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We demonstrate that a large ensemble of noiseless globally coupled-pinned oscillators is capable of

rectifying spatial disorder with spontaneous current activated through a dynamical phase transition

mechanism, either of first or second order, depending on the profile of the pinning potential. In the

presence of an external weak drive, the same collective mechanism can result in an absolute negative

mobility, which, though not immediately related to symmetry breaking, is most prominent at the phase

transition. Our results apply to a tug-of-war by competing molecular motors for bidirectional cargo

transport.
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Rectifiers are special devices capable of extracting a
steady output signal (current) even from a perfectly
center-symmetric input signal (drive) [1]. Their minimal
operating conditions typically require an asymmetric in-
ternal dynamics, possibly chosen to optimize performance,
and a nonstationary unbiased input signal, mostly a cyclo-
stationary periodic drive or a time-correlated noise. In
thermodynamical terms, rectifiers are devices that operate
under nonequilibrium conditions. Direction and magnitude
of their output current strongly depend on both the drive(s)
(intensity and time scales) and their intrinsic noise
(temperature). Rectifiers are often called ratchets or else,
to emphasize the role played by thermal fluctuations,
Brownian motors [2].

To explore the possibility of replacing temporal varia-
bility by spatial randomness as a rectification source, we
consider a system of N pinned phase oscillators coupled
through the Kuramoto-type global interaction [3],

_� i ¼ !i þ fe � V 0ð�iÞ � ðK=NÞX
N

j¼1

sinð�i ��jÞ; (1)

where �i and !i denote, respectively, the phase and the
intrinsic frequency of the i-th oscillator. The intrinsic
frequencies are assumed to be randomly distributed ac-
cording to a Gaussian distribution function, gð!Þ, with
zero mean and variance �!; a tunable frequency bias is
introduced by the external drive fe. The third and fourth
term on the right-hand side represent the pinning force
acting on the ith oscillator and the all-to-all ferromagnetic
(K > 0) coupling between oscillators, respectively.
Because of the global nature of the interactions, mean-
field- (MF-)type phase transitions are expected [4]. The on-
site pinning potential Vð�Þ is taken to be the same for all
oscillators as, with V0ð�Þ ¼ dV=d�,

Vð�Þ ¼ �a cos�þ ðb=2Þ cos2�: (2)

This model can serve as a stylized description of intra-
cellular cargo transport by an array of interacting molecu-
lar motors walking along one or more polarized filaments
[5–7]. The phase �i and the frequency !i can be inter-
preted as the position and the intrinsic velocity of the ith
molecular motor. Its independent pulling or pushing force
results in randomly distributed intrinsic velocities. A peri-
odic bistable pinning potential would then mimic, for
instance, the binding interaction of a two-headed molecu-
lar motor stepping along a spatially structured filament. In
one period of motion, a molecular motor moves (by carry-
ing or pushing a cargo) a distance of �� ¼ 2� by execut-
ing two consecutive steps. Such steps are characterized by
different lengths and activation energies, depending on the
stoichiometry of two motor heads as well as on the chiral
structure of the underlying filament. In addition, the sinu-
soidal Kuramoto coupling promotes a march in step be-
tween interacting motor pairs (phase synchronization) [3].
The same model can also be invoked to describe the
operation of coupled artificial nanofabricated motors,
where short carbon nanotubes can rotate and/or translate
along fibers of inner nanotubes subjected to random ther-
mal gradients [8].
Strong cooperative effects among molecular motors are

ensured by assuming global pair coupling, irrespective of
spatial separation. Such global coupling is known to well
describe the attractive motor-motor interactions mediated
by the underlying filaments [6]. Detachment of motors off
the filaments is ignored in our model, as most biomolecular
motors are, indeed, strongly processive. As the effects of
the weak temporal fluctuations at the short, or transient,
time scales of practical interest are negligible, we focus
here on the noiseless dynamics of our model.
Despite ignoring the specific details of the molecular

motor structure and operation (including low-dimensional
short-range interactions or more complicated coupling
potentials), this model has the practical advantage that it
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can be treated analytically in a MF scheme. MF approaches
are often used to gain a first qualitative understanding of
many-body effects. The present case is no exception: our
MF analysis reveals that the bi- (or multi-)stability of the
pinning potential, combined with the global ferromagnetic
motor pair coupling, is responsible for a collective
march-in-step of the entire motor ensemble.

