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We derive fluctuation-response inequalities for Markov jump processes that link the fluctuations of
general observables to the response to perturbations in the transition rates within a unified framework.
These inequalities are derived using the Cramér-Rao bound, enabling broader applicability compared to
existing fluctuation-response relations formulated for static responses of currentlike observables. The
fluctuation-response inequalities are valid for a wider class of observables and are applicable to finite
observation times through dynamic responses. Furthermore, we extend these inequalities to open quantum
systems governed by the Lindblad quantum master equation and find the quantum fluctuation-response
inequality, where dynamical activity plays a central role.
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Introduction—The response of a physical system to
small perturbations is a fundamental aspect of its behavior
[1] and is critical for understanding material properties such
as conductivity [2] and viscoelasticity [3]. Near
equilibrium, the seminal fluctuation-dissipation theorem
states that the system’s response is directly related to its
spontaneous equilibrium fluctuations [4]. Much effort has
been devoted to generalizing the connection between
response and fluctuations in far-from-equilibrium regimes,
expressed as equalities [5–12]. Although the recently
discovered extended fluctuation-dissipation theorems relate
the response function to a nonequilibrium correlation
function, they often require detailed microscopic knowl-
edge of the steady state or its dynamics [5–8,10]. In this
context, complementary inequalities have been developed
more recently to provide upper bounds on the response in
terms of fluctuations [12–20].
Traditionally, response theory has primarily considered

perturbations such as small impulses that alter a given
potential [5–7]. In contrast, responses to changes in kinetic
parameters—such as the mobility of a colloidal particle or
the concentration of a catalyst in a chemical reaction—have
been largely overlooked, as they affect only reaction rates
without altering the equilibrium distribution, leading to
vanishing responses at equilibrium [14,15,17]. However,
under nonequilibrium conditions, such kinetic perturba-
tions become crucial for fully capturing nonequilibrium
responses. Recent studies have established explicit thermo-
dynamic bounds on the kinetic responses of state-
dependent observables across various processes [11,14–17]
and on those of currentlike observables in Markov jump

processes [12,19,20]. Among these, the response thermo-
dynamic uncertainty relation (R-TUR) [19] states that the
ratio of the kinetic response to the fluctuations of a
currentlike observable is bounded by the entropy produc-
tion (EP) rate. It was found that the R-TUR arises from an
identity that connects kinetic response and fluctuations,
valid even far from equilibrium [20]. Although the iden-
tities found in [20], coined fluctuation-response relations
(FRRs), can also be used to derive other types of upper
bounds on the response to perturbations in the symmetric
and antisymmetric parts of transition rates, their validity is
limited to infinitely long observation times.
In this Letter, we derive inequalities that relate the

dynamic response to perturbations in transition rates with
the fluctuations of a general observable in Markov jump
processes, generalizing the FRRs by encompassing them as
a limiting case. The derivation of these inequalities is based
on the Cramér-Rao bound, a widely used tool for deriving
various uncertainty relations [21–25]. An important ad-
vantage of this method is its simplicity and applicability to
finite observation times in steady states, thereby extending
the R-TUR for static response [19,20] to dynamic response.
We further extend these inequalities to open quantum
systems governed by the Lindblad quantum master
equation.
Setup—We consider a continuous-time Markov jump

process governed by the following master equation:

ṗiðtÞ ¼
X
jð≠iÞ

½WijpjðtÞ −WjipiðtÞ�; ð1Þ

where Wij denotes the transition rate from state j to i, and
piðtÞ represents the probability of the system being in state
i at time t. We assume that every transition is bidirectional*Contact author: jslee@kias.re.kr
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and that each pair of opposite transitions satisfies local
detailed balance for thermodynamic consistency [26,27].
The transition rate is parametrized as [11,12,19]

Wij ¼ exp

�
BijðϵÞ þ

FijðηÞ
2

�
; ð2Þ

where Bij and Fij represent the symmetric and antisym-
metric parts of the transition rate, satisfying Bij ¼ Bji and
Fij ¼ −Fji, respectively. Intuitively, in the context of a
reaction pathway, Bij represents the energy barrier between
two states, while Fij represents the change in entropy due
to both the energy difference between the two states and
nonequilibrium driving. We introduce the parameters ϵ and
η, which control the symmetric and antisymmetric parts of
the transition rates, respectively, without affecting each
other. The steady-state probability of the system, denoted
by πi, satisfies

P
jð≠iÞðWijπj −WjiπiÞ ¼ 0. The thermo-

dynamic and kinetic aspects of transitions are characterized
by the currents Jij ¼ Wijπj −Wjiπi and the traffic
aij ¼ Wijπj þWjiπi, respectively, in the steady state.
When the antisymmetric parameter Fij sums to a non-

zero value along at least one closed path in the state space,
the system is driven out of equilibrium and dissipates
energy constantly in the steady state. This dissipation is
characterized by the (mean) EP rate Σ̇ ¼P

i<j Jij lnðWijπj=WjiπiÞ ¼
P

i<j JijFij [26]. We set the
Boltzmann constant to unity throughout. The pseudo-EP
rate, a measure of the irreversibility of dynamics, has been
found useful in deriving thermodynamic uncertainty rela-
tions and is defined as Σ̇ps ¼

P
i<j 2J

2
ij=aij [25,28,29]. The

log-mean inequality, 2=ðxþ yÞ ≤ ðln x − ln yÞ=ðx − yÞ for
positive x and y, guarantees that Σ̇ps ≤ Σ̇. While the EP
characterizes the irreversible nature of nonequilibrium
systems, the dynamical activity, defined as Ȧ ¼ P

i<j aij,
serves as a complementary role by describing the time-
symmetric aspect of dynamics [30].
To address both the average behavior and fluctuations,

we introduce two stochastic quantities: the state identifier
ηiðtÞ ¼ δsðtÞ;i, where sðtÞ is the state of the system at time t,
and NijðtÞ, which denotes the accumulated number of
jumps from state j to state i up to time t. To investigate the
relations between response and fluctuations, we focus on
general time-accumulated observables with arbitrary
weights gi and Λij, defined as

ΘðτÞ ¼
Z

τ

0

dt
�X

i

giηiðtÞ þ
X
i≠j

ΛijṄijðtÞ
�
; ð3Þ

where τ is the observation time and ṄijðtÞ denotes the rate
of change of NijðtÞ. We will refer to the observables as
currentlike if gi ¼ 0 and Λij ¼ −Λji for all pairs ði; jÞ and
as state dependent if Λij ¼ 0 for all pairs ði; jÞ.

