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One of the key objectives in investigating small stochastic systems is the development of
micrometer-sized engines and the understanding of their thermodynamics. However, the primary
mathematical tool used for this purpose, the overdamped approximation, has a critical limitation:
it fails to fully capture the thermodynamics when the temperature varies over time, as the velocity
is not considered in the approximation. Specifically, we show that heat dissipation and entropy
production calculated under the overdamped approximation deviate from their true values. These
discrepancies are termed thermodynamic anomalies. To overcome this limitation, we analytically
derive expressions for these anomalies in the presence of a general time-varying temperature. One
notable feature of the result is that high viscosity and small mass, though both leading to the same
overdamped dynamic equations, result in different thermodynamic anomaly relations. Our results
have significant implications, particularly for accurately calculating the efficiency of heat engines
operating in overdamped environments with time-varying temperatures, without requiring velocity
measurements. Additionally, our findings offer a simple method for estimating the kinetic energy of
an overdamped system.

INTRODUCTION

Recent studies on stochastic systems have driven sig-
nificant advancements in thermodynamics at the mi-
croscopic scale. These advancements have enabled the
miniaturization of heat engines to a microscopic level [1–
5], particularly using a single colloidal particle in over-
damped environments [2, 6–8]. The dynamics of such
small systems are often analyzed by considering only
their position trajectories while neglecting velocity vari-
ables. This simplification is justified because experimen-
tal systems are typically overdamped, meaning that ve-
locity relaxes to equilibrium much faster than position
dynamics in environments with high viscosity or negligi-
ble inertia effects. Due to its simplicity in mathematical
handling, this overdamped approximation is widely em-
ployed to describe the dynamics observed in mesoscopic
experiments involving typical fluids. In addition, this ap-
proximation is, in some sense, inevitable, as accurately
measuring velocity in overdamped systems is challenging
due to its rapid relaxation.

However, the overdamped approximation does not al-
ways guarantee accurate estimation of thermodynamic
quantities, such as heat and entropy production (EP),
even in environments with high viscosity or small mass.
One example is a system with a position-dependent tem-
perature [9–16]. In such systems, EP calculated un-
der the overdamped approximation differs from that ob-
tained using the full underdamped formalism, which ex-
plicitly accounts for the velocity variable [11]. The differ-
ence between the two EPs is attributed to the symmetry
breaking of time and velocity. As shown in this example,
the finite discrepancy between thermodynamic quantities
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calculated under the overdamped approximation and the
underdamped formulation is referred to as a thermody-
namic anomaly [11].

Therefore, thermodynamic anomalies play a crucial
role in calculating thermodynamic quantities when ve-
locity measurement is challenging. Despite their impor-
tance, there has been no systematic study on thermo-
dynamic anomalies induced by time-dependent tempera-
ture, aside from several reports on specific systems [17–
19]. Investigating these anomalies in systems with time-
varying temperature is essential due to their broad ap-
plicability in both theoretical and experimental contexts.
This is particularly relevant in the field of microscopic
heat engines, where temperature varies periodically over
time. Indeed, numerous microscopic heat engine models
have been proposed over the past two decades [17, 20–
30]. If these anomalies can be properly evaluated and
accounted for, thermodynamic quantities related to such
engines might be accurately calculated using the simpler
overdamped formalism, without requiring velocity mea-
surements.

Here, we explicitly calculate the thermodynamic
anomalies in heat and EP for systems with general time-
varying temperature. Our results demonstrate that the
two conditions, high viscosity and small mass, result
in different thermodynamic anomaly relations, though
both leading to the same overdamped dynamics. More-
over, we also find general anomaly relations in between
the two conditions by introducing the two-parameter
Brinkman’s hierarchy method. This indicates that ac-
curately estimating thermodynamic quantities in over-
damped systems with time-varying temperatures requires
understanding the underlying mechanism that leads to
the overdamped regime. Through numerical examples,
we demonstrate that heat, efficiency of a heat engine,
and kinetic energy can be accurately estimated in over-
damped environments without the need for intricate ve-

ar
X

iv
:2

50
3.

22
36

7v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

8 
M

ar
 2

02
5



2

locity measurements, even when the temperature varies
relatively quickly.

RESULTS

Setup

Consider a one-dimensional Brownian particle of mass
m immersed in a reservoir with a time-varying temper-
ature T (t). The position and velocity of the particle at
time t are denoted by xt and vt, respectively. The mo-
tion of the particle is described by a stochastic differential
equation known as the underdamped Langevin equation,
given by

ẋt = vt, mv̇t = f(xt, λt)− γvt + ηt , (1)

where f(xt, λt) denotes an external force applied on the
particle, λt represents a given time-dependent protocol,
and γ is the viscous coefficient. ηt denotes the thermal
Gaussian-white noise characterized by a zero mean and
the autocorrelation ⟨ηtηt′⟩ = 2γT (t)δ(t − t′) with the
Boltzmann constant set to kB = 1. Both conservative
and nonconservative forces can be included in f(xt, λt).
The probability distribution Pud(x, v, t) for the stochastic
variables xt and vt at time t is governed by the following
Fokker-Planck (FP) equation [31]:

∂tPud(x, v, t) = LudPud(x, v, t) , (2)

where the underdamped FP operator Lud is defined as

Lud := −∂xv −
1

m
∂v

[
f(x, λ)− γv − γT (t)

m
∂v

]
. (3)

We now turn our attention to the thermodynamics of
the system. According to the first law of thermodynamics
at the trajectory level [32], the mean value of heat rate

Q̇ in the underdamped system is given by

⟨Q̇⟩ud = −⟨γv2⟩ud + ⟨v ◦ η⟩ud , (4)

where the symbol ◦ denotes the Stratonovich product
and ⟨· · · ⟩ud represents the ensemble average taken over
the probability distribution Pud(x, v, t). The expression
of the heat rate in Eq. (4) is equivalent to

⟨Q̇⟩ud =

∫ ∞

−∞
dx

∫ ∞

−∞
dv mv J irr

ud(x, v, t) , (5)

where J irr
ud(x, v, t) is defined as

J irr
ud(x, v, t) ≡

(
−γv
m

− γT (t)

m2
∂v

)
Pud(x, v, t) . (6)

Then, the rate of total EP can be expressed using
J irr
ud(x, v, t) as follows [33–36]:

⟨Ṡtot⟩ud =

∫ ∞

−∞
dx

∫ ∞

−∞
dv

(mJ irr
ud)

2

γT (t)Pud
. (7)

Time scales and overdamped equations

There are four characteristic time scales in this setup:
(i) the velocity relaxation time τr ≡ m/γ, (ii) the time
interval between two consecutive observations of the sys-
tem τobs, (iii) the time scale of temperature variation
τtmp, and (iv) the typical time scale of x-variable (over-
damped) dynamics τod. When the condition τr/τobs ≪ 1
is satisfied, the velocity is always relaxed to equilibrium
for any observation time. If the temperature is time-
independent, the overdamped description using only the
x variable is valid under the single condition τr/τobs ≪ 1.
However, if the temperature is time-dependent, the over-
damped approximation also depends on τtmp: for exam-
ple, when τtmp ≈ τr (indicating very rapid variation of
temperature), a proper overdamped description cannot
be obtained, as explained in the Supplementary Section
V [37]. Thus, in this study, we consider the following
hierarchy of time scales: τr ≪ τobs ≤ τod ≈ τtmp.
On these time scales, the systematic overdamped ap-

proximation can be carried out using Brinkman’s hierar-
chy method [31, 38]. In this method, there are two scaling
parameters: m and γ. To satisfy the condition τr ≪ τobs,
either a small m or a large γ is required. Since these two
regimes can lead to distinct approximated expressions
for various thermodynamic quantities, it is important to
carefully examine the scaling behaviors of the parame-
ters. To systematically carry out this investigation, we
introduce two different dimensionless scaling parameters
for Brinkman’s hierarchy method, enabling the explo-
ration of more general scaling behaviors, including small
m and large γ regimes. As elaborated in the Methods sec-
tion, the two parameters are defined as τ ≡ τod/τr ≫ 1
and ν ≡ Vud/Vod, where Vud and Vod are the character-
istic velocities in underdamped and overdamped dynam-
ics, respectively. These parameters are related by ν = τz

(0 ≤ z ≤ 1/2). Here, z = 0 and z = 1/2 correspond
to the large γ and small m limits, respectively, while
0 < z < 1/2 represents an intermediate regime between
the two limiting cases and may correspond to a specific
experimental setup.

Through this method, we first derive the overdamped
approximation of the underdamped FP equation (2).
The detailed derivation is presented in the Methods sec-
tion. Regardless of the z value, the resulting equation is
the same as the usual overdamped FP equation, as shown
below:

∂tPod(x, t) = −∂xJod(x, t), (8)

where Pod(x, t) =
∫
dvPud(x, v, t) and Jod(x, t) ≡

γ−1 (f(x, t)− T (t)∂x)Pod(x, t). Therefore, the corre-
sponding overdamped Langevin equation is

γẋt = f(xt, λt) + ηt , (9)

which is identical to the expression obtained by simply
neglecting the inertia term in Eq. (1).
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Thermodynamic anomalies

Conventionally, the mean heat rate of the overdamped
equation (9) is known as [32]

⟨Q̇⟩od = −⟨f(x, λ) ◦ ẋ⟩od = −
∫ ∞

−∞
dxf(x, λ)Jod(x, t),

(10)
where ⟨· · · ⟩od denotes the ensemble average taken over
Pod(x, t). Additionally, the rate of total EP in the
overdamped approximation is conventionally expressed
as [39, 40]

⟨Ṡtot⟩od =

∫ ∞

−∞
dx

γJ2
od

T (t)Pod
. (11)

These two expressions, Eqs. (10) and (11), accurately
quantify heat and EP in overdamped dynamics when the
temperature is time-independent.