The onset of spontaneous currents has already been
reported for this system in the regime of N ! 1 and finite
temperatures [1,4]. For zero drive, fe ¼ 0, the dynamics of
Eq. (1) has no built-in spatial asymmetry; thus, a nonzero
current can only occur as a collective or many-body effect,
i.e., by spontaneous symmetry breaking (SSB). Adding an
external load, fe � 0, breaks the symmetry, thus causing a
driven current. However, under certain conditions, such
current may happen to be oriented against the load, a
counterintuitive nonlinear phenomenon called absolute
negative mobility (ANM) [4,9]. Both effects have been
studied under conditions where thermal noise plays a
prominent role and, therefore, have been interpreted as
noise induced rectification phenomena [4,10]. In fact, tem-
poral fluctuations, no matter how weak, affect the SSB
mechanism itself. For instance, at zero drive and finite
temperatures, the reported spontaneous currents have
been explained as a manifestation of dynamic phase tran-
sitions of the second order [4].

In this Letter, we consider a large ensemble of Kuramoto
oscillators in a quenched disordered landscape at zero
temperature. Contrary to the earlier literature, here sponta-
neous currents can solely result from the rectification of the
spatial disorder. Most remarkably, the dynamic phase tran-
sitions responsible for their activation, can be either of first
or second order, depending on the degree of bistability of
the pinning potential. Indeed, such dynamic phase transi-
tions follow directly the SSB of the discrete Ising symme-
try of Vð�Þ. Moreover, we observe that ANM is neither
induced by thermal noise, nor immediately related to sym-
metry breaking, although its magnitude is most prominent
at the phase transition.

As the coordinates �i are not coupled to a heat bath, the
ergodic assumption does not apply here, that is, the oscil-
lator dynamics can depend on the initial conditions (IC),
f�ið0Þg. The simulation data reported below refer to the
case of disordered IC, where f�ið0Þg have been uniformly
randomized in the interval (0, 2�). We also simulated
ordered initial configurations with pinned phases and
even annealing procedures. We found that the key conclu-
sions of our MF analysis do not change.

The local dynamics of Eq. (1) is controlled by the on-site
pinning potential of Eq. (2): it is symmetric, Vð��Þ ¼
Vð�Þ, and periodic in � with period 2�. Its unit cells are
monostable with one minimum at� ¼ 0 (mod2�) for b �
a=2, and bistable with two stable points at � ¼ ��m for
b > a=2, where �m ¼ arccosða=2bÞ. Isolated oscillators
are symmetrically locked for j!i þ fej< fp with locking

phases j�ij<�p, where the largest locking phase �p is

the (larger) positive solution of the equation V00ð�Þ ¼ 0
and the depinning frequency threshold is fp ¼ V 0ð�pÞ.
The nontrivial global dynamics of the system is con-

trolled by the oscillator coupling constant K. Following
Kuramoto’s approach [3], we introduce the synchroniza-
tion order parameter� and the average phase �, defined by
�ei� � hei�ji, where hOji ¼ ð1=NÞPN

j¼1 Oj denotes the

oscillator ensemble average. Accordingly, Eq. (1) can be
rewritten as

_� i ¼ !i þ fe �U0ð�iÞ; (3)

with the effective potential Uð�Þ given by

Uð�Þ ¼ Vð�Þ � K�cosð�� �Þ: (4)

Here, the parameters � and � are determined through the
self-consistency relations

C ¼ �cos� ¼ hcos�ji; S ¼ �sin� ¼ hsin�ji: (5)