Fluctuation-response inequalities—Suppose the system
is initially in the steady state for t < 0, and a system
parameter θ is slightly changed at t ¼ 0. The transition
rates and the probability distributions are then altered as
W0

ij ¼ Wij þ ð∂θWijÞΔθ andpiðtÞ ¼ πi þ qiðtÞΔθ, respec-
tively, up to linear order in the changeΔθ. Themeanvalue of
the observableΘðτÞ, measured from t ¼ 0, deviates from the
unperturbed value byΔΘðτÞ ¼ hΘðτÞi − hΘðτÞi0, where h•i
and h•i0 denote the ensemble averages over perturbed and
unperturbed dynamics, respectively. We define the dynamic
response with respect to the change in θ as RθðτÞ ¼
limΔθ→0ΔΘðτÞ=Δθ. The Cramér-Rao bound provides a
general relation between the response to the perturbation
and the variance of the observable as R2

θðτÞ ≤
VarðΘðτÞÞIθðτÞ, where IθðτÞ ¼ −h∂2θ lnP½fsðtÞgτt¼0�i0 is
the Fisher information of the path probability P½fsðtÞgτt¼0�
for the unperturbed dynamics [21,22], and Varð•Þ denotes
the variance calculated in unperturbed dynamics. It is
important to note that the derivative ∂θ, used only for
notational brevity in the Fisher information, does not apply
to the initial distribution since the perturbation does not alter
the initial condition.
For multiple perturbation parameters ðθ1;…; θKÞ, the

Cramér-Rao bound generalizes to
P

α;β RθαðτÞ½I−1ðτÞ�θαθβ
RθβðτÞ ≤ Var½ΘðτÞ� with the Fisher information matrix
whose elements are given by IθαθβðτÞ ¼
−h∂θα∂θβ lnP½fsðtÞgτt¼0�i0 [31]. When the set of perturba-
tion parameters consists of either the symmetric parameters
Bij or the antisymmetric parameters Fij, the Fisher infor-
mation matrix becomes diagonal, leading to the following
inequalities (see End Matter):

X
i<j

R2
Bij
ðτÞ

τaij
≤ Var½ΘðτÞ�; ð4Þ

X
i<j

4R2
Fij
ðτÞ

τaij
≤ Var½ΘðτÞ�; ð5Þ

where the summation is taken only over pairs i < j due to
the conditions Bij ¼ Bji and Fij ¼ −Fji. We will refer to
perturbations in Bij and Fij as kinetic and entropic
perturbations, respectively. This terminology is motivated
by the fact that, in relaxation dynamics to equilibrium, the
former changes the timescale of relaxation without affect-
ing the equilibrium distribution, whereas the latter modifies
the entropy of the system at the equilibrium. For observ-
ables in the set S, which includes currentlike observables,
state-dependent observables, and their combinations with
the constraint Λij ¼ −Λji, the dynamic response to the
symmetric parameter Bij and that to the antisymmetric
parameter Fij are interrelated by the identity

PHYSICAL REVIEW LETTERS 135, 097101 (2025)

097101-2



RBij
ðτÞ

RFij
ðτÞ ¼

2Jij
aij

ð6Þ

for all observation times τ (see Supplemental Material [32]
for the derivation). Plugging this identity into (5), we obtain
another inequality involving the kinetic response,

X
i<j

aijR2
Bij
ðτÞ

τJ2ij
≤ Var½ΘðτÞ� for Θ∈S: ð7Þ

We will refer to the inequalities (4), (5), and (7) as
fluctuation-response inequalities (FRIs) following [13],
where a general inequality between fluctuations and
response is proposed based on an information-theoretic
approach.
The FRIs generalize the FRRs discovered in [20] in two

ways. First, these inequalities are valid for all observation
times τ and encompass the FRRs as the dynamic-response
function RθðτÞ converges to the static-response function in
the limit τ → ∞. Second, unlike the FRRs, which are
applicable only to currentlike observables, the FRIs allow
general observables for (4) and (5) and observables in the
set S for (7). While the FRRs are equalities derived from
extensive linear algebraic steps, the FRIs are inequalities
resulting from a straightforward application of the Cramér-
Rao bound.
Figure 1 illustrates the validity of the FRIs (4) and (5) in

four-state Markov jump processes with various topologies
and system parameters. The vertical axes in all figures

represent Q, a quantity obtained by transforming inequal-
ities into the formQ ≤ 1. Unlike currentlike observables as
reported in [20], the FRIs (4) and (5) do not appear to
converge to equalities in the limit τ → ∞ for general
observables. The validity of FRI (7) for currentlike and
state-dependent observables is examined in Fig. 2. The
numerical results suggest that the FRI (7) converges to
equality in both limits τ → 0 and τ → ∞ for currentlike
observables and only in the limit τ → ∞ for state-
dependent observables. While the convergence to equality
in the limit τ → 0 is straightforward to verify [32],
demonstrating the convergence in the limit τ → ∞ requires
a more sophisticated analysis, as performed in [20]. The
inverted bell shape and increasing patterns shown in Fig. 2
emerge due to the fixed boundary values ofQ at τ → 0 and
τ → ∞. This becomes clearer when examining represen-
tative time-dependent curves with fixed transition rates and
observables, as presented in Supplemental Material [32].
This illustrates how the scatter patterns in Fig. 2 arise from
a superposition of curves with different parameter values.
In contrast, since the equality condition at the short- and
long-time limits does not hold for general observables,
Fig. 1 exhibits more complex patterns.
The limiting behavior of the FRIs can be understood by

separately considering the different time regimes. First, in
the short-time limit τ → 0, only a single jump event can
occur within an infinitesimal time interval. For currentlike
observables, this implies that the currents associated with
different edges remain uncorrelated, and the variance
decomposes into independent contributions from each
edge, i.e., Var½ΘðτÞ� ≈ τ

P
i<j Λ2

ijaij. The responses are
similarly dominated by the direct effect of perturbing the
transition rate on the same edge, yielding RBij

ðτÞ ≈ τΛijJij

FIG. 1. Numerical verification of FRIs for general observables.
(a) and (b) correspond to (4) and (5), respectively. For the
symmetric and antisymmetric parameters, Bij and eFij are
randomly sampled from ½−2; 2� and [0, 10], respectively. The
observation time is given as τ ¼ ex where x is drawn randomly
from ½−15; 20�. Weights gi and Λij are sampled from ½−2; 2�. The
network topology is randomly selected from the four possible
configurations shown in the inset of (b). Different point colors
represent results from the respective topologies, matching the
colors in the inset. The total number of points is 105.