However, if the temperature has time dependence, the
overdamped approximations of Eqs. (5) and (7) do not
conincide with Eqs. (10) and (11), respectively. We refer
to this discrepancy as the thermodynamic anomaly. Our
main result is the explicit expressions for these anomalies.
First, the heat anomaly, defined as AQ ≡ ⟨Q̇⟩ud − ⟨Q̇⟩od
up to the same order of ⟨Q̇⟩od, is

AQ =

{
Ṫ
2 − mT̈

4γ for z = 0 ,
Ṫ
2 for 0 < z ≤ 1/2 .

(12)

Therefore, the anomaly depends on z, unlike the dynamic
equation. The orders of the terms Ṫ /2 and mT̈/4γ are
O(τ0) and O(τ−1), respectively, and are independent of

z. In contrast, the order of ⟨Q̇⟩od depends on z and is
given by O(τ−1+2z). Therefore, for z = 0 (high-viscosity

regime), among the three terms contributing to ⟨Q̇⟩ud,
Ṫ /2 is the leading-order term, while the other two terms,

⟨Q̇⟩od and mT̈/4γ, are of the same higher order O(τ−1).

For 0 < z < 1/2, ⟨Q̇⟩od is of higher order than Ṫ /2. Fi-

nally, for z = 1/2 (small-mass regime), Ṫ /2 and ⟨Q̇⟩od
are of the same order, O(τ0). Note that the order of
each term mentioned above is estimated using the dimen-
sionless formalism presented in the Methods section. An
interesting feature of AQ is that the time-accumulated
AQ depends only on the initial and final information of
the temperature, not on the stochastic path, even though
heat is not a state variable. Furthermore, AQ is indepen-
dent of the external force applied to the system.

The heat anomaly arises from neglecting the veloc-
ity degree of freedom in the overdamped approximation.
This approximation implicitly assumes that the velocity
is always relaxed to its equilibrium state. Consequently,
for constant temperature, the kinetic energy EK remains
unchanged, resulting in no additional heat exchange with
the environment. However, when the temperature varies
with time, EK also changes, leading to additional heat
exchange with the environment. This is the origin of the

heat anomaly. As demonstrated in Supplementary Sec-
tion IV [37], an explicit relation between AQ and EK is
given by

⟨ĖK⟩ = AQ or ⟨EK⟩ud =

{
T
2 − mṪ

4γ for z = 0 ,
T
2 for 0 < z ≤ 1/2 .

(13)

up to the order of ⟨Q̇⟩od.
Similarly to the case of heat, the total EP exhibits

a discrepancy between Eq. (7) and Eq. (11). The EP

anomaly, defined as AS ≡ ⟨Ṡtot⟩ud − ⟨Ṡtot⟩od up to the

same order of ⟨Ṡtot⟩od, is

AS =





m
4γ

(
Ṫ
T

)2
if z = 0 ,

0 if 0 < z ≤ 1/2 .
(14)

The details of the calculations are provided in Supple-
mentary Section III [37]. Thus, AS also depends on z.

The order of m
4γ (Ṫ /T )

2 is O(τ−1) and is independent of

z, whereas the order of ⟨Ṡtot⟩od is O(τ−1+2z). There-

fore, for z = 0, the orders of ⟨Ṡtot⟩od and m
4γ (Ṫ /T )

2 are

the same, O(τ−1). For 0 < z ≤ 1/2, notably, no EP
anomaly appears in this range of z, even though AQ re-
mains finite. Unlike AQ, the time-accumulated AS is
path-dependent for z = 0 due to the squared term of the
time derivative of the temperature. Moreover, Eq. (14)

indicates that ⟨Ṡtot⟩ud ≥ ⟨Ṡtot⟩od. Similar to the case
of position-dependent temperature [11], the finite AS for
z = 0 originates from the breaking of time- and velocity-
reversal symmetry at the microscopic level. However, for
0 < z ≤ 1/2, the extent of this symmetry breaking is

negligible compared to ⟨Ṡtot⟩od, leading to the absence
of the anomaly.

Estimation and control of z

Equations (12) and (14) show that thermodynamic
anomalies depend on the exponent z. Therefore, identify-
ing or controlling z in the given system is crucial for pre-
cisely estimating the anomalies in overdamped dynamics.
Here, we propose an experimental or simulation method
to estimate or control the exponent z. Adjusting z can
be achieved by simultaneously varying the amplitudes of
both the external force and the temperature. Consider
the following adjustments to their magnitudes:

f → τ−ζf and T → τ−ζT, (15)

where ζ is a control parameter for the magnitude ad-
justment. Then, it is straightforward to see that the
dimensionless coefficient equation (19) remains invariant
under this magnitude control, except for the change from
ν = τz to ν′ ≡ τz−ζ/2. This clearly indicates that the
exponent z can be controlled by adjusting ζ, or equiva-
lently, by varying the magnitudes of f and T .
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FIG. 1. Plots of ⟨Q̇⟩ud, ⟨Q̇⟩od, Ṫ /2, and mT̈/(4γ) as functions

of ζ. The z values at the two crossing points - between ⟨Q̇⟩od
and Ṫ /2, and between ⟨Q̇⟩od and mT̈/(4γ) - are highlighted
by the orange and purple vertical lines, respectively. The
orange and purple lines are located at ζ ≈ 0 and ζ ≈ 1.03,
respectively. For each ζ, the values of ⟨Q̇⟩ud, ⟨Q̇⟩od, Ṫ /2, and
mT̈/(4γ) are taken as their maximum absolute values within
one period in the periodic steady state.

In practice, the exponent can be estimated or set to
an appropriate value by comparing the magnitudes of
Ṫ /2, ⟨Q̇⟩od, and mT̈/(4γ). In the setup with the mag-

nitude adjustment (15), the orders of Ṫ /2 and mT̈/(4γ)
are O(τ0) and O(τ−1), respectively, whereas the order of

⟨Q̇⟩od depends on z − ζ/2 as ⟨Q̇⟩od ∼ O(τ−1+2(z−ζ/2)).

Now, we can estimate Ṫ /2, ⟨Q̇⟩od, and mT̈/(4γ) by
varying ζ, as shown in Fig. 1. If the magnitudes of
⟨Q̇⟩od and mT̈/(4γ) become comparable, it implies that
−1 + 2(z − ζ/2) ≈ −1, which yields z ≈ ζ/2. On the

other hand, if the magnitudes of ⟨Q̇⟩od and Ṫ /2 become
comparable, it signifies −1+2(z− ζ/2) ≈ 0, which yields
z ≈ ζ/2 + 1/2.

To verify this method numerically, we consider a
Langevin system with an external force f = k0x and a
time-dependent temperature T (t) = 2 + sin(t). Here, we
set τtmp = 2π = τod, which is the period of the temper-
ature variation. Thus, τ = 2πγ/m. The parameters are
set as k0 = 1, γ = 1, and m = 0.01 (small-m condition).

Figure 1 shows the plots of ⟨Q̇⟩od, Ṫ /2, and mT̈/(4γ) as
functions of ζ. Comparing the magnitudes of ⟨Q̇⟩od with

mT̈/(4γ) or Ṫ /2 consistently leads to z ≈ 1/2, which
corresponds to the small-m setup.

We note that the exponent can also be extracted from
the scaling behavior of ⟨Q̇⟩od ∼ τ−1+2z by varying τ .
However, this approach may not be suitable, as adjust-
ing τ requires varying m or γ, which are typically fixed
parameters in most experimental setups rather than con-
trollable variables. In contrast, adjusting the magnitudes
of f and T is more straightforward.

FIG. 2. Numerical analysis of a finite-time Brownian Carnot
engine. (a) Schematic diagram of a Brownian Carnot En-
gine depicting its four stages of operation in each time-cycle.
The figure shows the thermodynamic cycle of the engine in a
clockwise direction, consisting of four key processes: isother-
mal compression, adiabatic compression, isothermal expan-
sion, and adiabatic expansion. The temperature of the sur-
rounding heat bath is represented by the outer colored ring,
while the compression and expansion processes are indicated
by variations in potential strength within each quadrant. (b)
Efficiencies ηud, ηod, and ηod+an as a function of γ for the
Brownian Carnot engine. The Carnot efficiency bound ηC is
also shown in the plot for reference.