For � ¼ 0, the potential Uð�Þ is characterized by the

depinning frequency thresholds �~fp, the corresponding

depinning phases� ~�p, and, if bistable, the two symmetric

minima at � ¼ � ~�m, similar to the isolated oscillators.
The interaction term in Uð�Þ tends to suppress the bista-
bility of the pinning potential even for b > a=2: Uð�Þ is
bistable only for small K, 0 � K <Kw, where the bista-
bility threshold Kw is the solution of the implicit equation
of Kw�ðKwÞ ¼ 2b� a. For � � 0, Uð�Þ is no longer
mirror symmetric; correspondingly, the symmetric depin-

ning thresholds, �~fp, are replaced by two distinct thresh-

olds, ~f�p ðK; feÞ, with ~fþp � �~f�p .
For fe ¼ 0, the antisymmetry of Eq. (3) guarantees

�ð!Þ ¼ ��ð�!Þ as long as � ¼ 0, so that the current

J ¼ h _�i=2� is identically zero. A net SSB current sets on
only for � � 0, where two distinct frequency thresholds

(~fþp � �~f�p ) break the left-right symmetry of the running

oscillators. As the pinning ensures a certain degree of
synchronization (�> 0 at all K � 0), the average phase
� alone (or more conveniently S) becomes the proper order
parameter of the system. Supersymmetry considerations
[1] rule out spontaneous currents for a purely harmonic
pinning potential (a ¼ 0 or b ¼ 0). A biharmonic Vð�Þ,
instead, allows nonzero S and J in the strong coupling
regime of K >Kc. The transition threshold Kc is actually
a function of two parameters only,�! and b, since a can be
rescaled to unity without loss of generality.
To investigate a large ensemble of disordered oscillators,

we had recourse to the numerical integration of the equa-
tions of motion, Eq. (1), for the entire ensemble. For the
sake of a comparison, we also numerically solved the self-
consistency equations, Eqs. (3)–(5) [11]. In Fig. 1, we
compare the dependence of Kc and Kw on the pinning
bistability parameter b at fe ¼ 0. The intersection of
KcðbÞ and KwðbÞ at b ¼ b� defines two distinct dynamical
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regimes: (i) region I (a=2< b< b�). The SSB transition
occurs after the pinning bistability is completely sup-
pressed by the Kuramoto coupling (KI

c > Kw). The tran-
sition branch KI

c diverges as b ! a=2 as expected and
decays toward a minimum at b ¼ b�; (ii) region II (b >
b�). The transition branch KII

c always lies below Kw [12],
so SSB occurs inside the bistability regime where multiple
solutions are possible. Moreover, we notice that KI

cðbÞ and
KII

c ðbÞ form a cusp at b ¼ b�, which indicates that two
different SSB mechanisms are at work in regions I and II.

Following this lead, we numerically computed the spon-
taneous current, J, as a function of K at b ¼ 0:75 in region
I and b ¼ 1:5 in region II, see Fig. 2. The difference is
revealing: The onset of J can be regarded as a dynamical
phase transition of the second order, with

jJj / ðK � KcÞ1=2; (6)

in region I, and of the first order, in region II. In the latter,
jJj jumps discontinuously from 0 to a maximum at K ¼
KII

c , and finally decays exponentially at larger K. Similar
continuous or discontinuous behaviors at the transition
points are exhibited by the corresponding order parameters
� and S. No first-order transitions were detected in the
presence of thermal noise [4].

The existence of a nonzero SSB current for K >KI
c can

be analytically explained in region I by linearizing
Eqs. (3)–(5) for small S ’ ��. A net current can only
result from the oscillators running, respectively, to the right

with !> ~fþp and to the left with !< ~f�p . In the linear

regime, it is easy to find from Eqs. (3) and (4) ~f�p ’ �~fp þ

Kj cos ~�pjS, which yields the net current J for small

drive fe

2�J / �ð~fþp þ ~f�p Þ=2 ’ fe � Kj cos ~�pjS: (7)