FIG. 2. Numerical verification of FRI (7) for (a) currentlike
observables and (b) state-dependent observables. Transition rates,
observation times, and weights of observables are sampled within
the same ranges as in Fig. 1. The network topology is randomly
selected from the four configurations in the inset of (a), with data
point colors matching the respective topologies. The total number
of points is 105.
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and RFij
ðτÞ ≈ 1

2
τΛijaij. As a result, both (5) and (7) become

equalities in this limit. For state-dependent observables,
both the variance and the response functions scale quad-
ratically with time, which explains the vanishing behavior
observed in Fig. 2(b) as τ → 0. Second, in the long-time
limit τ → ∞, where the dynamic responses converge to the
static responses, it has been proven that Eqs. (5) and (7)
become equalities for both currentlike observables [12] and
state-dependent observables [39]. Although a general
physical explanation remains elusive, the convergence to
the equality in this limit for currentlike observables can be
interpreted as a generalization of the fluctuation-dissipation
theorem to arbitrary nonequilibrium steady states. This
generalized relation reduces to the conventional relation-
ship between Onsager coefficients and equilibrium covari-
ance defined at the edge level near equilibrium [12].
Response uncertainty relations—Further applications of

the Cauchy-Schwartz inequality to the FRIs lead to the
recently discovered R-TUR and its variants [19,20].
The responses of interest are now RϵðτÞ ¼

P
i<j bijRBij

and RηðτÞ ¼
P

i<j fijRFij
, with the shorthand notations

bij ¼ dϵBij and fij ¼ dηFij. Here, Rϵ (respectively, Rη)
denotes the response of an observable with respect to the
perturbation of the global parameter ϵðηÞ, which induces
simultaneous variations in all symmetric (antisymmetric)
parameters according to their functional dependence
on ϵðηÞ. An explicit example illustrating how global
responses arise as combinations of local responses is
presented in Supplemental Material [32] using a quantum
dot model. Applying the Cauchy-Schwartz inequalityP

i<jðxij=yijÞ2 ≥ ðPi<j xijÞ2=ð
P

i<j y
2
ijÞ to (4) and (5),

we obtain the following results: choosing xij ¼ bijRBij

and yij ¼ bij
ffiffiffiffiffiffiaij

p yields

Var½ΘðτÞ� ≥ R2
ϵðτÞ

τ
P

i<jb
2
ijaij

≥
R2
ϵðτÞ

τb2maxȦ
; ð8Þ

while choosing xij ¼ fijRFij
and yij ¼ fij

ffiffiffiffiffiffiaij
p yields

Var½ΘðτÞ� ≥ 4R2
ηðτÞ

τ
P

i<jf
2
ijaij

≥
4R2

ηðτÞ
τf2maxȦ

; ð9Þ

where bmax ¼ maxi;jjbijj and fmax ¼ maxi;jjfijj. These
inequalities, called the response kinetic uncertainty rela-
tion, show that the ratio of the responses to kinetic or
entropic perturbations to fluctuations is bounded from
above by the dynamical activity of the unperturbed system.
Similarly, with the choice xij ¼ bijRBij

and yij ¼
bijJij=

ffiffiffiffiffiffiaij
p , applying the Cauchy-Schwartz inequality

to (7) leads to

Var½ΘðτÞ� ≥ 2R2
ϵðτÞ

τb2maxΣ̇ps
for Θ∈S: ð10Þ

We refer to this relation as the response thermodynamic-
kinetic uncertainty relation (R-TKUR), as it imposes an
upper bound on the response that depends on both EP rate (a
thermodynamic quantity) and dynamical activity (a kinetic
quantity). This can be seen clearly upon noting that
the pseudo-EP rate satisfies the following Jensen in-
equality Σ̇ps¼

P
i<j2aijϕ

2½ðJij=2aijÞ lnðWijπj=WjiπiÞ�≤
2Ȧϕ2ðΣ̇=2ȦÞ with a concave function ϕðxÞ ¼ x=ψðxÞ,
where ψðxÞ is the inverse function of x tanh x [25]. One
of the two contributions, Σ̇ or Ȧ, dominates in the limiting
cases: for x ≪ 1, ϕ2ðxÞ ≈ x and for x ≫ 1, ϕ2ðxÞ ≈ 1.
Thus, the R-TKUR reduces to the finite-time version of
R-TUR [19],

R2
ϵðτÞ

Var½ΘðτÞ� ≤
τb2maxΣ̇

2
for Θ∈S; ð11Þ

near equilibrium, where Σ̇=Ȧ ≪ 1, and reduces to (8) far
from equilibrium, where Σ̇=Ȧ ≫ 1. It is worth noting
that (8)–(10) hold for all observation times τ, generalizing
the static-response relations derived in the limit τ → ∞
in [19,20] to dynamic response.
When the kinetic perturbation is applied uniformly, i.e.,

bij ¼ b ¼ bmax ∀ ij, the response of currentlike observ-
ables becomes proportional to the mean value of the
observable as RϵðτÞ ¼ bhΘðτÞi [19]. As a result, the R-
TKUR in Eq. (10) reproduces the thermodynamic-kinetic
uncertainty relation [25,40], which encompasses both the
thermodynamic uncertainty relation [41,42] and the kinetic
uncertainty relation [43,44].
Quantum generalization—The FRI can also be extended

to Markovian open quantum systems, whose dynamics are
governed by the Lindblad quantum master equation,

ρ̇ðtÞ ¼ −i½H; ρðtÞ� þ
XK
k¼1

D½Lθk
k �ρðtÞ; ð12Þ

where ρðtÞ is the density operator at time t, H is the system
Hamiltonian, Lθk

k are jump operators,K denotes the number
of jump operators, and D½L� •≡L • L† − fL†L; •g=2 is a
superoperator acting on the operators to its right. The
Planck constant ℏ is set to unity throughout. In this section,
the notations ½•; ∘� and f•; ∘g are reserved for the commu-
tator and anticommutator of two quantum operators • and ∘,
respectively. The jump operators are parametrized as

Lθk
k ¼ eθk=2Lk; ð13Þ

with a set of real-valued parameters ðθ1; θ2;…; θKÞ that
controls the magnitude of each jump operator.
As in the classical case, we consider the system in the

steady state characterized by the density operator ρss for
t < 0, which is then slightly perturbed in its parameters θk at
time t ¼ 0. The quantumCrameŕ-Rao bound generalizes the
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classical one as
P

α;βRθαðτÞ½I−1
Q ðτÞ�θαθβRθβðτÞ≤Var½ΘðτÞ�,

where IQðτÞ is the quantum Fisher information, defined as
the maximum classical Fisher information over all positive
operator-valued measures [45,46]. Similar to the classical
case, the quantum Fisher information matrix with respect to
changes in θk becomes diagonal (see End Matter), which
yields the quantum version of the FRI for general observ-
ables,

XK
k¼1

R2
θk
ðτÞ

τak
≤ Var½ΘðτÞ�; ð14Þ

whereak ¼ tr½Lθk
k ρðLθk

k Þ†� is the traffic through the k th jump
operator.
The validity of the quantum FRI is examined in Fig. 3 for

two- and three-level systems, with randomly generated
Hamiltonians and jump operators. The local detailed
balance condition is not imposed on the jump operators
in order to demonstrate the broad validity of the quantum
FRI. In our numerical analysis, we focus on the currentlike
observables of the form ΘðτÞ ¼ P

K
k¼1 ΛkNkðτÞ, where

NkðτÞ represents the total number of jumps via the k th
jump operator up to time τ and Λk is the corresponding
weight. State-dependent observables are not considered in
this plot, as no analytical expression for their variance is
available. Similar to Fig. 2(a), the FRIs converge to equality

in the limit τ → 0 (see Supplemental Material [32] for the
proof). However, unlike in the classical case, the ratio of
both sides of Eq. (14) converges to a finite value less than 1
in the limit τ → ∞ for a fixed set of control parameters,
which results in the overall pattern in Fig. 3 differing from
that in Fig. 2(a). We also note that the use of more jump
operators results in a tighter inequality, although the precise
relationship between the tightness and the number of jump
operators requires further investigation. From the quantum
FRI, a response uncertainty relation for open quantum
systems can be derived straightforwardly,