Efficiency of heat engine

The effects of the thermodynamic anomalies can be
significant in engine systems. As an example, consider
a Brownian Carnot engine experimentally realized in
Ref. [6]. The schematic diagram of the engine is depicted
in Fig. 2(a). In this engine, a Brownian particle is con-
fined in harmonic potential with a time-dependent stiff-
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ness k(t): during the compression phase 0 ≤ t < tp/2,
k(t) = k0 + k1t

2/t2p; during the expansion phase tp/2 ≤
t < tp, k(t) = k0 + k1(tp − t)2/t2p, where tp denotes the
period of the engine. Each cycle of the engine is divided
into four processes based on the temperature variation:
(i) an isothermal process, T (t) = Tc for 0 ≤ t < tp/4;

(ii) an adiabatic process, T (t) = Tc
√
k(t)/k(tp/4) for

tp/4 ≤ t < tp/2; (iii) an isothermal process, T (t) = Th
for tp/2 ≤ t < 3tp/4; and (iv) an adiabatic process,

T (t) = Th
√
k(t)/k(3tp/4) for 3tp/4 ≤ t < tp. The time

variations of k(t) and T (t) are visually presented in Sup-
plementary Section VI [37].

Under this setup, we evaluate the three different ef-
ficiencies: ηud, ηod, and ηud+an using the underdamped
formulation, overdamped formulation, and overdamped
formulation incorporating the heat anomaly, respectively.
The details are presented in the Methods section. Fig-
ure 2(b) shows the resulting plots of ηud, ηod, and ηod+an

as functions of γ. Since m is set to O(1) value, the over-
damped approximation with z = 0 is expected in the
large-γ regime. Thus, AQ for z = 0 is used to evaluate
ηod+an. Note that the contribution of the anomaly to
heat becomes more significant in the large-γ regime, as
presented in Supplementary Section II [37]. This results
in the efficiency discrepancy between ηod and ηod+an. As
γ increases, only ηod+an converges to ηud, whereas ηod
deviates significantly from the other two. This highlights
the substantial impact of the anomalies on the accurate
calculation of thermodynamic quantities in heat engines.

Estimation of kinetic energy

In some cases, evaluating kinetic energy in overdamped
systems is necessary for accurately estimating thermo-
dynamic quantities [6, 41]. However, directly measuring
kinetic energy in such systems is experimentally challeng-
ing, as velocity rapidly relaxes to equilibrium. Therefore,
state-of-the-art experimental setups [42–44] are required
for precise kinetic energy measurements. To overcome
this technical difficulty, a method, called time-averaged
velocity (TAV) method, for estimating kinetic energy was
proposed, where kinetic energy is inferred from measure-
ments of the mean square velocity sampled at frequen-
cies several orders of magnitude lower than the velocity
relaxation frequency [41]. However, the TAV method, is
limited to systems with a Brownian particle trapped in a
harmonic potential and is accurate only for quasi-static
processes, failing for moderately fast temperature vari-
ations, as shown in Supplementary Section VII [37]. In
contrast, Eq. (13) directly provides an accurate kinetic
energy estimate even for rapidly varying temperatures.
Performance comparisons between the TAV method and
our approach are presented in Supplementary Section

VII [37].
DISCUSSION

We derive explicit expressions for heat and EP anoma-
lies in systems immersed in an environment with a gen-
eral time-varying temperature. Using a cyclic engine as
an example, we demonstrate that thermodynamic quanti-
ties such as heat and efficiency estimated within the over-
damped description can significantly deviate from their
correct values if these anomalies are not properly consid-
ered. An important point is that these anomalies depend
on the exponent z, which relates the two scaling parame-
ters, ν and τ , introduced for the systematic overdamped
approximation. Therefore, it is crucial to estimate z for
precise calculation of thermodynamic quantities. We pro-
pose an experimental method to estimate or control z by
adjusting the amplitudes of force and temperature.
Our results allow for accurate estimation of thermody-

namic quantities in overdamped systems without requir-
ing complex or challenging experimental techniques to
directly measure the system’s fast-relaxing velocity. In-
stead, by simply incorporating the anomalies into the cor-
responding quantities computed within the overdamped
description, we can achieve accurate measurements. Fur-
thermore, our findings provide a straightforward method
for estimating kinetic energy even for overdamped sys-
tems. Consequently, our results offer the systematic way
for an accurate study of thermodynamics in a wide range
of overdamped systems with time-varying temperature.

METHODS

Brinkman’s hierarchy method with two-scaling
parameters

Define P̄ud ≡ ψ−1
0 Pud(x, v, t), where ψ0 = Ne−Φ/2

with the normalization factor N ≡ [2πT (t)/m]
−1/4

and

Φ ≡ mv2

2T (t) . Using the nth eigenfunction ψn of a harmonic

oscillator given by

ψn =
1√
2nn!

ψ0Hn

(√
m

2T (t)
v

)
, (16)

where Hn(x) denotes the Hermite polynomial, P̄ud can
be expanded as

P̄ud =
∞∑

n=0

cn(x, t)ψn . (17)

Note that c0(x, t) = Pod(x, t) as explained in Supplemen-
tary Section I [37]. Substituting Eq. (17) into the Her-
mitianized Fokker-Planck equation yields the following
coupled equation for the coefficients cn (for n ≥ 0):
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∂tcn = −
√

(n+ 1)T (t)

m
∂xcn+1 +

√
n√

mT (t)
[f(x, λt)− T (t)∂x] cn−1 −

nγ

m
cn − Ṫ (t)

2T (t)

(√
n(n− 1)cn−2 + ncn

)
. (18)

The detailed derivation of Eq. (18) is provided in Sup-
plementary Section I [37].

Furthermore, it is shown in SM that the high-viscosity
and the small-mass limits result in different expres-
sions for heat and EP. To address this in a systematic
way, here, we present a unified perturbative scheme,
Brinkman’s hierarchy with two-scaling parameters, ca-
pable of exploring not only these two limits but also the
intermediate regimes.

To achieve this, we convert Eq. (18) into a dimen-
sionless form by introducing the characteristic time and

length scales of the overdamped system, denoted as τod
and lod, respectively. Using these, we define the dimen-
sionless time, position, and nth coefficient as t̄ ≡ t/τod,
x̄ ≡ x/lod, and c̄n ≡ lodcn, respectively. Additionally, we
introduce a dimensionless temperature T̄ (t) ≡ T (t)/T0,
where T0 represents the typical energy scale of the sys-
tem. These definitions allow us to specify the typical
velocities of the underdamped system, Vud ≡

√
T0/m,

and the overdamped system, Vod ≡ lod/τod. Using the
quantities defined thus far, we can rewrite Eq. (18) in a
dimensionless form as follows:

∂t̄c̄n = −ν
√

(n+ 1)T̄ (t)∂x̄c̄n+1 + ν
√
nT̄ (t)

[
f̄(x, λt)

T̄ (t)
− ∂x̄

]
c̄n−1 − τnc̄n −

˙̄T (t)

2T̄ (t)

(√
n(n− 1)c̄n−2 + nc̄n

)
, (19)

where ν ≡ Vud/Vod, τ ≡ τod/τr,
˙̄T = dT̄ /dt̄, and f̄ ≡

(lod/T0)f is the dimensionless force.
Instead of the two parameters m and γ in Eq. (18),

whose magnitudes govern the overdamped approxima-
tion, the two dimensionless parameters τ and ν in
Eq. (19) now play this role. Here, τ is large (τ ≫ 1) be-
cause we focus on the time scales τr ≪ τobs ≤ τod ≈ τtmp.
We also anticipate ν ≫ 1, as Vud ≫ Vod is typically ex-
pected. To systematically expand the orders in Eq. (19),
we need to establish the magnitude relationship between
τ and ν. For simplicity, we set ν = τz, where z ≥ 0, indi-
cating that ν is of order O(τz). We note that z = 0 leads
to m ∼ T0τ

2
od/l

2
od. Thus, m is a O(1) quantity in the

dimensionless form, which implies that γ must be large
to satisfy the condition τ ≫ 1. Therefore, z = 0 corre-
sponds to the high-viscosity limit. On the other hand,
z = 1/2 gives γ ∼ T0τod/l

2
od. In this case, γ is a O(1)

quantity in the dimensionless equation, which implies
that m must be small. Therefore, z = 1/2 corresponds
to the small-mass limit. Finally, 0 < z < 1/2 represents
an intermediate regime between the high-viscosity and
small-mass limits.

For 0 ≤ z ≤ 1/2, substituting ν = τz into Eq. (19) and
collecting the leading-order terms result in (for n = 0, 1),

∂t̄c̄0 = −τz
√
T̄ ∂x̄c̄1 , (20)

c̄1 = τz−1
√
T̄ (t)

(
f̄/T̄ − ∂x̄

)
c̄0 . (21)

Plugging Eq. (21) into Eq. (20) leads to the following
dimensionless FP equation:

∂t̄c̄0 = −∂x̄J̄(x, t) . (22)

where the dimensionless probability current J̄(x, t) is
given by

J̄(x, t) = τ2z−1
(
f̄ − T̄ ∂x̄

)
c̄0 . (23)

As J̄(x, t) diverges for z > 1/2, which is physically infea-
sible, we restrict our attention to the regime 0 ≤ z ≤ 1/2.
Note that if we convert the dimensionless variables in
Eq. (22) back to their original forms, the equation be-
comes identical to Eq. (8). This shows that the dynamic
equations for overdamped systems are independent of z.