Here, Eq. (7) implies a linear response also to the external
drive fe, which will be discussed later. At fe ¼ 0, J / �S
near the transition.
The critical behavior of S near the transition can be also

extracted by linearizing the self-consistency Eqs. (5) at
fe ¼ 0. Since the system has the Ising-like Z2 symmetry,
the second self-consistency relation for S can be expanded
in odd powers as

S ¼ ðK=KcÞS� �S3 þOðS5Þ: (8)

With � > 0, we find the stable solution of S ¼ 0 for K �
KI

c ¼ Kc and a new stable branch of S / ðK � KI
cÞ1=2 for

K * KI
c, which determines the MF critical exponent of the

current in Eq. (6).
The first-order transition along KII

c ðbÞ in region II is a
unique feature of our model. It occurs where the static
phase solution of Eq. (3) for the locked oscillators consists
of two disconnected branches, �1;2ð!Þ, with �1ð�!Þ ¼
��2ð!Þ in a small ! interval centered around ! ¼ 0. For
a homogeneous randomization of the initial phases, both
solutions�1;2ð!Þ contribute to the ensemble averages with

statistical weights proportional to the respective basin size.
For oscillators with ! ¼ 0, these weights are equal at
� ¼ 0. As � departs from zero, the symmetry of two
branches is broken, but the deterministic nature of dynam-
ics does not allow the system to redistribute the oscillator
ensemble across the gap separating two solutions (as it
would in the presence of noise [4]). Such a resistance of the
system against perturbations reflects itself in a delayed
onset of the SSB phase in region II; as a consequence, �
becomes negative well before the transition, which causes
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FIG. 2 (color online). Spontaneous currents. jJj (squares), �
(dashed) and jSj (solid) versus K (a) in region I at b ¼ 0:75, and
(b) in region II at b ¼ 1:5, from the numerical integration of
Eq. (1).
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FIG. 1 (color online). Phase diagram at fe ¼ 0. The thresholds
of SSB (Kc), global bistability (Kw), and ANM (Km), are plotted
versus b when �! ¼ a ¼ 1. All curves are obtained by analyz-
ing Eqs. (3)–(5) in the mean-field approximation. Numerical
data (dots) are obtained by integrating Eq. (1) with N ¼ 106,
starting from random initial conditions. The two transition
branches (KI

c and KII
c ) are connected by a cusp at ðK�; b�Þ ’

ð1:68; 0:94Þ. The dashed curves are the analytic limits of KI
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p
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a discontinuous jump in � at the transition. Indeed, the SSB
transition is delayed until the S ¼ 0 solution becomes
locally unstable. Therefore, the transition threshold KII

c is
again determined by the linear term in Eq. (8), with the
difference that for � < 0 (at the transition) the stable
solution of S exhibits a discontinuity.

The reentrant profile of the transition curve KcðbÞ can be
explained qualitatively as follows: For a phase transition to
occur, the average attractive Kuramoto force must win over
disorder; i.e., ðK=2Þ sin2�m must be larger than �!. The
nonmonotonicity of sin2�m in the range 0 � �m � �=2
determines the convexity of KcðbÞ. In particular, KcðbÞ
diverges in correspondence with the zeros of sin2�m,

like 1
2 ðb� a=2Þ�1=2 for b ! a=2, and proportional to 2b

for b ! 1, in agreement with Fig. 1. One may obtain a
simpler but less accurate expression for Kc from the self-
consistency equations as 1=Kc ’ hcos2�=U00ð�Þi [13],
which becomes exact at �! ¼ 0 for identical oscillators
[14]. Its solutions exhibit, besides the two diverging
branches for b ! 1 and b ! a=2, also a suggestive lower

bound at b ¼ b� as �!

ffiffiffiffiffiffiffiffiffi
8=�

p
, which happens to coincide

with the critical coupling of the unpinned Kuramoto model
[Vð�Þ � 0].

