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Entropy production (EP) is a key quantity in thermodynamics, and yet measuring EP has re-
mained a challenging task. Here we introduce an EP estimator, called multidimensional entropic
bound (MEB), utilizing an ensemble of trajectories without knowing the details of a given system.
MEB is a unified method in the sense that it is applicable to both overdamped and underdamped
Langevin dynamics, irrespective of the time dependence of the driving protocol. In addition, MEB
is computationally efficient because optimization is unnecessary. We apply our developed estimator
to three physical systems driven by time-dependent protocols pertaining to experiments using opti-
cal tweezers: a dragged Brownian particle, a pulling process of a harmonic chain, and an unfolding
process of an RNA hairpin. Numerical simulations confirm the validity and efficiency of our method.

I. INTRODUCTION

Entropy production (EP), referring to the quantifica-
tion of the irreversibility of a thermodynamic process,
is one of the most fundamental thermodynamic quan-
tities. The EP was originally identified in the Clausius
form in equilibrium thermodynamics. More recently, cru-
cial progress in the field of thermodynamics has been
the extension of the EP to general nonequilibrium phe-
nomena at the level of a single stochastic trajectory.
This extension triggered a renaissance of thermodynam-
ics, namely the establishment of stochastic thermody-
namics. Based on the novel EP formulation, EP theories
have been developed and extensively studied over the last
two decades. An early one is the fluctuation theorem [I-
9], which can be understood as a generalization of the
thermodynamic second law. Later developments include
a group of thermodynamic trade-off relations such as the
thermodynamic uncertainty relation (TUR) [6H13], the
power-efficiency trade-off relation [I4HI8], and the speed
limit [19H24].

Subsequently, experimentally feasible methods for
measuring the EP have been actively suggested and dis-
cussed [25H38]. In fact, measuring EP is not a trivial
task. It is almost impossible to measure the EP by us-
ing its definition, the logarithmic ratio of forward and
time-reversal path probabilities [39], since all path prob-
abilities cannot be measured, especially for a continuous
system. Instead, there exist two direct EP measurement
methods using the “equality” for the total EP, AS®t.
The first method uses the equality AS®™t = ASYsS+Q /T,
where AS®Y® is the Shannon entropy change of a system
and (@ is dissipated heat into a reservoir at temperature
T [39, [40]. In experiments, it is difficult to measure the
amount of heat flow accurately with a calorimeter. One
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may calculate @@ from trajectory data instead, but this
requires full knowledge of the external and internal forces
acting on the system [40]. Therefore, this method is not
practically useful for complicated cases such as a biolog-
ical system. The second direct method uses the equality
for the average EP in terms of the probability density
function (PDF) and the irreversible probability current
as presented in Eq. (6) of Ref. [30]. The PDF and the
irreversible probability current can be estimated solely
from system trajectories without knowledge of applied
forces in the overdamped Langevin dynamics. Never-
theless, obtaining them precisely for a high-dimensional
system is infeasible in practice, which is called the “curse
of dimensionality”.

To overcome these shortcomings of the direct meth-
ods, several indirect methods using a thermodynamic
“inequality” have been suggested. Here, the EP can be
estimated from an ensemble of system trajectories, and
the curse of dimensionality can be mitigated by measur-
ing several observable currents only. The indirect meth-
ods are based on an inequality in the general form of
AS™" > B(©), where the EP bound B(O) is determined
by an observable current ©. In a certain condition, one
can find an optimal observable current ©*, which yields
B(©*) = AS*™". Then, the EP can be accurately esti-
mated by measuring ©*.