Three different efficiencies: ηud, ηod, and ηod+an

Under the setup described in the “Efficiency of heat
engine” section, we numerically evaluate the engine effi-
ciency η = ⟨W ⟩/⟨Qin⟩ in a periodic steady state, where

⟨W ⟩ =
∫ tp
t=0

dtk̇⟨x2⟩/2 represents work done by the en-

gine and ⟨Qin⟩ =
∫ tp
0
dtΘ(⟨Q̇⟩)⟨Q̇⟩ denotes the heat in-

put to the engine. Here, the Heaviside function Θ(x)
is defined as Θ(x) = 1 for x > 0 and Θ(x) = 0 oth-
erwise. For this calculation, the parameters are set as
k0 = 2, k1 = 64, Tc = 300, Th = Tc

√
k(tp/2)/k(tp/4),

tp = 103, andm = 1. We evaluate the input heat in three
different ways: using the underdamped formulation (4),

⟨Qin⟩ud =
∫ tp
0
dtΘ(⟨Q̇⟩ud)⟨Q̇⟩ud; using the overdamped

formulation (10), ⟨Qin⟩od =
∫ tp
0
dtΘ(⟨Q̇⟩od)⟨Q̇⟩od; and

using the overdamped formulation with the addition of

the heat anomaly (12), ⟨Qin⟩od+an =
∫ tp
0
dtΘ(⟨Q̇⟩od +

AQ)(⟨Q̇⟩od + AQ). Note that ⟨W ⟩ does not depend on
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whether the underlying dynamics are underdamped or
overdamped, as the work is evaluated solely using posi-
tion trajectories. Then, the efficiency can also be defined
in three ways: ηud ≡ ⟨W ⟩/⟨Qin⟩ud, ηod ≡ ⟨W ⟩/⟨Qin⟩od,
and ηod+an ≡ ⟨W ⟩/⟨Qin⟩od+an.
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I. BRINKMAN’S HIERARCHY FOR LANGEVIN SYSTEM WITH TIME-DEPENDENT
TEMPERATURE

A. Derivation of the coupled equations for Brinkman’s coefficients

The Fokker-Planck operator Lud of Eq. (3) in the main text can be divided into two parts, reversible L rev and
irreversible L irr ones defined as

L rev ≡ − ∂

∂x
v − 1

m

∂

∂v
f(x, λt) , L irr ≡ − 1

m

∂

∂v

(
−γv − γT (t)

m

∂

∂v

)
. (S1)

The irreversible operator L irr can be transformed into the Hermitianized form L̄ irr as follows:

L̄ irr ≡ eΦ/2L irre−Φ/2, where Φ ≡ mv2

2T (t)
. (S2)

By defining the creation â† and annihilation â operators as

â† ≡ 1

2

√
m

T (t)
v −

√
T (t)

m

∂

∂v
, â ≡ 1

2

√
m

T (t)
v +

√
T (t)

m

∂

∂v
, (S3)

L̄ irr can be written as

L̄ irr = − γ

m
â†â. (S4)

As Eq. (S4) is identical to that of the harmonic oscillator, the nth eigenfunction of L̄ irr is given by

ψn =
1√
2nn!

ψ0Hn

(√
m

2T (t)
v

)
, (S5)

where ψ0 = Ne−Φ/2 with the normalization factor N ≡ [2πT (t)/m]
−1/4

and Hn(x) denotes the Hermite polynomial,
i.e., H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, · · · . Thus, L̄ irrψn = −εnψn with the eigenvalue εn = γn/m. The
reversible operator L rev can be similarly transformed as

L̄ rev ≡ eΦ/2L reve−Φ/2 = −b̂â− b̂′â†, (S6)

where b̂ ≡
√
T (t)/m∂x and b̂′ ≡

√
T (t)/m∂x −

√
m/T (t)f(x, λt)/m.

Up to this point, the derivation procedure is exactly the same as that of the conventional Brinkman’s hierarchy
method [1, 2]. However, in the remaining steps, the time dependence of ψn introduces additional mathematical
complexity, as presented below. By multiplying N−1eΦ/2 to both sides of Eq. (2) in the main text and defining
P̄ud ≡ ψ−1

0 Pud(x, v, t), we obtain the following:

∂tP̄ud − (∂tψ
−1
0 )Pud = (L̄ rev + L̄ irr)P̄ud. (S7)
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We note that the term (∂tψ
−1
0 )Pud in Eq. (S7) is absent in the conventional Brinkman’s hierarchy calculation [1, 2],

where the temperature has no dependence on time. Explicit calculation leads to

(∂tψ
−1
0 )Pud = J P̄ud, whereJ ≡ Ṫ (t)

4T (t)2
(T −mv2). (S8)

Now, we expand P̄ud in terms of the eigenfunction ψn as

P̄ud =
∞∑

n=0

cn(x, t)ψn. (S9)

Note that the dependence of P̄ud on the position and velocity is split into purely velocity-dependent functions ψn and
purely position-dependent coefficients cn. In addition, the γ-dependence of the distribution is contained solely in the
coefficients cn. ψn depends on time due to the time-varying temperature T (t). Plugging Eqs. (S6), (S8), and (S9)
into Eq. (S7) leads to

∞∑

n=0

(∂tcn)ψn +
∞∑

n=0

cn∂tψn =−
∞∑

n=0

√
(n+ 1)T (t)

m
∂xcn+1ψn +

√
n√

T (t)m

∞∑

n=1

[f(x, λt)− T (t)∂x] cn−1ψn

− γ

m

∞∑

n=0

cnnψn +
∞∑

n=0

J cnψn (S10)

In Eq. (S10), ∂tψn can be calculated as

∂tψn =
1√
2nn!

[
(∂tψ0)Hn

(√
m

2T
v

)
+ ψ0∂tHn

(√
m

2T
v

)]

=
1√
2nn!

[
−JHn

(√
m

2T
v

)
− nv

√
m

2T

(
Ṫ

T

)
ψ0Hn−1

(√
m

2T
v

)]

= −Jψn −
√
nm

4T

Ṫ

T
vψn−1 . (S11)

Substituting Eq. (S11) into Eq. (S10), we obtain

∞∑

n=0

(∂tcn)ψn =−
∞∑

n=0

√
(n+ 1)T (t)

m
∂xcn+1ψn +

√
n√

T (t)m

∞∑

n=1

[f(x, λt)− T (t)∂x] cn−1ψn − γ

m

∞∑

n=0

cnnψn

+ 2

∞∑

n=0

J cnψn +

∞∑

n=0

√
(n+ 1)m

4T

Ṫ

T
vcn+1ψn . (S12)

To extract the hierarchical relationship between cns from Eq. (S12), the following identities are necessary:

∫ ∞

−∞
dv ψn(v)ψl(v) = δn,l ,

∫ ∞

−∞
dvJψn(v)ψl(v) =

Ṫ

4T

[
−2lδn,l −

√
l(l − 1)δn,l−2 −

√
(l + 1)(l + 2)δn,l+2

]
,

∫ ∞

−∞
dv vψn(v)ψl(v) =

√
2T

m

(√
l

2
δn,l−1 +

√
l + 1

2
δn,l+1

)
,

(S13)

where δn,l is the Kronecker delta function. To obtain the second and the third equalities in Eq. (S13), the following
relation is used

vψn(v) =

√
2T

m

[√
n+ 1

2
ψn+1(v) +

√
n

2
ψn−1(v)

]
, (S14)

which can be derived using the recurrence relation of the Hermite polynomial, i.e., xHn(x) =
1
2Hn+1(x) + nHn−1(x).
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Multiplying Eq. (S12) by ψl and integrating over the velocity variable yields the hierarchical relationship of the
coefficients. For instance, multiplying Eq. (S12) by ψ0, integrating over the velocity variable, and then using Eqs. (S13),
we obtain

∂tc0 = −
√
T (t)

m
∂xc1 . (S15)

Similarly, by multiplying Eq. (S12) by ψ1, we have

∂tc1 = −
√

2T (t)

m
∂xc2 +

1√
mT (t)

[f(x, λt)− T (t)∂x]c0 −
γ

m
c1 −

Ṫ (t)

2T (t)
c1 . (S16)

For general ψl with l ≥ 2, the resulting equation, after substituting l with n, is

∂tcn = −
√

(n+ 1)T (t)

m
∂xcn+1 +

√
n√

mT (t)
[f(x, λt)− T (t)∂x] cn−1 −

nγ

m
cn − Ṫ (t)

2T (t)

(√
n(n− 1)cn−2 + ncn

)
.

(S17)

As seen in Eq. (S17), the evolution of the nth coefficient is coupled to the (n+ 1), (n− 1) and (n− 2)th coefficients.
Therefore, to solve the coupled equations, all coefficients must be determined simultaneously. However, in the large γ
or small m limit, we can deduce that the contribution of the higher-order coefficients becomes negligibly small. Thus,
only the first few coefficients are needed in the limit.

