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We show that the total entropy production in stochastic processes with odd-parity variables

(under time reversal) is separated into three parts, only two of which satisfy the integral fluctuation

theorems in general. One is the usual excess contribution that can appear only transiently and is called

nonadiabatic. Another one is attributed solely to the breakage of detailed balance. The last part that does

not satisfy the fluctuation theorem comes from the steady-state distribution asymmetry for odd-parity

variables that is activated in a nontransient manner. The latter two parts combine together as the

housekeeping (adiabatic) contribution, whose positivity is not guaranteed except when the excess

contribution completely vanishes. Our finding reveals that the equilibrium requires the steady-state

distribution symmetry for odd-parity variables independently, in addition to the usual detailed balance.
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The (integral) fluctuation theorem (FT) [1–5] can be
stated for a variable Rr (or R, in brief) assigned to a
random sequence of states (or event) r [6] as

he�Ri � X
r

P re
�Rr ¼ 1; (1)

where P r is the probability of a sequence r. As a corollary,
Jensen’s inequality guarantees hRi � 0. Consider r
as a path or trajectory in state space, generated during a
time interval by a stochastic dynamics. In the case when
its functional R [7] represents the total entropy pro-
duction during the process, the FT has been derived for
various nonequilibrium (NEQ) processes, and the thermo-
dynamic second law h�Stoti � 0 automatically follows
Refs. [3,4,8].

Hatano and Sasa found that a part of the total entropy
production (excess contribution), �Sex [9], also satisfies
the FT, which represents the entropy production associated
with transitions between steady states [10,11]. Later, Speck
and Seifert showed that the remaining part (the housekeep-
ing contribution), �Shk [9], also satisfies the FT, which is
indispensable to maintain the NEQ steady state (NESS)
[12,13]. In the case of (quasistatic) reversible processes,
the system almost always stays at equilibrium during the
process; then, the housekeeping contribution vanishes,
�Seqhk ¼ 0. Recently, Esposito and Van den Broeck [6]

interpreted the housekeeping contribution as an adiabatic
(nontransient) part and the excess contribution as a non-
adiabatic (transient) part of the total entropy production,
through a time scale argument.

Most findings about the FTs including the above sepa-
ration of the total entropy production have only been
obtained when all state variables have even parity under
time reversal, such as position variables. Including
odd-parity variables, such as momentum or spin, the

mathematical description becomes more complicated, in
particular, for NEQ processes. A typical example is a
driven Brownian motion in the underdamped case with
a non-potential-type or momentum-dependent driving
force. [14,15].
Very recently, Spinney and Ford suggested a separation

of the total entropy production into three terms for stochas-
tic systems with odd-parity variables [16]. The excess part
�Sex can be separated out, which satisfies the FT. The
housekeeping part �Shk is composed of two distinct terms,
and only one term (�S2) satisfies the FT. More surpris-
ingly, the other term (�S3) that does not satisfy the FT
turns out to be transient, which seems inconsistent with
the usual adiabatic feature of the housekeeping contri-
bution and rather shares the similar relaxation feature
with �Sex [17]. Based on this observation, it was argued
that the existing classification of the total entropy produc-
tion (adiabatic vs nonadiabatic) does not hold, and thus the
separation line between the excess and the housekeeping
parts is blurred with odd-parity variables.
In this Letter, we show that the existing classification is

still valid with odd-parity variables and that there are clear-
cut separation lines between entropy productions with
distinct physical origins. It is crucial to recognize that the
equilibrium (reversible) processes require not only the
detailed balance (DB) relation but also the symmetry of
the steady-state distribution (SSD) for odd-parity variables,
which turn out to be two independent constraints. Violation
of either one brings about an independent nonvanishing
housekeeping contribution, and the processes become ir-
reversible even in the steady state.
We introduce a natural and unique splitting scheme of

the housekeeping contribution into two fundamentally dif-
ferent nontransient parts. The first part, �SbDB, represents
the DB breakage exclusively, and the second part, �Sas,
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originates from the SSD asymmetry for odd-parity
variables. �Sas disappears without odd-parity variables.
Each part is nontransient, and thus the total housekeeping
contribution maintains its adiabatic feature. The total
entropy production is divided into the housekeeping and
excess contributions as usual, respectively. The excess part
�Sex is the same as in the even-variable-only case, which
satisfies the FT, as does the total entropy �Stot ¼ �Shk þ
�Sex. In contrast, neither �Sas nor �Shk ¼ �SbDB þ �Sas
obeys the FT, while �SbDB does.