R2
ϵðτÞ

Var½ΘðτÞ� ≤ τðΔθmaxÞ2Ȧ; ð15Þ

where ϵ is the parameter that controls the magnitude of each
jump operator via θ ¼ θðϵÞ, Δθmax ¼ maxkfjdϵθkjg, and
Ȧ ¼ P

k ak is the dynamical activity.
Conclusion—In this Letter, we derive FRIs that apply to

dynamic response to both kinetic and entropic perturba-
tions, extending the previously established FRRs for static
response. The validity of the FRIs extends beyond that of
existing FRRs, as they apply to a broader class of
observables, including both current-like and state-depen-
dent types, measured over finite times. The FRIs are further
extended to open quantum systems governed by the
Lindblad quantum master equation. The resulting quantum
FRI involves only the dynamical activity. It remains an
open question whether similar relations can be found that
incorporate the EP, the thermodynamic aspect of non-
equilibrium systems.

Note added—Recently, two related papers have been
published. Reference [47] reports a result similar to
Eq. (15), and Ref. [48] presents results comparable to
Eqs. (8) and (9).
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Appendix: Derivation of fluctuation-response
inequalities—Here, we derive the classical and quantum
FRIs presented in (4), (5), and (14). In classical Markov
jump processes, the probability density of observing the
trajectory Γτ ¼ fsðtÞgτt¼0 up to time τ is given by
P½Γτ� ¼ πsð0Þe−A½Γτ� with

A½Γτ� ¼
Z

τ

0

dt
X
i≠j

�
ηjðtÞWij − ṄijðtÞ lnWij

�
: ðA1Þ

The elements of the Fisher information matrix associated
with the perturbation parameters ðθ1;…; θKÞ are
obtained by directly differentiating the path probability,
yielding

IθαθβðτÞ ¼ −h∂θα∂θβ lnP½Γτ�i0 ¼ h∂θα∂θβA½Γτ�i0
¼

Z
τ

0

dt
X
i≠j

ðπj∂θα∂θβWij − πjWij∂θα∂θβ lnWijÞ

¼ τ
X
i≠j

Wijπjð∂θα lnWijÞð∂θβ lnWijÞ: ðA2Þ

Note that the initial distribution does not contribute to the
Fisher information matrix since the perturbation
considered does not alter the initial condition. When the
perturbation parameters are chosen as either the
symmetric parameters Bij or the antisymmetric parameters
Fij, the following relations hold:

∂Bi0j0 lnWij ¼ δii0δjj0 þ δij0δi0j;

∂Fi0j0 lnWij ¼
1

2
ðδii0δjj0 − δij0δi0jÞ: ðA3Þ

Substituting Eq. (A3) into Eq. (A2), we find that the
Fisher information matrix becomes diagonal, with
elements

IBijBi0j0 ðτÞ ¼ τδii0δjj0aij;

IFijFi0j0 ðτÞ ¼
1

4
τδii0δjj0aij: ðA4Þ

Plugging the Fisher information matrix into the
Cramér-Rao bound,

P
αβ RθαðτÞ½I−1ðτÞ�θαθβRθβ , with θα

being either Bij or Fij, we arrive at the classical FRIs, (4)
and (5). The diagonality of the Fisher information
matrix remains unaffected even when a vertex-dependent
parameter, as considered in [11,12], is included in
the parametrization of the transition rates. This is because
the derivatives with respect to Bij and Fij are
operationally equivalent to Wij∂=∂Wij þWji∂=∂Wji and
ð1=2ÞðWij∂=∂Wij −Wji∂=∂WjiÞ, respectively (see
Sec. IV of [11] for more discussion). These operational
definitions remain unchanged regardless of whether a
vertex-dependent parameter is present.
For open quantum systems described by the Lindblad

quantum master equation (12), the continuous measure-
ment framework allows the quantum Fisher information
matrix to be expressed in terms of the solution of the
generalized Lindblad equation ρ̇ðτÞ ¼ Lθ1θ2ρðτÞ [49],
where the superoperator Lθ1θ2 is given as

Lθ1θ2• ¼ −i½H; •� þ
XK
k¼1

L
θ1k
k • ðLθ2k

k Þ†

−
1

2

XK
k¼1

h
ðLθ1k

k Þ†L
θ1k
k •þ • ðLθ2k

k Þ†L
θ2k
k

i
: ðA5Þ

The unperturbed dynamics are restored by setting
θ1 ¼ θ2 ¼ θ, whose superoperator is denoted by L here-
after. The initial condition is ρð0Þ ¼ ρss, where ρss is the
steady-state density operator of the unperturbed dynamics,
satisfying Lρss ¼ 0. Denoting the solution of Eq. (A5) as
ρθ1θ2 , the elements of the quantum Fisher information
matrix are expressed as [49]
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½IQðτÞ�θαθβ ¼ 4∂1α∂
2
β lnftr½ρθ1θ2ðτÞ�gθ1¼θ2¼θ

¼ 4f∂1α∂2βtr½ρθ1θ2ðτÞ�
− ∂

1
αtr½ρθ1θ2ðτÞ�∂2βtr½ρθ1θ2ðτÞ�gθ1¼θ2¼θ; ðA6Þ

where θ1 and θ2 are K-dimensional vectors, and ∂
1ð2Þ
αðβÞ

denotes the derivative with respect to the αth (βth)
component of θ1ðθ2Þ.
Using the parametrization (13), we can demonstrate that

ð∂1αLÞθ1¼θ2¼θ• ¼
1

2
½Lθα

α • ðLθα
α Þ† − ðLθα

α Þ†Lθα
α •�;

ð∂2βLÞθ1¼θ2¼θ• ¼
1

2
½Lθβ

β • ðLθβ
β Þ† − •ðLθβ

β Þ†L
θβ
β � ðA7Þ

are traceless maps. From Eq. (A7), we can show that the
second term in Eq. (A6) vanishes because

∂
1ð2Þ
αðβÞtr½ρθ1θ2ðτÞ�θ1¼θ2¼θ

¼
Z

τ

0

dt tr
�
eLðτ−tÞð∂1ð2ÞαðβÞLÞθ1¼θ2¼θe

Ltρss
�

¼
Z

τ

0

dt tr
�ð∂1ð2ÞαðβÞLÞθ1¼θ2¼θρss

� ¼ 0; ðA8Þ

where we use the fact that eLðτ−tÞ is a trace-preserving map
and that eLtρss ¼ ρss in the second equality.
The first term in Eq. (A6) is evaluated as

