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Anomalous Roughness in Dimer-Type Surface Growth
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We point out how geometric features affect the scaling properties of nonequilibrium dynamic pro-
cesses, by a model for surface growth where particles can deposit and evaporate only in dimer form,
but dissociate on the surface. Pinning valleys (hilltops) develop spontaneously and the surface facets for
all growth (evaporation) biases. More intriguingly, the scaling properties of the rough one dimensional
equilibrium surface are anomalous. Its width, W � La , diverges with system size L as a �

1
3 instead of

the conventional universal value a �
1
2 . This originates from a topological nonlocal evenness constraint

on the surface configurations.

PACS numbers: 68.35.Rh, 05.70.Ln, 64.60.Ht, 82.20.Wt
The theory of nonequilibrium dynamic statistical
processes has developed rapidly in recent years. Driven
systems display intriguing scaling properties and can
undergo various types of dynamic phase transitions [1].
Kardar-Parisi-Zhang–type surface growth is an example
[2]. There, the properties of the depositing (evaporating)
particles are not specified, but are implicitly presumed
to be geometric featureless monomers. In surface-
catalysis–type processes the geometric shape of the
molecules matters. The onset of the catalytic process
is associated with a so-called absorbing state dynamic
phase transition [3–5]. Monomers give rise to directed
percolation and dimers to directed Ising-type transitions.
Subtle geometric features are known to be important
in equilibrium crystal surface phase transitions as well.
The competition between surface roughening and surface
reconstruction depends on topological details of the crys-
tal symmetry. Those determine whether a reconstructed
rough phase can exist or not [6]. Geometric features are
also important in diffusing particle systems. The shape of
diffusing particles introduces conservations and leads to
anomalous decay of particle density autocorrelations [7].
Therefore, the natural question arises, whether and how
the shape of the deposited particles influences the growth
and equilibrium properties of crystal surfaces.

Consider a crystal built from atoms of type X. As-
sume that deposition always takes place in dimer form,
X2, aligned with the surface. The dimer attaches to two
horizontal nearest neighbor surface sites. It loses its dimer
character after becoming part of the crystal. Evaporation
can take place only in X2 molecular form, but a different
partner is allowed. In this Letter we study the one dimen-
sional (1D) version of this process. This can apply to step
shapes during step-flow–type growth on vicinal surfaces.
The adsorbed particles do not diffuse in this version of our
model. However, topological features that drive our results
are preserved, even when monomer diffusion is allowed but
limited to terraces. Jumps across steps are unlikely due to
0031-9007�00�84(17)�3891(4)$15.00
Schwoebel barriers [8]. So our main results do not alter in
systems with diffusion.

We describe the 1D surface configurations in terms of
integer height variables hi � 0, 61, 62, . . . . They are
subject to the so-called restricted solid-on-solid (RSOS)
constraint, hi 2 hi11 � 0, 61, and periodic boundary
conditions, hL1i � hi . The dynamic rule is as follows.
First, select at random a bond �i, i 1 1�. If the two sites
are not at the same height, no evaporation nor deposition
takes place. If the two sites are at the same height,
deposition of a dimer covering both sites is attempted with
probability p, or evaporation of a dimer with probability
q � 1 2 p. Processes are rejected if they would result in
a violation of the RSOS constraint.

The first surprise is that the surface always facets during
growth and evaporation, although the surface is rough in
equilibrium. The second surprise is that the equilibrium
surface width W � La scales with an anomalous small
exponent a � 0.29 6 0.04. The data could be consistent
with an even smaller value due to the strong finite size
scaling corrections in Fig. 1(a).