A stochastic process can be described by the master
equation

_pxðtÞ ¼
X
y

!x;y½�ðtÞ�pyðtÞ; (2)

where pxðtÞ is the probability distribution of state x at
time t and !x;y is the transition rate from y to x for

x � y with !y;y ¼ �P
x�y!x;yð<0Þ. x represents a state

vector (s1; s2; . . . ) where each component sk represents a
state variable with a definite parity, �k ¼ 1 (even) or �k ¼
�1 (odd), under time reversal. The time-reversed state is
given by �x ¼ ð�1s1; �2s2; . . .Þ. �ðtÞ denotes a time-
dependent protocol as a set of external control parameters.

Figure 1 shows a path xðtÞ generated by the master
equation with the transition rate matrix ! ¼ f!x;yg from
t ¼ 0 to �, and its time-reversed path ~xðtÞ is defined as
�xð�� tÞ. We assume that there are N jumping processes
between different states at times ft1; . . . ; tNg. Then, the
probability functional of the ‘‘forward’’ path xðtÞ reads

P!½x� / px0

�YN�1

i¼0

e

R
tiþ1
ti

dt!xi;xi
½�ðtÞ�

!xiþ1;xið�iþ1Þ
�

� e

R
�

tN
dt!xN;xN

½�ðtÞ�
; (3)

where px0 is the probability distribution of initial state x0,

xi is the state for ti < t < tiþ1, and �i ¼ �ðtiÞ. The time-
reversed process is considered under the protocol changes
of �ðtÞ ! �ð�� tÞ, and the initial probability is chosen as
the final probability of the forward process, pxN . After a

proper rearrangement (see Refs. [6,16] for details), the
probability functional of the ‘‘reverse’’ path ~xðtÞ reads

P!½~x� / pxN

�YN�1

i¼0

e

R
tiþ1
ti

dt!�xi;�xi
½�ðtÞ�

!�xi;�xiþ1
ð�iþ1Þ

�

� e

R
�

tN
dt!�xN;�xN

½�ðtÞ�
: (4)

We remark that Eqs. (3) and (4) have the same normaliza-
tion factor since both include the same number of jumping
processes.
The path-dependent total entropy production, �Stot½x�,

is the measure of the irreversibility of a path x with respect
to its time-reversed path ~x, which can be defined as the
associated path probability ratio [12,13]

�Stot½x� ¼ ln
P!½x�
P!½~x� : (5)

Note that �Stot is a FT functional since it satisfies Eq. (1);
he��Stoti ¼ P

xP!½x�e��Stot ¼ P
~xP!½~x� ¼ 1 (Jacobian

j@~x=@xj ¼ 1). If there are only even-parity variables
(all �k ¼ 1), the exponential factors of staying probabil-
ities in Eqs. (3) and (4) are identical. These factors are
completely canceled out in the probability ratio, and thus
only transition rates matter in �Stot. However, it does not
work in that way when odd-parity variables are included,
and this is a main source of mathematical difficulty and
also of different physical origins.
It is convenient to express the path probability by the

conditional probability for transition from y to x during
discretized unit time �t (Fig. 1), given as

�x;yð�ðtÞÞ ¼ �x;y þ!x;y½�ðtÞ��t; (6)

where �x;y is the Kronecker delta valued 1 for x ¼ y and 0

otherwise. �t is chosen small enough to maintain �x;x > 0.
Then, the two path probabilities can be written as

P �½x� ¼ px0

YM
j¼1

�xþj ;x
�
j
ð�jÞ;

P �½~x� ¼ pxN

YM
j¼1

��x�j ;�x
þ
j
ð�jÞ;

(7)

where xþj and x�j represent states just after and before time

t ¼ j�t, respectively, and �j ¼ �ðj�tÞ. Note that the

t1 Nt

jx+

i−1xε ε jx−

xi

j
−xi−1x

xiε

i−1t

( )t

( )t

ε jx+

t0 tN+1

31 2 MM−1

t ti i+1 . . .

j
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. . .