∂
1
α∂

2
βtr½ρθ1θ2ðτÞ�θ1¼θ2¼θ¼

Z
τ

0

dt tr
�
eLðτ−tÞð∂1α∂2βLÞθ1¼θ2¼θe

Ltρss
�þ

Z
τ

0

dt tr
�ð∂1αeLðτ−tÞÞθ1¼θ2¼θð∂2βLÞθ1¼θ2¼θe

Ltρss
�

þ
Z

τ

0

dt tr
�
eLðτ−tÞð∂2βLÞθ1¼θ2¼θð∂1αeLtÞθ1¼θ2¼θρss

�
: ðA9Þ

The third integral in Eq. (A9) vanishes as eLðτ−tÞ is trace
preserving and ð∂2βLÞθ1¼θ2¼θ is a traceless map. Using the
relation

∂
1
αeLðτ−tÞ ¼

Z
τ−t

0

dt0eLðτ−t−t0Þð∂1αLÞeLt0 ; ðA10Þ

we can show that the second integral in Eq. (A9) also
vanishes. Thus, Eq. (A6) simplifies to

∂
1
α∂

2
βtr½ρθ1θ2ðτÞ�θ1¼θ2¼θ¼

Z
τ

0

dt tr½ð∂1α∂2βLÞθ1¼θ2¼θρss�:

ðA11Þ

Noting that ð∂1α∂2βLÞθ1¼θ2¼θ ¼ δαβL
θα
α ρðLθα

α Þ†=4, the quan-
tum Fisher information matrix becomes diagonal, with
elements

½IQðτÞ�θαθβ ¼ τδαβaα; ðA12Þ

where aα ¼ tr½Lθα
α ρðLθα

α Þ†�. Substituting the quantum
Fisher information matrix into the Cramér-Rao
bound,

P
αβ RθαðτÞ½I−1

Q ðτÞ�θαθβRθβ , yields the quantum
FRI (14).
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DERIVATION OF EQ. (6) OF THE MAIN TEXT

The key step in deriving Eq. (7) of the main text is proving the identity RBij
(τ)/RFij

(τ) =

2Jij/aij for both current-like and state-dependent observables. This identity can be derived

using standard linear response theory [1, 2]. We begin by considering a perturbation in the

symmetric parameter Bmn shared by the transition ratesWmn andWnm. Suppose we perturb

Bmn to Bmn +∆B at time t = 0. The transition rates and the probability distribution are

then altered as W ′
ij = Wij(1 + (δimδjn + δinδjm)∆B) and pi(t) = πi + qi(t)∆B, respectively,

up to linear order in ∆B. Substituting these relations into the master equation yields the

equation for qi(t) as follows:

q̇i(t) =
∑
j( ̸=i)

(Wijqj(t)−Wjiqi(t)) + δimJin + δinJim . (S1)

By introducing a stochastic matrix W, where diagonal components are given by [W]ii =

−
∑

j( ̸=i) Wji and off-diagonal components by [W]ij = Wij, the linear differential equation

for qi(t) can be solved as

qi(t) =

∫ t

0

dt′
∑
j

[eW(t−t′)]ij(δjmJjn + δjnJjm) . (S2)

The time integration in Eq. (S2) can be performed using the spectral decomposition of the

stochastic matrix W, expressed as [W]ij =
∑

α λαr
α
i l

α
j , where λα are the eigenvalues of W

and lαi (rαi ) are the corresponding left (right) eigenvectors normalized as
∑

i l
α
i r

β
i = δαβ. The

unique largest eigenvalue is λ0 = 0, with corresponding eigenvectors given by l0i = 1 and

r0i = πi. After carrying out the time integration and rearranging the terms, we obtain

qi(t) =
∑
α( ̸=0)

(
eλαt − 1

λα

)
rαi (l

α
m − lαn)Jmn , (S3)

where the eigenvalues are indexed in descending order, i.e., 0 = λ0 > λ1 ≥ λ2 ≥ · · · . The

dynamic response of state-dependent observables is then given by

RBmn(τ) =

∫ τ

0

dt
∑
i

giqi(t)

= Jmn

∑
i

gi(Him(τ)−Hin(τ)) ,
(S4)

where the function Hij(τ) is defined as

Hij(τ) ≡
∑
α(̸=0)

(
eλατ − 1− λατ

λ2
α

)
rαi l

α
j . (S5)

2



Since limτ→0Hij(τ) = 0, the kinetic response of state-dependent observables vanishes as

τ → 0, as shown in Fig. 2(b) of the main text.

When Bmn is perturbed to Bmn +∆B at time t = 0, the current flowing between states

i and j changes as Jij(t) = Jij + Kij(t)∆B up to linear order in ∆B, where Kij(t) =

(δimδjn + δjmδin)Jij +Wijqj(t)−Wjiqi(t). In the expression for Kij(t), the first term arises

from the change in Wij, while the second term results from the change in pi(t). Substituting

Eq. (S3) into Kij(t), we obtain

Kij(t) = (δimδjn − δjmδin)Jmn

+
∑
α(̸=0)

(
eλαt − 1

λα

)
(Wijr

α
j −Wjir

α
i )(l

α
m − lαn)Jmn .

(S6)

The dynamic response of current-like observables to the kinetic perturbation is then given

by

RBmn(τ) =

∫ τ

0

dt
∑
i<j

ΛijKij(t)

= Jmn

(
τΛmn +

∑
i ̸=j

ΛijWij(Hjm(τ)−Hjn(τ))

)
,

(S7)

Since limτ→0Hij(τ)/τ = 0, the kinetic response of current-like observables J (τ) satisfies

limτ→0RBmn(τ)/τ = JmnΛmn. By noting that limτ→0Var(J (τ))/τ =
∑

i<j Λ
2
ijaij, we con-

firm that the FRI in Eq. (7) of the main text becomes an equality for current-like observables

in the limit τ → 0 as shown in Fig. 2(a) of the main text.

The analysis for a perturbation in the anti-symmetric parameter Fmn is similar to that

for Bmn. When Fmn is perturbed to Fmn + ∆F at time t = 0, the transition rates are

altered as W ′
ij = Wij[1 + (δimδjn − δinδjm)∆F/2] up to linear order in ∆F . The change

of the sign in front of δinδjm and the factor 1/2 replace only Jmn with amn/2 in Eq. (S2).

This leads to replacing Jmn with amn/2 in Eqs. (S4) and (S7), thereby proving the identity

RBmn(τ)/RFmn(τ) = 2Jmn/amn for current-like observables and state-dependent observables,

and thus their linear combinations. Using the same reasoning as for kinetic perturbations,

we find that limτ→0RFmn(τ) = 0 for state-dependent observables. Consequently, as τ → 0,

the entropic response vanishes for state-dependent observables, while the FRI in Eq. (5) of

the main text becomes an equality for current-like observables.
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ORIGIN OF THE PATTERNS APPEARING IN FIGURES 2 AND 3 OF THE MAIN

TEXT

In Figs. 2 and 3 of the main text, we randomly sample the transition rates, observable

weights, and observation times to generate scatter plots. In this section, we present results

that illustrate the behavior of the fluctuation-response inequalities (FRIs) as a function of

observation time, with other parameters held fixed. All equation numbers in this section

refer to those in the main text.