1D surfaces, irrespective of being in equilibrium or in a
stationary growing (evaporating) state, display, with only
a few very specific exceptions, the universal roughness ex-
ponent a � 1

2 . The up-down aspect of the steps becomes
uncorrelated beyond a definite correlation length, and
therefore the surface roughness obeys random walk
statistics at large length scales, which implies a � 1

2 . Our
dissociating dimer deposition process circumvents this
universal argument by means of a novel type of nonlocal
topological constraint. The dimer aspect implies that all
surface height levels must be occupied by an even number
of particles. However, due to the dissociative nature of
the dimers that information is not preserved locally. The
“evenness” constraint is nonlocal. At local length scales
the surface looks the same as in monomer deposition
processes, but the global surface is much less rough. We
checked this numerically. Define a window of length b.
© 2000 The American Physical Society 3891
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FIG. 1. Finite size scaling estimates of the critical exponents
at the equilibrium point p � q for (a) the stationary state sur-
face width W � La using L 2 2 L pairs for L � 24, . . . , 29.
(b) The temporal surface width W � tb , using t�10 2 t pairs
at L � 213.

The surface roughness scales as W � ba , with a � 1
2 for

b ø L, but crosses over to the global finite size scaling
exponent a � 0.29 6 0.04 for b ! L.

We performed a detailed numerical study of the prop-
erties of even-visiting random walks [9] that are globally
restricted to visit each site an even number of times. The
results, together with analytical scaling arguments, yield
the value a � 1

3 . This value lies within the numerical
error bars in Fig. 1(a) for the dimer deposition model.

The details of our random walk study are rather technical
and will be presented elsewhere [10], but the essence can
be captured by the following intuitive scaling argument.
Consider the even-visiting random walks for time interval
0 , t , T �� L�. We assign a defect variable to each site,
to mark that it has been visited by the random walker an
odd/even number of times up to time t. The even-visiting
constraint is satisfied when all defects disappear at time
T . Initially, the random walker does not feel the constraint
and diffuses freely for t , tfree ø T . The defects are
uniformly spread over a region of size j � t

1�2
free. Then it

stops spreading and starts to heal the defects. The healing
time for a single defect in the region of size j is of the order
of j2. By assuming that the healing process for each defect
is independent, we estimate the total healing time theal �
jd12 with spatial dimensionality d. As theal ¿ tfree,
we conclude that j � T1��21d�, i.e., a � 1�3 for d �
1. Existence of a time scale tfree explains the crossover
behavior of the surface roughness in the window length
b. Similarly, we can argue that the surface width scales
with a � 1

3 in generalized n $ 2 dissociating n-mer–type
deposition processes.

The dynamic critical exponent z at the equilibrium point
follows from how the surface width diverges as a function
of time, W � tb . We find numerically that b � 0.111 6

0.002; see Fig. 1(b). This suggests the value z � 3, since
z � a�b.

The equilibrium surface roughness is unstable with re-
spect to growth and evaporation. It facets immediately.
3892
This phase transition is second order. The correlation
lengths that characterize the faceted structure diverge. Be-
fore addressing this issue we need to describe and explain
the faceted phase. The valleys in the growing surface are
sharp and the hilltops rounded; see Fig. 2. This shape is
inverted for p , q. The faceting is caused by the sponta-
neous formation of pinning valleys during growth (pinning
hilltops during erosion, for p , q). Consider, for ex-
ample, dimers on a flat surface for p . q. Odd segments
between them act as the nuclei of pinning valleys. Such
valleys cannot be filled by direct deposition. The only way
to get rid of them is by lateral movement of the subhills.

In finite systems the surface grows in shocks. An initial
rough or flat configuration grows fast at first, but pinning
valleys appear randomly at all surface heights. The in-
terface develops into a rough faceted structure with many
subhills and growth almost stops. From here on the sur-
face advances only when subhills anneal out by the lateral
movement of the pinning valleys. The annealing time of
a subhill scales exponentially with its size. This exponen-
tially slowing down healing process leads ultimately to a
faceted W shape with only two remaining pinning valleys.
Their lifetime diverges exponentially with the lattice size.
After their demise the surface experiences a growth spurt,
and the cycle restarts all over.

The mechanism for lateral movement of pinning valleys
is the exchange of active bonds between ramps. Active
bonds are locations along the ramp where a dimer can
deposit or evaporate. Most steps on the ramps are only
one or two atomic units wide and therefore dynamically
inactive; see Fig. 2. Active bonds move up or down the
ramps by deposition or evaporation of dimers. The growth
bias p . q gives them an upward drift. This must lead to
an exponential distribution.