Regarding the above indirect methods, there exist two
representative inequalities. The first inequality is in TUR
form [6HIO], where the EP is bounded by the relative
fluctuation of a certain observable current. To access a
tighter bound of this TUR, multidimensional TUR [I1]
and Monte Carlo methods [30] have been developed.
However, TURs depend on the nature of the system dy-
namics; e.g, the TUR must be modified when a time-
dependent protocol is involved [I3] or when a system fol-
lows underdamped Langevin dynamics [12] 411, [42]. Thus,
EP estimation based on TURs is not universal. More-
over, if we use a TUR for an underdamped system, EP
estimation is not possible from only system trajectories,
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but rather needs full knowledge and full controllability of
the applied forces [12] 41l 42]. Thus, no proper method
via TUR exists for estimating the EP solely from system
trajectories for underdamped dynamics.

The second inequality for the indirect method is the
Donsker—Varadhan inequality [43]. Recently, a machine-
learning technique, named as NEEP (neural estimator
for entropy production) [33][34] [37], utilized this inequal-
ity as an optimized function for a given neural network.
Though this technique yields a reliable result in over-
damped Langevin systems, a high computational cost is
required for a process with a time-dependent protocol
since the parameters of the neural network should be
reoptimized every single time. Otherwise, this machine
learning technique has also been applied to underdamped
Langevin dynamics; however, it has difficulty in estimat-
ing the EP accurately for large inertia [37].

In this study, we propose a unified and computation-
ally efficient method to estimate the EP by using the en-
tropic bound (EB) inequality, introduced by Dechant and
Sasa [I7]. Inspired by the multidimensional TUR [I1],
we use multiple observable currents to obtain the opti-
mal EB for the EP. Thus, we call this the “multidimen-
sional entropic bound” (MEB). MEB is universal in the
sense that it is applicable to both overdamped and un-
derdamped systems regardless of the time dependence of
the driving protocol. Moreover, additional computation
for optimization is not necessary, making MEB compu-
tationally efficient.

This paper is organized as follows. In Sec. [} we derive
the formulae for MEB and describe the EP estimation
process using MEB. In Sec. [[TI} we explain the relation
between MEB and various TUR bounds. In Sec. [[V] we
apply MEB to three systems with time-dependent driving
forces that can be realized in experiments using optical
tweezers. We conclude the paper in Sec. [V]

II. MULTIDIMENSIONAL ENTROPIC BOUND

The EB is the inequality between the EP and an ob-
servable current [I7]. As this bound holds for both over-
damped and underdamped Langevin systems with an ar-
bitrary time-dependent protocol, it can be a good start-
ing point to obtain a unified and efficient EP estimator
applicable to general Langevin dynamics. In this sec-
tion, we introduce the multidimensional entropic bound
(MEB) estimator by incorporating multiple observable
currents systematically into the EB estimator.

A. Derivation of the integral and the rate EB

Here, we consider an M-dimensional Langevin system
with a state vector q(t) = (qi, -+ ,qar)", where T de-
notes the transpose of a matrix, described by the follow-

ing equation of motion:

Q(t) = A(q(t)7t) + v 2B(Q(t>7t) i £<t)’ (1)

where A = (Ay,---,Ay)T is a time-dependent drift
force, B is a positive-definite symmetric M x M diffusion
matrix, and & = (&,--- , &) is a Gaussian white noise
satisfying (& ()€, (1)) = 0,30(t—#') for i,j € {1,--- , M}.
The symbol e in Eq. represents the It6 product. From
now on, we sometimes drop the arguments of functions
for simplicity.

A component of q can be an odd-parity variable such
as a velocity under time-reversal operation. The time

reversal of a state q is denoted by § = (g1, -+ ,qar) " with
G; = €;q;, where ¢; = 1 for an even-parity variable and
€; = —1 otherwise. The drift force can be divided into

reversible and irreversible parts as A(q,t) = A™(q,t) +
AP (g, t) with [44]

1
A"(q,t) = 5 [A(g,t) —eo Al(e® q,1)],
. 1
A" (q,t) = 5 [A(g,t) +eo Al(e@q,t)], (2)
where € = (e, ,ex)T, © denotes the element-wise

product, i.e., a®b = (--- ,a;b;,---)T, and 1 is an opera-
tion changing the sign of the odd-parity parameters.
The Fokker—Planck equation associated with Eq. is

atp(q7 t) = 7v[JreV(q, t) + Jirr(q7 t)] ) (3)

with the PDF P(q,t). The reversible current J*V(q,t)
and the irreversible current J"(q,t) are defined as