Using the orthonormality of the eigenfunctions ψn, i.e.,
∫∞
−∞ dv ψnψm = δnm, we can show that c0 is identical to

the marginal distribution of Pud as follows:

Pod(x, t) =

∫ ∞

−∞
dvPud(x, v, t) =

∫ ∞

−∞
dv ψ0P̄ (x, v, t) =

∞∑

n=0

cn

∫ ∞

−∞
dv ψ0ψn = c0 . (S18)

B. High-viscosity regime: z = 0

Let us first consider the large-γ regime, which is one of the typical conditions leading to overdamped dynamics.
The other conditions, the small-m and intermediate regimes, will be discussed in Secs. I C and IE. As the probability
distribution cannot diverge in the large-γ limit, cn can be expressed as inverse powers of γ, as follows:

cn(x, t) =
∞∑

j=0

c(j)n (x, t)γ−j . (S19)

Here, c0 is considered to be of order O(γ0) due to the normalization condition
∫∞
−∞ dx c0 = 1 (see Eq. (S18)), implying

c
(0)
0 ̸= 0. Substituting Eq. (S19) into Eq. (S16) and collecting the terms of the same order in γ, we find that c

(0)
1 = 0.

Therefore, c1 is of order O(γ−1). For n ≥ 2, from Eq. (S17), it is clear that O(cn) = O(cn−2/γ). Therefore, we
generally deduce that all cns are of order O(γ⌊−n/2⌋), where ⌊· · · ⌋ represents the floor function.

The calculation of heat in the overdamped approximation requires the terms up to the order of γ−2, as explained in
Sec II. Therefore, we aim to calculate all quantities up to that order. Then, the relevant cn coefficients (n = 0, 1, · · · , 4)
can be expanded as

c0 = c
(0)
0 +

1

γ
c
(1)
0 +

1

γ2
c
(2)
0 , c1 =

1

γ
c
(1)
1 +

1

γ2
c
(2)
1 ,

c2 =
1

γ
c
(1)
2 +

1

γ2
c
(2)
2 , c3 =

1

γ2
c
(2)
3 , c4 =

1

γ2
c
(2)
4 .

(S20)

All cn with n ≥ 5 are of higher order than O(γ−2). Inserting Eq. (S20) into the coupled equations (S15), (S16), and

(S17), we can construct the hierarchical relationship between c
(i)
n . First, plugging the expanded expressions of c0 and

c1 into Eq. (S15) and arranging the terms in the same order, we obtain

∂tc
(0)
0 = 0, ∂tc

(1)
0 = −

√
T (t)

m
∂xc

(1)
1 , ∂tc

(2)
0 = −

√
T (t)

m
∂xc

(2)
1 . (S21)
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Next, collecting the same order terms in Eq. (S16), we have the following two equations:

0 =
1√
mT (t)

[f(x, λt)− T (t)∂x]c
(0)
0 − 1

m
c
(1)
1 (S22a)

∂tc
(1)
1 = −

√
2T (t)

m
∂xc

(1)
2 +

1√
mT (t)

[f(x, λt)− T (t)∂x]c
(1)
0 − 1

m
c
(2)
1 − Ṫ (t)

2T (t)
c
(1)
1 (S22b)

From Eq. (S22a), c
(1)
1 becomes

c
(1)
1 =

√
m

T (t)
[f(x, λt)− T (t)∂x] c

(0)
0 . (S23)

Substituting Eq.(S23) and the expression of c
(1)
2 from Eq. (S26a) into Eq. (S22b), we obtain c

(2)
1 as

c
(2)
1 =

√
m

T (t)
[f(x, λt)− T (t)∂x] c

(1)
0 +

3m

2

√
m

T (t)
Ṫ (t)∂xc

(0)
0 − m

√
m√

T (t)

∂f(x, λt)

∂λt
λ̇tc

(0)
0 . (S24)

From Eq. (S17), the equation for n = 2 is written as

∂tc2 = −
√

3T (t)

m
∂xc3 +

√
2√

mT (t)
[f(x, λt)− T∂x] c1 −

2γ

m
c2 −

Ṫ (t)

2T (t)

(√
2c0 + 2c2

)
. (S25)

Then, following the similar procedure used for obtaining c
(1)
1 and c

(2)
1 , we get

c
(1)
2 = − m

2
√
2

(
Ṫ

T

)
c
(0)
0 , (S26a)

c
(2)
2 =

mf2√
2T

c
(0)
0 −

√
2mf∂xc

(0)
0 − m√

2

∂f

∂x
c
(0)
0 +

m√
2
T∂2xc

(0)
0 − m

2
√
2

(
Ṫ

T

)
c
(1)
0 +

m2

4
√
2

(
T̈

T

)
c
(0)
0 . (S26b)

Similarly for n = 3, we get the following equation and c
(2)
3 :

∂tc3 = −2

√
T (t)

m
∂xc4 +

√
3√

mT (t)
[f(x, λt)− T (t)∂x] c2 −

3γ

m
c3 −

Ṫ (t)

2T (t)

(√
6c1 + 3c3

)
. (S27)

c
(2)
3 = −

√
6

4

(
m

T (t)

) 3
2

Ṫ (t)[f(x, λt)− T (t)∂x]c
(0)
0 . (S28)

Finally, equation for n = 4 and c
(2)
4 are given by

∂tc4 = −
√

5T (t)

m
∂xc5 +

2√
mT (t)

[f(x, λt)− T (t)∂x]c3 −
4γ

m
c4 −

Ṫ (t)

2T (t)

(
2
√
3c2 + 4c4

)
, (S29)

c
(2)
4 =

1

8

√
3

2
m2

(
Ṫ

T

)2

c
(0)
0 . (S30)

We have obtained all the coefficients up to the order of γ−2 in terms of c0 and its spatial derivatives.

C. Small-mass regime: z = 1/2

Next, we consider the small-mass limit, which is another condition leading to overdamped dynamics. In this limit,
the coefficient cn can be expanded in powers of the mass m. Carefully examining the governing equation (S17), we
can deduce that O(cn+1) = O(

√
mcn). Therefore, cn can be expanded as

cn(x, t) =
∞∑

j=0

c(j)n (x, t)(
√
m)j . (S31)
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Since c0 is of order O(m0), the order of cn is O(
√
m

n
). Applying a similar procedure as in the large-γ regime, we can

find the hierarchical relationship of c
(j)
n . The results up to order O(m) are summarized as follows: For c0, the results

are

∂tc
(0)
0 = −

√
T (t)∂xc

(1)
1 , ∂tc

(1)
0 = −

√
T (t)∂xc

(2)
1 . (S32)

c
(1)
1 and c

(2)
1 are given by

c
(1)
1 =

1

γ
√
T

[f − T∂x] c
(0)
0 , c

(2)
1 =

1

γ
√
T

[f − T∂x] c
(1)
0 . (S33)

Finally, the expression of c
(2)
2 is

c
(2)
2 =

1√
2γ2T

[
f2 − T (∂xf)− 2fT∂x + T 2∂2x

]
c
(0)
0 −

√
2Ṫ

4γT
c
(0)
0 . (S34)

D. Dimensionless coupled equations for Brinkman’s coefficients with two-scaling parameters

As shown in the previous subsections, high-viscosity and the small-mass limits result in different expressions for
the Brinkman’s coefficients. To address this in a systematic way, here, we present a unified perturbative scheme,
Brinkman’s hierarchy with two-scaling parameters, capable of exploring not only these two limits but also the inter-
mediate regimes. Note that the same derivation is also presented in Appendix of the main text.

To achieve this, we convert Eq. (S17) into a dimensionless form by introducing the characteristic time and length
scales of the overdamped system, denoted as τod and lod, respectively. Using these, we define the dimensionless
time, position, and nth coefficient as t̄ ≡ t/τod, x̄ ≡ x/lod, and c̄n ≡ lodcn, respectively. Additionally, we introduce
a dimensionless temperature T̄ (t) ≡ T (t)/T0, where T0 represents the typical energy scale of the system. These

definitions allow us to specify the typical velocities of the underdamped system, Vud ≡
√
T0/m, and the overdamped

system, Vod ≡ lod/τod. Using the quantities defined thus far, we can rewrite Eq. (S17) in a dimensionless form as
follows:

∂t̄c̄n = −ν
√

(n+ 1)T̄ (t)∂x̄c̄n+1 + ν
√
nT̄ (t)

[
f̄(x, λt)

T̄ (t)
− ∂x̄

]
c̄n−1 − τnc̄n −

˙̄T (t)

2T̄ (t)

(√
n(n− 1)c̄n−2 + nc̄n

)
, (S35)

where ν ≡ Vud/Vod, τ ≡ τod/τr,
˙̄T = dT̄ /dt̄, and f̄ ≡ (lod/T0)f is the dimensionless force.