Figure S1 shows the behavior of the FRIs over observation time. This figure clarifies

that the scatter plots in Figs. 2 and 3 of the main text can be understood as superpositions

of various curves corresponding to different parameters. Figure S1(a) shows the numerical

verification of Eq. (7) for current-like observables. For fixed transition rates Wij and weights

Λij defining the observable, we typically observe that the ratio of the left-hand side (LHS)

to the right-hand side (RHS) of Eq. (7) exhibits an inverted bell-shaped curve. This shape

emerges naturally when considering the limiting behavior: as τ → 0, both the LHS and

RHS converge to the same value (denoted A0); similarly, as τ → ∞, they both approach

another common value (A∞). Therefore, both sides remain approximately constant near A0

in the small-τ regime, deviate in the intermediate regime, and eventually saturate at A∞

for large τ . A larger difference between A0 and A∞ results in a more pronounced dip in the

intermediate τ regime.

For state-dependent observables, the trend is simpler. Since the ratio of the LHS to the

RHS vanishes as τ → 0 and converges to 1 as τ → ∞, one generally expects the ratio

to increase with observation time, although some oscillatory behavior can be observed in

Fig. S1(b). The upward trend with observation time underlies the scatter plot in Fig. 2(b)

of the main text.

Furthermore, Figs. S1 (c) and (d) show that the quantum FRI in Eq. (14) does not

converge to an equality in the limit τ → ∞. We observe a general trend in which the

long-time quantum FRI becomes looser with an increasing number of energy states and a

decreasing number of jump operators. This trend is also consistent with the results presented

in Fig. 3 of the main text.
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FIG. S1. Numerical verification of Eq. (7) for (a) current-like observables and (b) state-dependent

observables, and of Eq. (14) for (c) a 2-level system and (d) a 3-level system. (a,b) The symmet-

ric and anti-symmetric parameters, Bij and eFij , are randomly sampled from [−2, 2] and [0, 10],

respectively. The weights gi and Λij are sampled from [−2, 2]. The network topology is randomly

selected from the four possible configurations shown in the inset of panel (a), with the color of

each line indicating the corresponding network topology. (c,d) The Hamiltonian is constructed

as (A + A†)/2, where A is a random matrix with the real and imaginary parts of each element

independently and uniformly sampled from [−1, 1]. Jump operators are generated similarly with-

out imposing the Hermitian condition. Different numbers of jump operators are represented by

different colors. The weights Λk are randomly sampled from [−1, 1]. Each panel contains 50 lines.

ILLUSTRATIVE EXAMPLE: TWO-STATE MODEL OF A QUANTUM DOT

In this section, we analyze a minimal example based on the classical description of a

quantum dot connected to two reservoirs, aiming to clarify the physical meaning of the

FRIs. This is the simplest analytically tractable model that nevertheless provides physical
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𝛽, 𝜇1

𝜇1 = 𝜖 − 𝑢1

𝛽, 𝜇2

𝜇2 = 𝜖 − 𝑢2

𝛾1𝑒
−𝑢1/2

𝛾1𝑒
𝑢1/2
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−𝑢2/2

𝛾2𝑒
𝑢2/2

0 𝜖

FIG. S2. Schematic of a single-level quantum dot coupled to two reservoirs. The red (blue) arrows

indicate electron transfer between the quantum dot and the red (blue) reservoir.

intuition about the nature of perturbations and the saturation behavior of the inequalities.

We consider a single-level quantum dot whose energy is given by ϵ when it is occupied

by an electron and 0 when it is unoccupied. The quantum dot exchanges electrons with two

reservoirs at the same temperature β−1 but with different chemical potentials, µ1 = ϵ − u1

and µ2 = ϵ − u2. Throughout this section, we set the energy unit such that β = 1. A

classical description of this model treats the time-evolution of the occupation probability

via the master equation: ṗi(t) =
∑

j=0,1

∑
ν=1,2(W

ν
ijpj(t) − W ν

jipi(t)) where pi(t) is the

probability that the quantum dot is in state i (i = 0: unoccupied, i = 1: occupied), and

W ν
ij is the transition rate from state j to i due to the exchange of an electron with ν-th

reservoir. Imposing local detailed balance, W 1
10/W

1
01 = e−u1 and W 2

10/W
2
01 = e−u2 , we assign

the transition rates as W 1
10 = γ1e

−u1/2, W 1
01 = γ1e

u1/2, W 2
10 = γ2e

−u2/2, and W 2
01 = γ2e

u2/2,

where γ1 and γ2 are the tunneling rates. The master equation can be written in matrix form

as

d

dt

p0(t)

p1(t)

 =

−γ1e
−u1/2 − γ2e

−u2/2 γ1e
u1/2 + γ2e

u2/2

γ1e
−u1/2 + γ2e

−u2/2 −γ1e
u1/2 − γ2e

u2/2

p0(t)

p1(t)

 . (S8)

By solving the master equation with respect to the two initial conditions p0(0) = 1−p1(0) = 0

and p0(0) = 1 − p1(0) = 1, we obtain the explicit expressions for the propagator, i.e., the

conditional transition probabilities P (i, t|j, 0), as

P (0, t|0, 0) = π0 + π1e
−ϕt, P (1, t|0, 0) = π1(1− e−ϕt),

P (0, t|1, 0) = π0(1− e−ϕt), P (1, t|1, 0) = π1 + π0e
−ϕt,

(S9)
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where π0 = 1 − π1 = (γ1e
u1/2 + γ2e

u2/2)/ϕ are the steady-state probability and ϕ =

2{γ1 cosh(u1/2) + γ2 cosh(u2/2)}.

We first discuss the response of a state-dependent observable to symmetric perturbations

on the transition rates. The observable is the accumulated occupation time of the quantum

dot, defined as n(τ) =
∫ τ

0
η(t)dt, where η(t) takes the value 1 if the quantum dot is occupied

at time t, and 0 otherwise. In the steady state, the mean and variance of n(τ) are given by

⟨n(τ)⟩ = π1τ and

Var(n(τ)) =

∫ τ

0

dt

∫ τ

0

dt′ ⟨η(t)η(t′)⟩ − ⟨n(τ)⟩2

= 2

∫ τ

0

dt

∫ t

0

dt′ P (1, t− t′|1, 0)π1 − (π1τ)
2

=
2π0π1(ϕτ − 1 + e−ϕτ )

ϕ2
.

(S10)

In the second line, we use (i) the time-homogeneity of the dynamics, P (1, t|1, t′) = P (1, t−

t′|1, 0), and (ii) the fact that the contributions from the regions t > t′ and t < t′ are equal.