Ji%(q,t) = 4i%(q,1)P(q,1), (4)
Jzirr(q’ t)= Airr(qv t)P(q,t) — Z a‘lj Bij<q’ t)P(q,t),
J

()

with B(e ® q,t) = B(q,t). Note that for an over-
damped Langevin system with even-parity variables only,
A™V(q,t) vanishes, and thus, J*(q,t) = 0 and the to-
tal current coincides with J (g, t). As dissipation origi-
nates from the irreversible current, the EP is determined
only by J"*(q,t). Therefore, the total EP rate o' is
given by [17], [45], [46]

irr T —1 girr
O’tOt(t)E/qu (qat) BP}EIq?jez) J (qvt)' (6)

Hereafter, we use the kg = 1 unit.

In this study, we consider the following form of an av-
eraged observable current generated by the irreversible
current during time 7:

(©(r) = / "t [da A 0TI @, @)

where A(q,t) = (A1, - ,An)T is a weight vector of the
irreversible current for a given observable. Then, the



averaged current rate at time ¢ is given as
®0) = [da AT (@) (®)

The EB in an integral form can be derived from Eq.
as follows:

(O(7))
B(g,t) 2 J" (q,t)

T 1 T 5
_/0 dt/qu(q,t) A(q,1)'B(g,?) P(q,t)3

< / "t (ATBA) \/ASwi(r), 9)
0

where ( -)q = [dg---P(q,t) and the total EP
AS'™Y () = [ dt c*°*(t). The Cauchy-Schwartz inequal-
ity is used for the last inequality of Eq. @[) Hence, the
total EP is bounded in an integral form as

(6(1))?

Astot
() = Jo ds(ATBA),

=AS®B(0, 7).
(integral EB) (10)

Similarly, the EB in a rate form can also be obtained
from Eq. as

M) _

UtOt(t) > <ATBA>q = UEB(th)'

(rate EB) (11)

The equality of the integral EB is satisfied when the
weight vector has the following form:

B(q,t)~'J™(q,t)
P(q,1)

A°(q,t) = (for the integral EB),

(12)

where ¢ is an arbitrary constant that is independent
of ¢ and t. This can be easily checked by inserting
Eq. into Eq. . This weight vector corresponds
to the observable current proportional to the total EP,
ie., (O(7)) = cAS™ (7). Similarly, we find the equality
condition for the rate EB as

B(q,t)"'J"™(q,t)
P(q,t)

A°(q,t) = c(t) (for the rate EB),

(13)

where ¢(t) is an arbitrary time-dependent function that
is independent of q. This weight vector corresponds to
the observable current rate as (9(t)) = c(t)o*'(t). Note
that ¢ and ¢(t) can be arbitrary, and thus we may choose
¢ and c¢(t) freely in order to make the measurement of
an observable current easier. A relevant example is pre-

sented in Sec. [V Al

B. Derivation of the integral and the rate MEB

With the knowledge of the functional form of A®(q,t),
one may obtain the tight EP bound. However, except for
very simple examples, it is impossible to identify A¢(q,t)
without knowing all driving and interaction forces. In-
stead, we measure multiple observable currents to access
a tighter bound, thereby systematically approaching the
total EP. Our MEB method is analogous to the multi-
dimensional TUR [II], but is more general in the sense
that it can be applicable to wider classes of Langevin
dynamics.