E. Intermediate regime: 0 < z < 1/2

Substituting ν = τz into Eq. (S35) for n = 0, 1, and 2 leads to

∂t̄c̄0 = −τz
√
T̄ (t)∂x̄c̄1 , (S36)

∂t̄c̄1 = −τz
√

2T̄ (t)∂x̄c̄2 + τz
√
T̄ (t)

[
f̄(x, λt)

T̄ (t)
− ∂x̄

]
c̄0 − τ c̄1 −

˙̄T (t)

2T̄ (t)
c̄1 , (S37)

∂t̄c̄2 = −τz
√

3T̄ (t)∂x̄c̄3 + τz
√
2T̄ (t)

[
f̄(x, λt)

T̄ (t)
− ∂x̄

]
c̄1 − 2τ c̄2 −

˙̄T (t)

2T̄ (t)

(√
2c̄0 + 2c̄2

)
. (S38)

For 0 < z < 1/2, collecting the leading-order terms for n = 1 and n = 2 result in

c̄1 ≈ τz−1
√
T̄ (t)

(
f̄/T̄ − ∂x̄

)
c̄0 . (S39)

c̄2 ≈ −
˙̄T (t)

2
√
2T̄ (t)τ

c̄0 . (S40)

Therefore, the orders of the first three coefficients are O(c̄0) = τ0, O(c̄1) = τ−1+z, and O(c̄2) = τ−1. The relation for
all higher-order coefficients with n ≥ 3 is given by O(c̄n) = O(c̄n−2)/τ .
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As the value of z is not fixed, calculating the higher-order terms is not straightforward. Therefore, we first write
the expansion of c̄n with the leading three terms as

c̄0 = c̄
(0)
0 +

1

τα1
c̄
(1)
0 +

1

τα2
c̄
(2)
0 + · · · , (S41)

c̄1 =
c̄
(0)
1

τ1−z
+

1

τβ1
β1c̄

(1)
1 +

1

τβ2
c̄
(2)
1 + · · · , (S42)

c̄2 =
1

τ
c̄
(0)
2 +

1

τγ1
c̄
(1)
2 +

1

τγ2
c̄
(2)
2 + · · · . (S43)

c̄3 =
1

τ2−z
c̄
(0)
3 +

1

τω1
c̄
(1)
3 +

1

τω2
c̄
(2)
3 + · · · . (S44)

To determine the set of exponents {αi, βi, γi, ωi}, we substitute the above expansion into the corresponding governing
equations. For instance, to obtain αi, we substitute Eqs. (S41) and (S42) into Eq. (S36), yielding

∂t̄

(
c̄
(0)
0 +

1

τα1
c̄
(1)
0 +

1

τα2
c̄
(2)
0

)
= −τz

√
T̄ ∂x̄

(
c̄
(0)
1

τ1−z
+
c̄
(1)
1

τβ1
+
c̄
(2)
1

τβ2

)
. (S45)

Matching terms of Eq. (S45) order by order, we obtain

∂t̄c̄
(0)
0 = 0 , (S46)

1

τα1
∂t̄c̄

(1)
0 = − 1

τ1−2z

√
T̄ ∂x̄c̄

(0)
1 , (S47)

1

τα2
∂t̄c̄

(2)
0 = − 1

τβ1−z

√
T̄ ∂x̄c̄

(1)
1 . (S48)

Thus, from Eq. (S47), we find that α1 = 1 − 2z. Likewise, Eq. (S48) gives α2 = β1 − z. More generally, we obtain
αi+1 = βi − z for i ≥ 1.

Now, substituting Eqs. (S41), (S42), and (S43) into Eq. (S37), we have

∂t̄

(
c̄
(0)
1

τ1−z
+
c̄
(1)
1

τβ1
+
c̄
(2)
1

τβ2

)
=− τz

√
2T̄ ∂x̄

(
c̄
(0)
2

τ
+
c̄
(1)
2

τγ1

)
+ τz

√
T̄

(
f̄

T̄
− ∂x̄

)(
c̄
(0)
0 +

c̄
(1)
0

τ1−2z
+
c̄
(2)
0

τα2

)

− τ

(
c̄
(0)
1

τ1−z
+
c̄
(1)
1

τβ1
+
c̄
(2)
1

τβ2

)
−

˙̄T

2T̄

(
c̄
(0)
1

τ1−z
+
c̄
(1)
1

τβ1
+
c̄
(2)
1

τβ2

)
. (S49)

Matching the leading order terms of Eq. (S49) results in

c̄
(0)
1 =

√
T̄

(
f̄

T̄
− ∂x̄

)
c̄
(0)
0 . (S50)

Matching the next order terms of Eq. (S49), τz
√
T̄
(
f̄/T̄ − ∂x̄

)
c̄
(1)
0 /τ1−2z and −τ(c̄(1)1 /τβ1), yields β1 = 2− 3z and

c̄
(1)
1 =

√
T̄

(
f̄

T̄
− ∂x̄

)
c̄
(1)
0 . (S51)

Thus, α2 = β1 − z = 2− 4z.
Finally, substituting Eqs. (S41), (S42), (S43), and (S44) into Eq. (S38) gives

∂t̄

(
1

τ
c̄
(0)
2 +

1

τγ1
c̄
(1)
2

)
=− τz

√
3T̄ ∂x̄

(
1

τ2−z
c̄
(0)
3 +

1

τω1
c̄
(1)
3

)
+ τz

√
2T̄

(
f̄

T̄
− ∂x̄

)(
c̄
(0)
1

τ1−z
+

c̄
(1)
1

τ2−3z
+
c̄
(2)
1

τβ2

)

− 2τ

(
1

τ
c̄
(0)
2 +

1

τγ1
c̄
(1)
2

)
−

˙̄T

2T̄

√
2

(
c̄
(0)
0 +

1

τ1−2z
c̄
(1)
0 +

1

τ2−4z
c̄
(2)
0

)
−

˙̄T

T̄

(
1

τ
c̄
(0)
2 +

1

τγ1
c̄
(1)
2

)
.

(S52)

The leading-order terms of Eq. (S52), −2τ
(

1
τ c̄

(0)
2

)
and − ˙̄T

2T̄

√
2c̄

(0)
0 , are matched as

c̄
(0)
2 = −

˙̄T (t)

2
√
2T̄ (t)

c̄
(0)
0 . (S53)
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By matching the next order terms of Eq. (S52), τz
√
2T̄
(

f̄
T̄
− ∂x̄

)(
c̄
(0)
1

τ1−z

)
, −2τ

(
1

τγ1
c̄
(1)
2

)
, and − ˙̄T

2T̄

√
2
(

1
τ1−2z c̄

(1)
0

)
,

we find that γ1 = 2− 2z and

c̄
(1)
2 =

T̄√
2

(
f̄

T̄
− ∂x̄

)2

c̄
(0)
0 −

˙̄T

2
√
2T̄

c̄
(1)
0 . (S54)

II. ANOMALY OF HEAT RATE

A. Heat-rate expression in terms of Brinkman’s coefficient

We now focus on the anomaly of heat rate that appears in the Langevin system with time-dependent temperatures.
For an underdamped system, the average heat rate [3] is given by

⟨Q̇⟩ud = −⟨γv2⟩ud + ⟨v ◦ η⟩ud , (S55)

where ◦ denotes the Stratonovich product and ⟨· · · ⟩ud denotes the ensemble average with respect to the underdamped

probability distribution Pud(x, v, t). Using the relation ⟨v ◦ η⟩ud = γT (t)
m = −γT (t)

m

∫
dx
∫
dv v∂vPud derived via

stochastic calculus, Eq. (S55) can be reexpressed as

⟨Q̇⟩ud =

∫ ∞

−∞
dx

∫ ∞

−∞
dv mvJ irr

ud(x, v, t)

=
m

2

∫ ∞

−∞
dx

∫ ∞

−∞
dv v2

[
−∂vJ irr

ud(x, v, t)
]
, (S56)

where J irr
ud is the irreversible probability current associated with the underdamped system, given by

J irr
ud(x, v, t) ≡

(
−γv
m

− γT (t)

m2
∂v

)
Pud(x, v, t) , (S57)

and the integration by part is used for the second equality in Eq. (S56). The integrand in Eq. (S56), −∂vJ irr
ud(x, v, t),

can be further manipulated as

−∂vJ irr
ud(x, v, t) = L irrPud = Ne−

Φ
2 L̄ irrP̄ud. (S58)

By plugging Eqs. (S58) and (S9) into Eq. (S56) and using the eigenfunction relation L̄ irrψn = −εnψn with εn = γn/m,
the heat rate can be expressed as

⟨Q̇⟩ud = −γ
2

∞∑

n=0

ncn

∫ ∞

−∞
dx

∫ ∞

−∞
dv v2ψ0ψn . (S59)

Using Eq. (S14), we can show that

∫ ∞

−∞
dv v2ψ0ψn =

T (t)

m

(
δn,0 +

√
nδn,2

)
. (S60)

Substituting Eq. (S60) into the integral in Eq. (S59), we obtain

⟨Q̇⟩ud = −
√
2γT (t)

m

∫ ∞

−∞
dx c2. (S61)

It is worth noting that, unlike the overdamped Fokker-Planck equation which includes only c1 and c0, the heat rate
depends on the higher coefficient c2.
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B. High-viscosity regime: z = 0

For the large-γ regime, we use the expansion c2 = c
(1)
2 /γ + c

(2)
2 /γ2 + O(γ−3), along with Eqs. (S26a) and (S26b),

to obtain

⟨Q̇⟩ud =
Ṫ

2

∫ ∞

−∞
dx

(
c
(0)
0 +

1

γ
c
(1)
0

)
− 1

γ

∫ ∞

−∞
dx f (f − T∂x) c

(0)
0

+
T

γ

∫ ∞

−∞
dx ∂x (f − T∂x) c

(0)
0 − mT̈

4γ

∫ ∞

−∞
dx c

(0)
0 +O(γ−2) . (S62)

