vs 1 for the pair density of the DPCPD
model. In the inset of each panel, the effective exponents are
drawn as a function of 1/¢.
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FIG. 4 (color online). The semilog plot of p,/p, vs t at
criticality. The straight line stands for the logarithmic fitting of
the data, which seems very good for nearly three decades.

a pair and a solitary particle can be considered two inde-
pendent excitations (two-species particles). If we accept
that these two excitations are independent, a field theory of
two species is more suitable for the description of the
PCPD. Then, the difference in the bias strength (drift
velocity) for two different particles may be relevant as in
the well-known two-species annihilation model A + B —
@ [22]. By introducing the biased diffusion of a single
particle in the PCPD, the effective diffusion of a pair will
be also biased but the drift velocity should be in general
different each other. Therefore, our results suggest that the
bias difference between two excitations are the reason for
the relevancy of the driving in the PCPD in the context of a
two-species reaction-diffusion model.

In order to understand this feature more clearly, we study
the full bosonic model with a soft constraint introduced by
Kockelkoren and Chate [10], which belongs to the PCPD
class. It is obvious that the biased diffusion does not change
the critical scaling in this full bosonic model due to the
Galilean invariance. However, this is very fortuitous. Once
we apply the different diffusion bias to a particle at singly
occupied sites and a particle at multiply occupied sites, we
recover the mean-field exponents again [23]. This confirms
the role of the bias difference as a relevant perturbation to
the PCPD fixed point.

We emphasize that the bias difference is irrelevant for
the multispecies models belonging to the DP class, because
the DP is generically a single-species model. To check it
explicitly, we study the generalized PCPD (GPCPD) model
introduced by Noh and Park [11], which is parametrized by
the memory strength r. At r = 1, the PCPD model is
recovered, while the DP class is found at r = 0. With
biased diffusion, we find the mean-field exponents with
logarithmic corrections for any finite r, but the DP is robust
against this external driving at r = 0 [23]. This again
confirms that the PCPD (in general, GPCPD at nonzero
r) should not belong to the DP class.

In conclusion, we studied the effect of bias on the critical
scaling in one-dimensional reaction-diffusion models. The

BAW models are robust against the external driving, re-
gardless of the parity conservation. This is anticipated from
the fact that the DP and the PC class can be generically
described by a single-species bosonic field theory, where
the Galilean invariance is embedded. In contrast, the driv-
ing is relevant for the PCPD and changes the critical
scaling. This leads us to exclude a possibility of the DP
or the PC class for the critical scaling of the PCPD model.
Moreover, it suggests that the PCPD is generically a two-
species model and a field theory of two species may be
required.
We thank J. D. Noh for useful discussions.
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