In this method, a linear combination of multiple weight
vectors is adopted to approximate A°(q,t). The linear
combination of ¢ weight vectors {A;1,---,A;,} for the
i-th component is written as

14
A(e) q, Z a 7,0 qa (14)

where k;, is the coefficient for A;,(q,t) and is in-
dependent of ¢ and t. When the diffusion matrix B
has only diagonal components, the analytic expressions
for the final formulae and the corresponding experi-
ments become much simpler. Thus, we will consider
the case B;; = B;d;; from now on. The observable
in Eq. can be divided into the sum of its com-
ponents as (O(7)) = Zf\;(@i(r», where (0;(1)) =
Jo dt [dq Ai(q,t)Ji™(q,t). With the i-th component
current (©;(7)), we derive the component-wise EB as

(0i(1))” o
ASi(1) > ————-——. (i-th integral EB), (15)
Jo dt(AiBiA:),

where AS ( ) = [, dtoi(t) with the ith-component EP
rate o;(t qu B (g, t)"1J(q,t)%/P(q,t). Thus,
AS™ (1) = AS;(7) and o™ (t) = Y, 0i(t). By sub-

stltutlng Eq b into Eq. ( ., we have

2

{krePmb

ASi(r) > ——— = A8 (ky), (16)

kL (1)K

where k; = (ki1, - ,kig )T and the vector <®1(-e)(7')> =
(i 1(T)), -+, (O 4(T )T and the £ x £ matrix L;(7) are

defined as
= / dt / dq Ai (g, 1)J7(q,2) and
0
(17)
(L), , = [ athiata. 0B @850 ),
(18)

respectively. Note that LEZ) (t) is a positive definite matrix

since zTLEZ) (1)z = fOT dtfdQ<(Za \/Bl-Ai7aza)2>q >0
for an arbitrary z.



The bound Agy)(ki) in Eq. is a function of k;;
thus, the tightest bound can be written as Agi(e)(k;‘),
where k} is the optimal vector maximizing the bound.
The optimal vector is obtained by solving the following
equation:

O, AS (ki) =0
27 (017) {(©i.0) - kI k: — KT(©) - (LVki)a }
(kTLOk,)2 '

(19)
We can easily check that the numerator vanishes with

the choice of kf = (LEZ))’l . <@§Z)(7)>. By plugging in
k; into Eq. 7 we find the component-wise MEB as

ASy(r) 2 (@ ()T (L (1)1 @ ()
(20)

By summing over all components, we finally obtain our
main result, namely MEB in integral form, as follows:

M
7) >y ASMERO (1)
=1

= ASMEB(®) (7).

We can also derive MEB in rate form. The derivation
of the rate MEB is essentially the same as that of the
integral MEB. It starts from the component-wise rate
EB as

AStot (

(integral MEB)  (21)

(04(1))

In this case, it is usually sufficient to choose a time-

independent basis as

L
A(é) q, Z i, a z a (23)

where the time-dependence is encoded in the coefficients
instead of in A; o (q), as the equality condition in Eq.
also allows a time-dependent overall multiplicative coef-
ficient. Following the same derivation procedure as in

Egs. —, we finally obtain

=> o 0w
i=1
EO_MEB(Z) (t),

(1) 23 (O 1) (L2m) " © )

S

(rate MEB) (24)

where the vector ((;)Z(-Z)(t» = ((0;1(1), -, (©ie(t)))T

and the ¢ x ¢ matrix Lge) (1) are defined as
610(0) = [ da Aial@) T (@.t) and (29

(L), =ha(@Biaisl@),  (26)

= ASMEB®) (7).

The total EP during a finite time 7 can be evaluated by
integrating oMFB)(¢) over time.

The weight vectors for the rate MEB are not time-
dependent, so we need a lower number of weight vec-
tors to approximate A$(g,t) compared to the integral
MEB where time-dependent weight vectors are necessary.
Practically, too many weight vectors can overfit all the
fluctuations originating from a finite number of trajecto-
ries, sometimes giving rise to an undesirable result. Thus,
the rate MEB is usually preferable in estimating the EP
for a system driven by a time-dependent protocol.