In the large-γ regime, c
(0)
0 + c

(1)
0 /γ and c

(0)
0 in Eq. (S62) can be substituted into Pod. The second term on the

right-hand side of Eq. (S62) is identical to the average heat rate in the overdamped approximation, i.e.,

⟨Q̇⟩od = −
∫ ∞

−∞
dx fJod(x, t) = − 1

γ

∫ ∞

−∞
dx f (f − T∂x)Pod , (S63)

where Jod(x, t) is the probability current in the overdamped approximation. Moreover, the third term on the right-
hand side of Eq. (S62) vanishes due to the natural boundary condition on Jod. Therefore, we finally arrive at

⟨Q̇⟩ud =
Ṫ

2
+ ⟨Q̇⟩od − mT̈

4γ
. (S64)

It is important to note that ⟨Q̇⟩od and mT̈
4γ are of the same order in γ. In the previous literature, only the first

term Ṫ /2 of the right-hand side in Eq. (S64) is considered for the heat anomaly in the overdamped approximation.
However, this is accurate only for processes with very slowly varying temperature. For temperature-varying processes
with moderate speeds, the last term is also required for an accurate estimation of the heat anomaly in the large-γ
regime.

C. Small-mass regime: z = 1/2

Substituting the expansion (S31) in the small-m regime into Eq. (S61) leads to

⟨Q̇⟩ud ≈ −
√
2γT (t)

∫ ∞

−∞
dx c

(2)
2 . (S65)

Using Eq. (S34), we obtain

⟨Q̇⟩ud =
Ṫ

2

∫ ∞

−∞
dx c

(0)
0 −

∫ ∞

−∞
dx fJod + T

∫ ∞

−∞
dx ∂xJod. (S66)

The last term of Eq. (S66) vanishes due to the boundary condition. Furthermore,
∫∞
−∞ dx c

(0)
0 ≈ 1 and ⟨Q̇⟩od =

−
∫∞
−∞ dx fJod. Thus, Eq. (S66) simplifies to

⟨Q̇⟩ud =
Ṫ

2
+ ⟨Q̇⟩od . (S67)

We note that the heat anomalies in the small-m and the large-γ regimes are not identical; in the small-m regime, the
heat anomaly consists solely of the term Ṫ /2.

D. Intermediate regime: 0 < z < 1/2

Equation (S61) can be rewritten in the following dimensionless form:

⟨ ˙̄Q⟩ud = −
√
2τ T̄

∫ ∞

−∞
dx̄ c̄2 ≈ −

√
2τ T̄

∫ ∞

−∞
dx̄

(
1

τ
c̄
(0)
2 +

1

τ2−2z
c̄
(1)
2

)
, (S68)



9

where ˙̄Q ≡ (τod/T0)Q̇. Substituting Eqs. (S53) and (S54) into Eq. (S68), we obtain

⟨ ˙̄Q⟩ud ≈ −
√
2τ T̄

[
−

˙̄T

2
√
2T̄

1

τ
+

T̄√
2

1

τ2−2z

∫ ∞

−∞
dx̄

{
f̄

T̄

(
f̄

T̄
− ∂x̄

)
c̄
(0)
0 − ∂x̄

(
f̄

T̄
− ∂x̄

)
c̄
(0)
0

}]
, (S69)

where the normalization condition,
∫∞
−∞ dx̄[c̄

(0)
0 + c̄

(1)
0 /τ1−2z] ≈ 1, is used to obtain the first term on the right-hand

side of Eq. (S69). From the boundary condition, the last term on the right-hand side of Eq. (S69) vanishes. Thus,
Eq. (S69) simplifies to

⟨ ˙̄Q⟩ud ≈
˙̄T

2
− 1

τ1−2z

∫ ∞

−∞
dx̄f̄(f̄ − T̄ ∂x̄)c̄

(0)
0 . (S70)

If we revert the dimensionless variables in Eq. (S70) to their original forms, the equation becomes

⟨Q̇⟩ud =
Ṫ

2
+ ⟨Q̇⟩od . (S71)

Therefore, AQ for 0 < z < 1/2 is identical to that for z = 1/2. The key difference from the z = 1/2 case is that the

magnitude of ⟨Q̇⟩od is lower than Ṫ /2, i.e., O(⟨Q̇⟩od) = τ−1+2z, while they are the same for z = 1/2.

III. ANOMALY OF ENTROPY PRODUCTION

A. EP-rate expression in terms of Brinkman’s expansion

The expression of EP rate for underdamped Langevin systems is given by

⟨Ṡtot⟩ud =
m2

γT

∫ ∞

−∞
dx

∫ ∞

−∞
dv

(J irr
ud)

2

Pud
. (S72)

Using the relation Pud = ψ0P̄ud, the irreversible current J irr
ud can be manipulated as

J irr
ud = − γ

m

(
v +

T

m
∂v

)
ψ0P̄ud

= − γ

m

(
vψ0P̄ud +

T

m
(∂vψ0)P̄ud +

T

m
ψ0∂vP̄ud

)
. (S73)

Here, ∂vψ0 = −mv
2T ψ0, and using the relation H ′

n(x) = 2nHn−1(x), ∂vP̄ud can be calculated as

∂vP̄ud =
∞∑

n=0

cn√
2nn!

[
(∂vψ0)Hn

(√
m

2T
v

)
+ ψ0∂vHn

(√
m

2T
v

)]

= −mv
2T

∞∑

n=0

cnψn +

√
m

2T

∞∑

n=1

√
2ncnψn−1. (S74)

Therefore, putting these expressions for ∂vψ0 and ∂vP̄ud into Eq. (S73), we have

J irr
ud = − γ

m

√
T

m
ψ0

∞∑

n=0

√
n+ 1cn+1ψn . (S75)

Plugging Eq. (S75) and the relation Pud = ψ0

∑∞
n=0 cnψn into Eq. (S72) leads to the expression for the EP rate in

terms of Brinkman’s expansion.
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B. High-viscosity regime: z = 0

Retaining only the leading-order terms in the expression for the EP-rate in terms of Brinkman’s expansion in the
large-γ regime, we obtain

⟨Ṡtot⟩ud =
1

mγ

∫ ∞

−∞
dx

∫ ∞

−∞
dv

[
c
(1)
1 ψ0 +

√
2c

(1)
2 ψ1

]2

c
(0)
0

+O(γ−2)

≈ 1

mγ

∫ ∞

−∞
dx

∫ ∞

−∞
dv




(
c
(1)
1

)2

c
(0)
0

ψ2
0 +

2m
(
c
(1)
2

)2

Tc
(0)
0

v2ψ2
0 +

2
√
2mc

(1)
1 c

(1)
2√

Tc
(0)
0

vψ2
0




=
1

mγ

∫ ∞

−∞
dx




(
c
(1)
1

)2

c
(0)
0

+
2
(
c
(1)
2

)2

c
(0)
0


 . (S76)

The integration results,
∫∞
−∞ dv ψ2

0 = 1,
∫∞
−∞ dv vψ2

0 = 0, and
∫∞
−∞ dv v2ψ2

0 = T/m, are used for the third equality

in Eq (S76). The first term on the right-hand side of Eq. (S76) corresponds to the EP rate in the overdamped
approximation, as shown below:

1

mγ

∫ ∞

−∞
dx

(
c
(1)
1

)2

c
(0)
0

=
γ

T

∫ ∞

−∞
dx

[
γ−1(f − T∂x)c

(0)
0

]2

c
(0)
0

=
γ

T

∫ ∞

−∞
dx

J2
od

Pod
+O(γ−2) ≈ ⟨Ṡtot⟩od . (S77)

The second term on the right-hand side of Eq. (S76) simplifies to

2

mγ

∫ ∞

−∞
dx

(
c
(1)
2

)2

c
(0)
0

≈ m

4γ

(
Ṫ

T

)2 ∫ ∞

−∞
dx c

(0)
0 ≈ m

4γ

(
Ṫ

T

)2

. (S78)

Therefore, we finally reach the relation for the EP anomaly:

⟨Ṡtot⟩ud = ⟨Ṡtot⟩od +
m

4γ

(
Ṫ

T

)2

. (S79)

C. Small-mass regime: z = 1/2

In the small-mass regime, the leading order contribution in the expression for the EP-rate in terms of Brinkman’s
expansion is

⟨Ṡtot⟩ud ≈ γ

∫ ∞

−∞
dx

∫ ∞

−∞
dv

(
c
(1)
1 ψ0

)2

c
(0)
0

= γ

∫ ∞

−∞
dx




(
c
(1)
1

)2

c
(0)
0


 ≈ ⟨Ṡtot⟩od, (S80)

where the normalization condition,
∫∞
−∞ dv ψ2

0 = 1, is used for the second equality. Therefore, we conclude that,
unlike the large-γ regime, the EP anomaly is absent in the small mass regime.