Figure 3(a) shows the logarithm of the active bond distri-
bution, r�x�, versus the horizontal distance x from the cen-
ter of a hilltop for various values of p . q. The straight
lines for large x confirm the exponential distribution of ac-
tive bonds along the ramps, r�x� � exp�2x�jf �. We de-
termined this from odd lattice sizes, in particular, L � 257,
where the surface contains an odd number of pinning val-
leys and therefore reaches a V-shaped stationary state in
which it remains pinned at all times.

ξ 0

( b )

p
q

( a )

FIG. 2. Hill structures in the faceted growth phase. (a) Sche-
matic structure with two pinning valleys. j0 is the characteristic
width of the hilltops. (b) Active bonds (the filled circles) along
a local segment of a faceted ramp.
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FIG. 3. Active bond distribution r�x� at L � 257 for p �
0.505, 0.51, 0.515, and 0.52 (from top to bottom). Beyond
j0, r�x� decays exponentially. (b) Collapse of the data from (a)
according to Eq. (1), with br � 0 and n � 1, demonstrating
the hills preserve their shape.

Every now and then an active bond moves in the op-
posite direction, against the flow, and reaches the valley
bottom. That pinning valley moves by two lateral lattice
constants when the active bond jumps across onto the other
ramp. The probability for this is very small, and scales
exponentially with the ramp length, but it is larger from
the lower ramp, and therefore the valley bottom moves in
the direction of the lower hill, and actually accelerates,
because that lower hill keeps shrinking.

Near the rounded hilltops, the surface remains highly
active and initially the active bond density does not de-
crease significantly with x. This defines a second char-
acteristic length scale, j0, representing the flatness of the
rounded hilltops; see Fig. 2. Surprisingly, both lengths,
jf and j0, diverge at p � q. Figure 3(b) shows that the
curves in Fig. 3(a) collapse according to a single length
scaling form

r�e, x� � ebrF �enx� (1)

with n � 1.0�1� and br � 0.0�1�. This means that on
approach of the p � q critical point the hills maintain their
shape in the sense that j0 and jf diverge simultaneously
and with the same exponent j0 � jf � �p 2 q�21.

It is surprising that both length scales of the faceted
phase diverge at the equilibrium point. The structure of
the rough phase would be much more complex when one
of them remained finite. This actually happens in the
following generalization of the model.

Recently, Alon et al. [11] added to the conventional
monomer-type RSOS model growth the constraint that
evaporation from flat segments is forbidden. It remains
unclear how this can be experimentally implemented, but
the interesting aspect of their model is the presence of a
roughening transition, belonging to the directed percola-
tion universality class [3], and unconventional roughness
properties at this transition. Our model becomes a directed
Ising (DI) type [4,5] generalization of this when we dis-
able digging on flat surface segments. Modify the evapo-
ration probability q to rq when both neighbors are at the
same height as the update pair �i, i 1 1�, i.e., hi21 � hi �
hi11 � hi12. At r � 0, the no-digging limit, it becomes
impossible to dig into the crystal layers beneath the current
lowest exposed level. That level itself becomes frozen as
well when it fills up completely.

Figure 4 shows the phase diagram. The rough equilib-
rium point broadens into a rough phase (the shaded area).
Along the DI-E phase boundary, the surface growth is
zero. Inside the rough phase the surface grows, but slowly.
Its scaling properties are complex and obscured numeri-
cally by huge corrections to scaling. The surface width W
seems to grow logarithmically in time for L . 210, and
maybe the stationary state width scales logarithmically as
well, but extracting the true scaling properties is a rather
hopeless endeavor.