Further evidence of the coexisting phase transitions of
the first and second order was obtained by investigating the
system response to a finite bias fe, and more specifically,
by analyzing the driven current JðfeÞ and its zero-point
mobility, �0 ¼ ðdJ=dfeÞfe¼0. We computed both quanti-

ties by direct integration of Eq. (1) and summarized our
results in Fig. 3. In panel (a), the characteristic curve J-fe
clearly exhibits three different regimes: (i) 0<K <Km.
Below a certain threshold Km (also plotted versus b in

Fig. 1), J is parallel to fe as expected in the linear response
theory (�0 > 0); (ii) Km < K <Kc. The drive modifies the
global interaction of the oscillators with their pinning
potential in such a fashion that the ensemble response
points against the drive. The curve JðfeÞ is continuous at
fe ¼ 0 with �0 < 0 (ANM), and turns positive for larger
fe; (iii) K >Kc. The slope of JðfeÞ at the origin, �0, can
grow so negative that eventually the curve splits into two
disconnected antisymmetric branches with Jð0þÞ ¼
�Jð0�Þ< 0 and uniquely defined negative �0 (ANM).
This discontinuity is a signature of SSB and is a common
feature of both regions I and II. Note that ANM occurs
regardless of the presence of thermal noise.
The different SSB mechanisms of regions I and II also

influence the ANM properties of the system, see Figs. 3(b)
and 3(c). In region I, �0ðKÞ develops an asymmetric
negative peak numerically compatible with a two-sided
divergence for K ! KI�

c . In region II, �0ðKÞ is clearly
discontinuous with a negative diverging branch for K !
KII�

c , and a slowly decaying one for K >KII
c . In both

regions, for exceedingly large or small coupling constants
�0ðKÞ tends to vanish, as expected. Finally, we remark that
ANM does not necessarily anticipate SSB, as apparent in
Fig. 1, where the curve KmðbÞ (marking the ANM onset)
crosses into a region of the monostable pinning for b <
a=2, inaccessible to KcðbÞ.
The numerical results of Fig. 3 can be qualitatively

understood from the linear response Eq. (7) for the current,
which yields

�0 / 1� Kj cos ~�pj�; (9)

where � ¼ ðdS=dfeÞfe¼0 is the zero-field susceptibility.

The curve KmðbÞ plotted in Fig. 1 was obtained, indeed,
from Eq. (9) and then checked against the numerical
integration data from Eq. (1). Note that KmðbÞ also devel-
ops a minimum (actually a cusp) as it crosses KwðbÞ. Like
in the ordinary equilibrium MF theory, one can find � /
jKc � Kj�	 (	 ¼ 1) near K ¼ KI

c and, notably, also for
K & KII

c , where the local instability occurs around S ¼ 0.
Therefore, ANM also diverges at SSB transition point with
MF susceptibility exponent 	 ¼ 1, which is consistent
with our numerical results.
Our results can be easily generalized to models involv-

ing local pinning potentials with higher symmetry, for
which we expect qualitatively similar features, such as
continuous and first-order dynamic phase transitions, re-
entrant behavior, and ANM. The present analysis was
based on a MF approximation, valid only when the
motor-motor interaction is sufficiently long-ranged. An
exhaustive description of the long-time dynamics of proc-
essive motors or, more in general, of spatially extended
systems with short-range interactions, would additionally
require an appropriate modeling of the fluctuating
detachment-attachment dynamics.

-1

 0

 1

J
(

×
10

-3
 )

(a)

b=0.75

9.03.0-6.0-9.0- 0.60.3fe

K=1.00
1.20
2.20

-100

-50

 0

 1.4  1.6  1.8  2  2.2

µ 0

K

(b)

b=0.75

-80

-40

 0

 2.2  2.4  2.6  2.8

(c)

b=1.5

FIG. 3 (color online). Absolute negative mobility. (a) J-fe
characteristic curve for b ¼ 0:75 and three different K from
numerical integration of Eq. (1). (b),(c) �0 versus K in the
vicinity of the transition point for (b) b ¼ 0:75, and
(c) b ¼ 1:5. For graphical convenience, �0 has been rescaled
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