D. Intermediate regime: 0 < z < 1/2

The leading-order terms of J irr
ud and Pud in this regime are given by

J irr
ud = − γ

m

√
T

m

ψ0

lod

∞∑

n=0

√
n+ 1c̄n+1ψn ≈ − γ

m

√
T

m

ψ2
0

lod
c̄1 ,

Pud =
ψ0

lod

∞∑

n=0

c̄nψn =
ψ2
0

lod
c̄0 . (S81)
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Substituting Eq. (S81) into Eq. (S72) yields

〈
dStot

dt̄

〉

ud

≈ τ

∫ ∞

−∞
dx̄
c̄21
c̄0

=
1

τ1−2z

∫ ∞

−∞
dx̄

[(
f̄ − T̄ ∂x̄

)
c̄
(0)
0

]2

T̄ c̄
(0)
0

, (S82)

where Eqs. (S42) and (S50) are used for the second equality. Reverting the dimensionless variables in Eq. (S82) to
their original ones, we obtain

⟨Ṡtot⟩ud ≈ γ

T

∫ ∞

−∞
dx
J2
od

P 2
od

= ⟨Ṡtot⟩od . (S83)

Therefore, no EP anomaly exists for 0 < z < 1/2, and O(⟨Ṡtot⟩od) = τ−1+2z.

IV. THE ORIGIN OF HEAT ANOMALY: KINETIC ENERGY CHANGE

In this section, we show that the heat anomaly in the overdamped approximation originates from the change in
kinetic energy. In underdamped Langevin systems, ⟨v2⟩ud is evaluated as

⟨v2⟩ud =

∫ ∞

−∞
dx

∫ ∞

−∞
dv v2Pud =

∫ ∞

−∞
dx

∫ ∞

−∞
dv v2ψ0P̄ud =

∫ ∞

−∞
dx

∞∑

n=0

cn

∫ ∞

−∞
dv v2ψ0ψn . (S84)

Using Eqs. (S60) and (S61), Eq. (S84) can be further calculated as

⟨v2⟩ud =
T

m
+

√
2T

m

∫ ∞

−∞
dx c2 =

T

m
− ⟨Q̇⟩ud

γ
. (S85)

Thus, the mean kinetic energy is given by

⟨EK⟩ud =
m

2
⟨v2⟩ud ≈ T

2
− m

2γ

(
⟨Q̇⟩od + AQ

)
. (S86)

Up to the order of ⟨Q̇⟩od, the mean kinetic energy is approximated as

⟨EK⟩ud =

{
T
2 − mṪ

4γ for z = 0
T
2 for 0 < z ≤ 1/2 .

(S87)

Therefore, the rate of mean kinetic energy is

⟨ĖK⟩ = AQ . (S88)

Equation (S88) clearly shows that the heat anomaly arises from neglecting the kinetic energy change.

V. RAPIDLY CHANGING TEMPERATURE

In this section, we consider the case where the temperature changes rapidly as Ṫ /T ∼ O(γ/m) or ˙̄T ∼ O(τ).

Specifically, we set ˙̄T/T̄ = 2τa(t), where a(t) is a dimensionless quantity of order O(τ0). From Eq. (S38), the
evolution equation for c̄2 can then be written as

∂t̄c̄2 = −τz
√

3T̄ (t)∂x̄c̄3 + τz
√

2T̄ (t)

[
f̄(x, λt)

T̄ (t)
− ∂x̄

]
c̄1 − 2τ c̄2 − τa(t)

(
2c̄2 +

√
2c̄0

)
. (S89)

We note that c̄0 is an O(τ0) quantity, as it represents the marginal probability distribution. Therefore, the last term,

−
√
2τa(t)c̄0, in Eq. (S89) is of order O(τ) and diverges in the large-τ limit. Since the probability distribution Pud

does not diverge in this regime, every c̄n must remain finite. Then, the only terms that can compensate for this
divergence are those related to c̄2, namely −2τ [1 + a(t)]c̄2. This implies that the coefficient c̄2 is of the same order
as c̄0. Similarly, we can deduce that for an arbitrary n, the order of c̄n−2 is equal to the order of c̄n. Therefore,
the expansion of the probability distribution in Eq. (S9) cannot be properly truncated, meaning the overdamped
approximation fails when the temperature changes rapidly.
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FIG. S1: Plots of the time-dependent protocols of k(t) and T (t) as functions of time t. τp denotes the period of the engine.
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FIG. S2: Plots of ⟨Q̇⟩ud, ⟨Q̇⟩od, and ⟨Q̇⟩od+an as functions of time t for three different values of γ in the Brownian Carnot
engine model: (a) γ = 10, (b) γ = 100, and (c) γ = 1000.

VI. HEAT ENGINE

The time-dependent protocols for the temperature T (t) and the stiffness of the harmonic potential k(t) in the
heat-engine model described in the main text are given by

k(t) =

{
2 + 64t2/τ2p 0 ≤ t < τp/2

2 + 64(τp − t)2/τ2p τp/2 ≤ t < τp
, (S90)

T (t) =





Tc 0 ≤ t < τp/4

Tc
√
k(t)/k(τp/4) τp/4 ≤ t < τp/2

Th τp/2 ≤ t < 3τp/4

Th
√
k(t)/k(3τp/4) 3τp/4 ≤ t < τp

. (S91)

These protocols are visually represented in Fig. S1. To validate our theoretical results through numerical calculations,
we simulate the engine model for three different values of γ, while keeping all other parameters identical to those
in the main text. Figure S2 shows the plots of the three heat rates, ⟨Q̇⟩ud, ⟨Q̇⟩od, and ⟨Q̇⟩od+an = ⟨Q̇⟩od + AQ, as
functions of time for γ = 10, 100, and 1000. In this calculation, AQ for z = 0 is used, as γ increases to a large value in
this setup. As shown in the figure, for γ = 10, the three heat rates do not coincide, as γ is not large enough to ensure
the validity of the overdamped approximation. However, as γ increases, ⟨Q̇⟩od+an approaches ⟨Q̇⟩ud, whereas ⟨Q̇⟩od
does not. ⟨Q̇⟩od coincides with ⟨Q̇⟩ud only during the isothermal process, where the temperature remains constant
and no heat anomaly arises.

VII. COMPARISON OF OUR METHOD WITH THE TAV METHOD

We first summarize the time-averaged velocity (TAV) method [4] used for comparison with our result in Fig. S3.
Consider an underdamped Brownian particle trapped in a harmonic potential, whose dynamics are governed by the
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FIG. S3: Comparison between ⟨v2⟩TAV and ⟨v2⟩our. The figures show the time series of ⟨v2⟩TAV − T (t), ⟨v2⟩our − T (t), and
⟨v2⟩Lan − T (t). Two observation frequencies, f = 5.31 and 15.92, are used for the TAV method. The temperature variation

follows the form T (t) = 300 + at, with a = 0, 400, and 1000 used for panels (a), (b), and (c), respectively.

following Langevin equation:

ẋt = vt, mv̇t = −γvt − κxt + ηt , (S92)

where ηt represents the thermal noise.
In a typical overdamped regime, the instantaneous velocity is not directly accessible. However, we can estimate the

TAV, v̄f (t), by measuring two consecutive positions with a sampling frequency f = 1/(2π∆t) as follows:

vf (t) ≡
1

∆t

∫ t+∆t

t

v(s)ds =
xt+∆t − xt

∆t
, (S93)

where ∆t is usually much larger than the relaxation time scale of the velocity. In Ref. [4], assuming the velocity is in
equilibrium, it is shown that the mean-squared instantaneous velocity can be estimated from the mean square TAV
using the following formula:

⟨v2t ⟩ = L(f)−1⟨v2f (t)⟩ , (S94)

where the function L(f) is given by

L(f) = 2f2

[
1

f20
+
e−

fp
2f

f1

(
e−f1/f

fp + 2f1
− ef1/f

fp − 2f1

)]
(S95)

with fp = γ/2πm, f0 =
√
fpfκ, fκ = κ/2πγ and f1 =

√
f2p/4− f20 .

As an example, we consider the Langevin system described by Eq. (S92) with κ = 1, m = 1, and γ = 1000.
The temperature increases linearly over time as T (t) = 300 + at, where a quantifies the rate of temperature change.
We evaluate the mean-square velocity ⟨v2⟩ using three different approaches. First, we obtain ⟨v2⟩Lan by solving the
Langevin equation (S92) numerically, and then, averaging 3.2× 107 the resultant trajectories. Second, we apply the
TAV method by computing v2f (t) from Eq. (S93) at sampling rates f = 15.92 and 5.31, both at least an order of

magnitude slower than the velocity relaxation rate γ/m = 1000, and estimating ⟨v2⟩TAV from Eq.(S94). Finally, we
use our analytic expression (S87), ⟨v2⟩our = 2⟨EK⟩/m.

The results are presented in Fig. S3. For a = 0, all three methods yield identical results. However, as a increases,
⟨v2⟩TAV deviates from ⟨v2⟩Lan, with larger deviation occurring for slower f . This results from the breakdown of
the TAV method’s assumption that velocity remains in equilibrium under rapidly varying temperature. In contrast,
⟨v2⟩our remains in excellent agreement with ⟨v2⟩Lan even for relatively large a. This demonstrates the accuracy of our
method in estimating the kinetic energy in overdamped systems.
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