In this example, the symmetric parameters of the transition rates (denoted Bmn in the main

text) correspond to ln γ1 and ln γ2. The static response function is given by

∂⟨n(τ)⟩
∂ ln γ1

= −∂⟨n(τ)⟩
∂ ln γ2

=
2γ1γ2τ

ϕ2
sinh

(
u2 − u1

2

)
, (S11)

while the dynamic response function, which does not perturb the initial condition, is

Rln γν (τ) =

∫ τ

0

dt
∑
j=0,1

∂P (1, t|j, 0)
∂ ln γν

πj =
∂⟨n(τ)⟩
∂ ln γν

(
ϕτ − 1 + e−ϕτ

ϕτ

)
, (S12)

and it converges to the static one as τ → ∞. The FRI from Eq. (7) of the main text becomes

∑
ν=1,2

aνR
2
ln γν

(τ)

τJ2
ν

≤ Var(n(τ)), (S13)

where Jν = W ν
10π0−W ν

01π1 and aν = W ν
10π0+W ν

01π1 denote the current and traffic associated

with reservoir ν, respectively. The response function is proportional to the current J1 =

−J2 = 2γ1γ2 sinh((u2−u1)/2)/ϕ, so the ratio Rln γν (τ)/Jν = (ϕτ−1+e−ϕτ )/ϕ2 is independent

of ν. Moreover, since a1+a2 = (W 1
10+W 2

10)π0+(W 1
01+W 2

01)π1 = 2ϕπ0π1, the left-hand side

of (S13) simplifies to

∑
ν=1,2

aνR
2
ln γν

(τ)

τJ2
ν

=
2π0π1(ϕτ − 1 + e−ϕτ )2

τϕ3
. (S14)
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Comparing this expression with the variance in (S10), the FRI in (S13) reduces to the

inequality Qd ≡
∑

ν=1,2

aνR2
ln γν

(τ)

τJ2
ν

/Var(n(τ)) = f(ϕτ) ≤ 1, where f(x) = (x − 1 + e−x)/x.

The function f(x) is monotonically increasing and bounded between 0 and 1 for x ≥ 0. In

the short-time limit (τ → 0), the left-hand side of the FRI in (S14) vanishes as τ 3, while

the variance vanishes as τ 2, so their ratio also vanishes. In contrast, in the long-time limit

(τ → ∞), both sides of the FRI diverge linearly in τ with the same prefactor, yielding

equality. Finally, we note that in this example, the FRI would be violated at all times if the

static response function were used. This is because replacing the dynamic response function

with the static one makes the ratio Qs ≡
∑

ν
aν(∂⟨n(τ)⟩/∂ ln γν)2

τJ2
ν

/Var(n(τ)) = 1/f(ϕτ), which

is always larger than or equal to unity for all τ ≥ 0.

We next consider the response of a current-like observable to anti-symmetric perturba-

tions on the transition rates. Specifically, we choose the observable as the net number of

electrons transferred from reservoir 1 to the quantum dot, denoted as j(τ) =
∫ τ

0
(Ṅ+1(t) −

Ṅ−1(t))dt, where N+1(t) [resp. N−1(t)] is a piecewise constant function that increases by

one whenever an electron is transferred from [resp. to] reservoir 1. In the steady state, the

mean and variance of j(τ) are given by ⟨j(τ)⟩ = J1τ and

Var(j(τ)) =

∫ τ

0

dt

∫ τ

0

dt′ ⟨{Ṅ+1(t)− Ṅ−1(t)}{Ṅ+1(t
′)− Ṅ−1(t

′)}⟩ − ⟨j(τ)⟩2

= a1τ − J2
1 τ

2

+ 2

∫ τ

0

dt

∫ t

0

dt′
(
W 1

10P (0, t− t′|1, 0)W 1
10π0 +W 1

01P (1, t− t′|0, 0)W 1
01π1

)
− 2

∫ τ

0

dt

∫ t

0

dt′
(
W 1

01P (1, t− t′|1, 0)W 1
10π0 +W 1

01P (0, t− t′|0, 0)W 1
01π1

)
= a1τ − 2{a21 + γ2

1(π0 − π1)
2}(ϕτ − 1 + e−ϕτ )

ϕ2
,

(S15)

Here, a1τ in the second line originated from the contribution of uncorrelated single jump

events, and dominates the variance in the short-time limit where at most one electron transfer

can occur. In this case, the anti-symmetric parameters of the transition rates (denoted Fmn

in the main text) correspond to u1 and u2. The static response functions are given by

∂⟨j(τ)⟩
∂u1

= −a1γ2τ

ϕ
cosh

(u2

2

)
,

∂⟨j(τ)⟩
∂u2

=
a2γ1τ

ϕ
cosh

(u1

2

)
, (S16)
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while the dynamic response functions, which do not perturb the initial condition, are

Ruν (τ) =

∫ τ

0

dt
∑
j=0,1

πj
∂

∂uν

{W 1
10P (0, t|j, 0)−W 1

01P (1, t|j, 0)}

=
∂⟨j(τ)⟩
∂uν

− aνγ1 cosh
(u1

2

)(1− e−ϕτ

ϕ2

) (S17)

and it converges to the static one as τ → ∞. The FRI from Eq. (5) of the main text becomes∑
ν=1,2

4R2
uν

τaν
≤ Var(j(τ)). (S18)

To avoid unwieldy expressions, we consider the simple case of γ1 = γ2 = γ and u1 = −u2 = u

to clearly illustrate the τ -dependence of the FRI. Under these conditions, the response-to-

traffic ratio simplifies to Ruν (τ)/aν = ((−1)νϕτ − 1 + e−ϕτ)/4ϕ. Moreover, since a1 = a2 =

ϕ/4 = γ cosh(u/2) and π0 = π1 = 1/2, the left-hand side of (S18) becomes∑
ν=1,2

4R2
uν

τaν
=

ϕ2τ 2 + (1− e−ϕτ )2

8ϕτ
(S19)

and the right-hand side becomes

Var(j(τ)) =
ϕτ + 1− e−ϕτ

8
. (S20)

Comparing both sides, the FRI in (S18) reduces to the inequality g(ϕτ) ≤ 1, where g(x) =

{x2 + (1 − e−x)2}/{x(x + 1 − e−x)}. This function indeed satisfies g(x) ≤ 1 for all x ≥ 0.

Note that both sides of the FRI in (S18) exhibit the same leading-order behavior in both

the short-time and long-time limits, resulting in equalities.