The origin of this complexity is easy to pin point. The
rough surface grows slowly, although the bare coupling
constants p , q favors evaporation. It performs a deli-
cate balancing act. The surface erosion picture from r � 1
still holds along faceted ramp segments. There the surface
evaporates due to the downward drift velocity of active
bonds along the slope, but this is frustrated by the emer-
gence of pinning hilltops. The surface grows at flat surface
segments due to an upward pressure created by the reduced
digging probability factor r , but the formation of pinning
valleys limits this. Moreover, the nonlocal evenness con-
straint is at work as well. Growth and evaporation are dy-
namically balanced only along the faceting transition line
DI-E (Fig. 4). Everywhere else the rough surface grows
slowly.

The properties of the two faceted phases confirm the
above intuitive picture. The erosion faceted phase signals
the local stability of eroding ramps inside the rough phase,
while the growth faceted phase indicates that flat segments
persist. We have numerical evidence showing that the

erosion faceted growth faceted
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FIG. 4. Phase diagram of the generalized model: The rough
equilibrium point E at r � 1 broadens into a slowly growing
rough phase (shaded) when the digging probability r is reduced.
The dotted line to the left of the DI critical point at r � 0
represents the smooth phase.
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FIG. 5. Scaling at the p � q transition line: (a) Active bond
distribution r�x�, along p � q for system size L � 1025 at
r � 0.9, 0.8, 0.6, and 0.2 (ordered from the top down). r�x� �
x21 decays algebraically beyond a nondiverging hilltop flatness
length scale j0. (b) Scaling of the total active bond density
r̄ � lnL�L at p � q and r � 0.

active bond characteristic length jf of the erosion faceted
phase does not diverge along the roughening transition line
DI-E for r , 1. This confirms that eroding ramps remain
locally stable. On the other side of the phase diagram,
the flatness length scale j0 of the growth faceted phase
does not diverge along the p � q roughening line. This
confirms the persistence of locally stable flat segments
inside the rough phase.

To illustrate this, we present some of the details of
the latter. Recall that along r � 1, the active bond
distribution r�x� for different p collapses onto a single
curve [Fig. 3(b)]. For r , 1 this fails. At the transition
point p � q, r�x� scales algebraically, as r�x� � x21,
see Fig. 5(a), but only beyond the central flat part of the
hills. The flatness length scale, j0 remains finite. Its value
varies as j0 � j1 2 rj2n , with n � 1.0�1� along the line
p � q. In Fig. 5(a), j0 can be as large as j0 � 40. This
explains the poor finite size convergence of the surface
roughness inside the rough phase.

The scaling properties of the p � q faceting transition
follow from the behavior of the active bond density. Nu-
merically, the surface width scales at p � q as W � L,
as in the faceted phase. From the perspective of the rough
phase the faceting transition takes place when the total ac-
tive bond density, r̄ � 1

L

RL
0 r�x� dx, vanishes, because in

the faceted phase the j0 segments of the rounded hilltops
are of measure zero compared to the ramp segments. We
find r̄ � �q 2 p�br with br very close to 1. At p � q
itself, the power law r�x� � x21 predicts that r scales
with system size as r̄ � lnL�L. The numerical data in
Fig. 5(b) confirm this. Finally, r̄ decays at p � q alge-
braically in time with exponent 0.32�1�. This suggests a
dynamic exponent z � 3.1�2�.

Erosion below the currently lowest exposed level be-
comes strictly forbidden at r � 0. The evaporation faceted
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phase becomes flat, and a DI-type roughening transition
takes place at p � pDI � 0.317�1�. Hinrichsen and Ódor
[12] already documented this. They independently intro-
duced the r � 0 limit of our model. They also report that
the surface width scales at pDI as

p
log�t�, and inside the

rough phase as log�t�.
In summary, the presence of a nonlocal topological

constraint on equilibrium surface configurations in dis-
sociating dimer-type surface growth leads to anomalous
reduced surface roughness, with exponent a � 1

3 instead
of the conventional value a � 1

2 . Moreover, the growing
(evaporating) surface is always faceted, due to the sponta-
neous creation of pinning valleys (hilltops). Under other
circumstances, in particular, when the digging probability
on flat surface segments is being suppressed, an interme-
diate slowly growing rough phase appears with complex
scaling properties and strong corrections to scaling, due to
the presence of large internal length scales.
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