x

x

t

FIG. 1. Schematic of a sample path xðtÞ and its time-reversed
path ~xð�� tÞ. The horizontal axis represents time t with t0 ¼ 0
and tNþ1 ¼ �. The vertical axis represents state x in the upper
half of the figure and the time-reversed state �x in the lower half.
There are two time indices. Index i is used for N jumping
processes between different states at times ft1; . . . ; tNg. j
is used for the time-discretized version such as t ¼ j�t
(j ¼ 1; . . . ;M), with � ¼ ðMþ 1Þ�t in the �t ! 0 limit. Note
that xi is the state that is kept unchanged during a time interval
from ti to tiþ1.
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product therein includes the staying processes of xþj ¼ x�j
as well as the jumping processes. Using Eq. (7), one simply
writes �Stot as

�Stot ¼ �Sþ XM
j¼1

ln
�xþj ;x

�
j
ð�jÞ

��x�j ;�x
þ
j
ð�jÞ ; (8)

where �S ¼ � lnðpxN=px0Þ is the entropy change of the

system for the forward path. We will later take the �t ! 0
limit to come back to the original problem. The explicit
path dependence of the entropy production is dropped just
for simplicity.

The breakage of the DB is an essential characteristic of
nonequilibrium processes that leads to entropy production
even in the NESS. Thus, it would be useful to search for a
separation scheme to isolate the entropy production due
to the DB breakage only. The generalized (instantaneous)
DB condition at time t for stochastic processes with
odd-parity variables is given as !x;y½�ðtÞ�ps

y½�ðtÞ� ¼
!�y;�x½�ðtÞ�ps

�x½�ðtÞ� for x � y, where ps
x½�ðtÞ� is the

SSD of state x for a constant protocol �, whose value is
given by �ðtÞ, satisfying the steady-state equationP

x!y;xð�Þps
xð�Þ ¼ 0. This condition guarantees no physi-

cal average currents between states in the steady state and
also yields a relation regarding the diagonal elements as
!x;x½�ðtÞ�ps

x½�ðtÞ� ¼ !�x;�x½�ðtÞ�ps
�x½�ðtÞ�, using !x;x ¼

�P
y�x!y;x. In terms of the conditional probabilities, the

generalized DB condition thus reads as

�x;yð�ðtÞÞ ¼ ��y;�xð�ðtÞÞp
s
�x½�ðtÞ�
ps
y½�ðtÞ� þ

�
1� ps

�x½�ðtÞ�
ps
x½�ðtÞ�

�
�x;y;

¼ �x;y þ!�y;�x½�ðtÞ�p
s
�x½�ðtÞ�
ps
y½�ðtÞ� �t: (9)

We propose the adjoint stochastic process with �y
x;y that can

be used to provide a precise measure of the broken DB as

�y
x;yð�ðtÞÞ ¼ �x;y þ!y

x;y½�ðtÞ��t; (10)

with

!y
x;y ¼ !�y;�x

ps
�x

ps
y

: (11)

It is trivial to show that �y is stochastic with sufficiently

small �t [19]:
P

x�
y
x;y ¼ 1 and �y

x;y � 0 for all x, y.

When �y
x;y ¼ �x;y, the DB is satisfied. The entropy pro-

duction due to the DB breakage, �SdDB, can be defined as

�SbDB ¼ XM
j¼1

ln
�xþj ;x

�
j
ð�jÞ

�y
xþj ;x

�
j
ð�jÞ

¼ ln
P �½x�
P �y½x� ; (12)

where P �y½x� ¼ px0

Q
M
j¼1 �

y
xþj ;x

�
j
ð�jÞ is the probability of

the forward path x by the adjoint dynamics. �SbDB is a
FT functional by itself, satisfying the integral FT, and
must belong to the housekeeping contribution since it

contributes even in the steady state. It also satisfies the
detailed FT: PðRÞ=Pyð�RÞ ¼ eR, where PðRÞ is the proba-
bility that�SbDB ¼ R in the original process whilePy is its
counterpart in the adjoint process. This is because the
mapping to the adjoint dynamics is involutive (�yy ¼ �)
[6] since both the original and adjoint dynamics share the

same SSD (ps
x ¼ pys

x ).
Now, subtracting �SbDB from �Stot, one can write the

remaining part, �S0 ¼ �Stot � �SbDB as

�S0 ¼ ln
px0

pxN

þ XM
j¼1

ln
�y
xþj ;x

�
j
ð�jÞ

��x�j ;�x
þ
j
ð�jÞ ; (13)

which is not a FT functional in general because it is not
guaranteed to write down �S0 ¼ lnP �½x�=P �0 ½x0� for the
probability functional P �0 ½x0� of (reverse) path x0 in a
stochastic dynamics with a certain conditional probability