As a side note, we remark that the global response functions Rϵ and Rη defined in the

main text are not independent physical quantities, but simply linear combinations of local

response functions with respect to all symmetric or anti-symmetric parameters. In the

present model, a symmetric global perturbation corresponds to perturbing tunneling rates

γ1 and γ2 simultaneously, each as a function of a single parameter ϵ. For instance, suppose

there exists a single parameter such that γ1 ∝ ϵ and γ2 ∝ eϵ, then a small shift ϵ → ϵ+∆ϵ

results in ln γ1 7→ ln γ1 + ∆ϵ/ϵ and ln γ2 7→ ln γ2 + ∆ϵ. Consequently, the global response

to a perturbation of ϵ is given by Rϵ(τ) = Rln γ1(τ)/ϵ + Rln γ2(τ). This illustrates how the

global response can be interpreted as a weighted sum of local responses, where the weights

are determined by how the symmetric parameters or anti-symmetric parameters vary with

respect to ϵ or η.
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PROOF OF THE EQUALITY OF THE QUANTUM FLUCTUATION-RESPONSE

INEQUALITY IN THE SHORT OBSERVATION-TIME LIMIT

In this section, we show that the quantum fluctuation-response inequality (Eq. (14) in

the main text) converges to an equality in the short observation-time limit. We consider an

open quantum system governed by the Lindblad quantum master equation

ρ̇(t) = −i[H, ρ(t)] +
K∑
k=1

D[Lθk
k ]ρ(t) ≡ Lθρ(t) , (S21)

where Lθk
k are jump operators parametrized by Lθk

k = eθk/2Lk and D[L]• = L•L†−{L†L, •}/2

is a superoperator acting on the operator to its right. To calculate the variance of the observ-

able, we introduce the concept of unraveling, in which the density matrix is conditioned on

the stochastic measurement outcomes [3–6]. Through unraveling, we obtain the stochastic

evolution of the density operator

ρc(t+ dt) = ρc(t) + Lθρc(t)dt+
K∑
k=1

[dNk(t)− tr(Mθk
k ρc(t))dt]

(
Mθk

k ρc(t)

tr(Mθk
k ρc(t))

− ρc(t)

)
,

(S22)

which is called the Belavkin equation [6, 7]. Here, Mθk
k • ≡ Lθk

k • (Lθk
k )† and dNk(t) is

a classical random variable that takes the value 1 when a jump occurs by the k-th jump

operator, and 0 otherwise. The unconditional density operator ρ(t) is recovered by averaging

over the ensemble of all possible sequences of trajectories. When conditioned on ρc(t), the

probability of a jump occurring at time t is given by

P (dNk(t) = 1 | ρc(t)) = tr(Mθk
k ρc(t))dt , (S23)

while the two-point correlation is given by〈
Ṅk(t)Ṅk′(t

′)
〉
= δkk′δ(t− t′)tr(Mθk

k ρ(t))+ tr
(
Mθk

k eLθ(t−t′)Mθk′
k′ ρ(t

′)
)

(S24)

for t ≥ t′ and 〈
Ṅk(t)Ṅk′(t

′)
〉
= tr

(
Mθk′

k′ e
Lθ(t

′−t)Mθk
k ρ(t)

)
(S25)

for t < t′.
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We consider current-like observables defined as

Θ(τ) =

∫ τ

0

dt

K∑
k=1

ΛkṄk(t) (S26)

with arbitrary weights Λk and observation time τ . To obtain a compact expression for the

steady-state variance

Var(Θ(τ)) =

∫ τ

0

dt

∫ τ

0

dt′
K∑

k,k′=1

ΛkΛk′

[〈
Ṅk(t)Ṅk′(t

′)
〉
− tr(Mθk

k ρss)tr(M
θk′
k′ ρss)

]
, (S27)

we first introduce the vectorized notation of density operators and superoperators. In this

notation, density operators become d2-dimensional vectors and superoperators become d2×

d2 matrices, where d is the dimension of the Hilbert space. With this vectorized notation,

the spectral decomposition of the superoperator Lθ reads

[Lθ]ij =
∑
α

λαr
α
i l

α
j , (S28)

where λα are the eigenvalues of Lθ and lαi (rαi ) are the corresponding left (right) eigenvectors

normalized as
∑

i l
α
i r

β
i = δαβ. The unique largest eigenvalue is λ0 = 0, with the corre-

sponding right eigenvector given by the vectorized steady-state density operator ρss. The

left eigenvector l0i takes the value 1 if the index i corresponds to a diagonal element of ρss,

and 0 otherwise, ensuring that
∑

i l
0
i r

0
i = tr(ρss) = 1. We define a superoperator H from the

identity ∫ τ

0

dt

∫ t

0

dt′
[
eLθ(t−t′)

]
ij
=

∫ τ

0

∫ t

0

dt′
∑
α

eλα(t−t′)rαi l
α
j

=
τ 2

2
[ρss]i +

∑
α:λα ̸=0

eλατ − 1− λατ

λ2
α

rαi l
α
j

≡ τ 2

2
[ρss]i + τ [H]ij,

(S29)

where the last equality defines H. The double time integration of ⟨Ṅk(t)Ṅk′(t
′)⟩ can be

concisely expressed as∫ τ

0

dt

∫ τ

0

dt′
〈
Ṅk(t)Ṅk′(t

′)
〉
= τδkk′tr(Mθk

k ρss) + τ 2tr(Mθk
k ρss)tr(M

θk′
k′ ρss)

+ τ
[
tr
(
Mθk

k HMθk′
k′ ρss

)
+ tr

(
Mθk′

k′ HMθk
k ρss

)] (S30)

Plugging (S30) into (S27), we have

Var(Θ(τ)) = τ

[
K∑
k=1

Λ2
ktr(M

θk
k ρss) +

K∑
k,k′=1

ΛkΛk′

[
tr
(
Mθk

k HMθk′
k′ ρss

)
+ tr

(
Mθk′

k′ HMθk
k ρss

)]]
.

(S31)
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Next, we calculate the response of

⟨Θ(τ)⟩ =
∫ τ

0

dt

K∑
k′=1

Λk′tr(M
θk′
k′ e

Lθtρ(0)) . (S32)

to a perturbation in θk. We consider the dynamical response of a system initially in the

steady state, and thus the perturbation does not alter the initial state. With this in mind,

and using ∂θkM
θk′
k′ = δkk′Mθk

k , we obtain

Rθk(τ) =

∫ τ

0

dt Λktr(Mθk
k ρss) +

K∑
k′=1

Λk′tr

(
Mθk′

k′

[∫ τ

0

dt ∂θke
Lθt

]
ρss

)
. (S33)

The time integration in the second term can be expressed via the Dyson series expansion∫ τ

0

dt ∂θke
Lθt =

∫ τ

0

dt

∫ t

0

dt′ eLθ(t−t′)[∂θkLθ]e
Lθt

′
. (S34)

Using the fact that ρss is the steady state, i.e., eLt
′
ρss = ρss, and that ∂θkL = D[Lθk

k ], we

obtain

Rθk(τ) = τ

[
Λktr(Mθk

k ρss) +
K∑

k′=1

Λk′tr(M
θk′
k′ HD[Lθk

k ]ρss)

]
. (S35)

Since the eigenvalues except for the unique largest one, λ0 = 0, are all negative, the

superoperator H vanishes in the short observation-time limit τ → 0. Noting that the traffic

through the k-th channel is defined as ak = tr(Mθk
k ρss) = tr(Lθk

k ρss(L
θk
k )), and comparing

(S31) and (S35), we can prove the quantum fluctuation-response inequality (Eq. (14) in the

main text) converges to an equality for current-like observables in the short observation-time

limit.
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