�0. One can find the stochastic condition for �0
y;x ¼

�x;y��y;�x=�
y
x;y as

X
y

�0
y;x ¼ 1þ

�
ps
x � ps

�x

ps
�x

��
�y
x;x � �x;x

�y
x;x

�
: (14)

This shows that �0 is in general not stochastic due to �

mismatch (note that �y
x;x also includes �). Exceptions when

ps
x ¼ ps

�x or �
y
x;x ¼ �x;x will be revisited later.

We can instead extract the excess contribution by
introducing another stochastic process with ��

x;y (exactly

the same one as in the even-variable-only case) as

��
x;yð�ðtÞÞ ¼ �x;y þ!�

x;y½�ðtÞ��t; (15)

with

!�
x;y ¼ !y;x

ps
x

ps
y

: (16)

Now, we define the excess contribution, �Sex, as

�Sex ¼ ln
px0

pxN

þ XM
j¼1

ln
�xþj ;x

�
j
ð�jÞ

��
x�j ;x

þ
j
ð�jÞ ¼ ln

P �½x�
P �� ½x̂�

¼ �Sþ XM
j¼1

ln
ps
xþj

ps
x�j

; (17)

where the path for the �� process is given by x̂ðtÞ¼xð�� tÞ
(time reversed without parity change). Of course, �Sex is
again a FT functional, satisfying the integral FT.
The remaining part, �Sas ¼ �Stot � �SbDB ��Sex,

can be written as

�Sas ¼
XM
j¼1

ln

"ps
�xþj

ps
xþj

þ �xþj ;x
�
j

ps
xþj

� ps
�xþj

ps
xþj
��xþj ;�x

þ
j

#
: (18)

One can easily show that this part does not satisfy the FT
except by vanishing when there is a SSD symmetry as
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ps
�x ¼ ps

x (19)

between mirror (opposite-parity) states. This asymmetric
contribution�Sas is present even in the absence of external
driving �ðtÞ and also in the NESS (clearly not transient),
so it must belong to the housekeeping contribution.
It therefore follows that

�Stot ¼ �Sex þ�Shk; (20)

with �Shk ¼ �SbDB þ�Sas, which does not obey the FT
in general.

The total housekeeping contribution should vanish in the
reversible (equilibrium) processes, which implies that
the equilibrium condition requires not only the DB but
also the symmetry between the SSD of the mirror states,
when odd-parity variables are involved. These two condi-
tions are independent, and our two housekeeping contri-
butions, �SbDB and �Sas, measure precisely the violation
of these two equilibrium conditions, respectively.

It is worthy of noting that �SbDB and �Sas steadily
contribute to �Stot in the adiabatic process (or even at
_� ¼ 0), where the time scale of the �ðtÞ change is much
larger than the relaxation time. This time scale argument is
the reasoning behind the classification of adiabatic and
nonadiabatic contributions in �Stot, proposed in Ref. [6].
In this criterion, both �SbDB and �Sas are the adiabatic
contributions while �Sex is the nonadiabatic one.

In the �t ! 0 (i.e., M ! 1) limit, one can obtain

�Sex ¼ ln
px0

pxN

þXN
i¼1

ln
ps
xi½�ðtiÞ�

ps
xi�1

½�ðtiÞ� ; (21)

�Shk ¼
XN
i¼0

Z tiþ1

ti

dtf!xi;xi½�ðtÞ� �!�xi;�xi½�ðtÞ�g

þXN
i¼1

ln
!xi;xi�1

½�ðtiÞ�ps
xi�1

½�ðtiÞ�
!�xi�1;�xi½�ðtiÞ�ps

xi½�ðtiÞ�
; (22)

�SbDB ¼ XN
i¼0

Z tiþ1

ti

dtf!xi;xi½�ðtÞ� �!y
xi;xi½�ðtÞ�g

þXN
i¼1

ln
!xi;xi�1

½�ðtiÞ�
!y

xi;xi�1
½�ðtiÞ�

; (23)

�Sas ¼
XN
i¼0

Z tiþ1

ti

dt!�xi;�xi½�ðtÞ�
�
ps
�xi½�ðtÞ�
ps
xi½�ðtÞ�

� 1

�

þXN
i¼1

ln
ps
�xi½�ðtiÞ�
ps
xi½�ðtiÞ�

: (24)

�SbDB represents the contribution solely responsible for
the DB breakage, which is the only housekeeping contri-
bution in the absence of odd-parity variables. While a
similar contribution was found by Spinney and Ford [16],
their term (�S2) contains what is not directly related to the

broken DB. In the meantime, �Sas is an odd-variable-
specific term. It characterizes the asymmetry in the SSD
for mirror states. Thus, the asymmetric contribution serves
as another important quantity to measure the irreversibility
of nonequilibrium processes. A similar term (�S3) found
by Spinney and Ford [16] only exists transiently and does
not measure fully the asymmetric contribution.
It is not difficult to realize�Sas in the underdamped case

with a nonzero inertia term described by the second-order
stochastic differential equations. For example, with an
external torque on a rigid pendulum, a net angular motion
is generated that breaks the symmetry of the SSD for
mirror (opposite-angular-velocity) states [14]. A general
non-potential-type force acting on a Brownian particle can
produce a rotational or directed current that breaks the SSD
symmetry. Explicit calculations on simple systems are
currently under way [20].
In order to illustrate our results more explicitly, we

consider a trivial one-particle model on a ring with L sites,
where both the DB and SSD symmetry can be broken
independently. A particle state is described by x ¼ ðn; vÞ,
where n represents the particle position (n ¼ 1; . . . ; L) and
v is its velocity (v ¼ �1). The particle hops in the direc-
tion of its velocity with rate !x;y ¼ hv for y ¼ ðn; vÞ !
x ¼ ðnþ v; vÞ. In addition, we allow velocity flips with
rate !x;y ¼ fv for y ¼ ðn; vÞ ! x ¼ ðn;�vÞ. For simplic-

ity, we assume hv and fv are constants, independent of n,
and all other transitions are prohibited. This model is a
simple generalization of the model discussed in Ref. [16],
which is recovered with hv ¼ h�v.
The stationary solutions are given by ps

x ¼
f�v=½Lðfv þ f�vÞ� for x ¼ ðn; vÞ, which is symmetric
for mirror states when fv ¼ f�v. The DB condition is
simply hvf�v ¼ h�vfv, which guarantees no spatial par-
ticle current in the steady state. However, this is not enough
to claim the time-reversal symmetry to maintain equilib-
rium due to the broken symmetry for time-reversed mirror
states in general. Moreover, it is clear that these two
conditions for equilibrium are independent each other.
One may derive the mean entropy production rates from

Eqs. (12) and (18) as

h _SbDBi ¼
X
x

pxðtÞ
�
hv ln

hvf�v

h�vfv
þ h�vfv � hvf�v

f�v

�
;

h _Sasi ¼
X
x

pxðtÞ
�
ðfv � hvÞ ln f�v

fv

þ ðf�v � fvÞðf�v þ h�vÞ
f�v

�
; (25)

with x ¼ ðn; vÞ. It is easy to check that h _SbDBi ¼ 0 with
the DB condition and that h _Sasi ¼ 0 with the SSD symme-
try. We also find h _SbDBi � 0 for any pxðtÞ, as expected from
its FT property, while h _Sasi can take any value, depending
on pxðtÞ. Furthermore, in the NEQ steady state with
pxðtÞ ¼ ps

x, both mean entropy production rates become
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nonvanishing constants, which confirms the nontransient
property of both entropy production contributions.

Finally, we briefly mention on the exceptional cases
observed in Eq. (14), where the total entropy production
can be divided into two terms, each of which satisfies the

FT. Particulary, we consider the case in which �y
x;x ¼ �x;x

(the other case of ps
�x ¼ ps

x leads to the conventional
separation by �Sas ¼ 0). The condition gives a new sto-
chastic process �0

y;x, distinct from ��
y;x in Eq. (15). Then,

one readily finds a new separation as

�Stot ¼ �SbDB þ �Smix; (26)

where �Smix ¼ �Sex þ�Sas also satisfies the FT. In the
light of physical origin, �Sas belongs to the adiabatic
contribution. From the mathematical point of view, how-
ever, it operates with nonadiabatic �Sex. Moreover, in the
adiabatic limit, we have �Shk only, which can be cleanly
separated into two FT functionals. It will be an interesting
study to find an example of this exception.
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