The MEBs in Egs. and are the maximum
bounds for a given finite number of observables. If we
add one more observable to the existing ¢ observables,
the MEB becomes tighter, i.e.,

ASMEBUEFD (1) _ AGMEB®) 7y >,
Ui\/[EB(éJrl)(t) B Ui_v[EB(z) (t) > 0. (27)
The proof of Eq. is basically the same as that pre-
sented in Ref. [47]. To be self-contained, we include the
proof in Appendix [A] As we increase ¢, the MEB estima-
tor also increases and eventually saturates to the maxi-
mum value, i.e., AS;(7) or o;(t). It can often saturate
even at finite £ = £33 for simple systems. Therefore,
by observing the saturation regime in a plot of the EP
estimator versus ¢, we can accurately estimate the total
EP (see Sec. without resorting to a time-consuming
optimization procedure.

There exists no limitation for choosing a set of ¢ weight
vectors, as long as they are linearly independent of each
other. In this study, we adopt a Gaussian weight vec-
tor set [48] for numerical verification of the rate MEB
method in Sec. [[V] The first weight vector is a Gaussian
function, the width of which corresponds to the differ-
ence between the maximum and the minimum state val-
ues. The second and third weight vectors are Gaussian
functions with a width half that of the first one, and so
on. The mathematical expression for the weight vector
set is as follows:

{Aiay =1 —aia)?/2070), . (28)

In Eq. , ai and b; o are given as

,exp [—(q;

max 1 1 min 2 max
{ai,a}a<€ { q + 2% 3% + qu )
2 m1n+1 ma; 1 m1n+ 3 }
3q7, 3(]2 4q7, qz 9
1
bia a ={A iva iaiA 7,'77A iviA ’L'afA IZRES K
{,}gz{q2q2q3q3q3q }

where ¢™2* (¢ is the maximum (minimum) value of
¢; in a given trajectory ensemble and Ag; = ¢ — ¢in,
The Gaussian weight set provides highly accurate esti-
mation in Sec. |I_V|, although Gaussian weights A; , that
depend on the other state variables {g;;} are necessary

for an exact estimation in a general process [48].



C. EP estimation procedure via MEB

In this section, we describe how to estimate the EP
with MEB from an ensemble of system trajectories.
Here we consider both overdamped and underdamped
Langevin dynamics. For an overdamped system, the sys-
tem states consist of only position variables, i.e., g(t) =
x(t) = (z1,- - ,zm), and the Langevin equation is writ-
ten as

z;(t) = %Fi(q(t),t) + V2Bi(q,t) e &(t), (29)

where F; is a force applied to the z; component. The
reversible current J;°V = 0, while the irreversible current
is given as

5@ = (@) - 0800 ) Pla). G0

In the case of underdamped dynamics, the system
states consist of both position and velocity variables,
ie, q(t) = (1, -+ ,xN,v1, - ,vy) with M = 2N, and
the Langevin equation is written as

ii = V5
. 1
8:(t) = —Fi(q().t) = Lo+ /2Bi(q. ) e &i(t).  (31)
As done in Eq. (2)), the external force F; can be divided
into reversible and irreversible parts as F; = F[°V + ;™"
with
Fi*(q.t) = 5 [Fila.0) + Fl (€0 q.)].

Fi™(g,t) =

N = N

[Flat-Fleoan]. @2
Then, the irreversible currents are given as
Tyt (g,t) =0,

4 1 .
Ji (g, t) = <mF;rr(q’t) — %vi - &JiBi(q,t)) P(q,t) ,
(33)

while the reversible currents J3°V(q,t) = v;P(q,t) and
Jéfv(q7 t) = %Firev(q’ t)P(q’ t)'

We focus on the rate MEB in the following discussions,
but note that the procedure for the integral MEB is es-
sentially the same.

1. Determination of B; and L;

For an overdamped dynamics described by Eq. ,
the diffusivity B; is determined from the average of short-
time mean square displacements as

Sx;()?
Bi(q,t) = lim (921 (@)

Jim 50 , (overdamped)  (34)

where d2;(t) = x;(t+0t) —x;(t) and (- - - ) (q,¢) denotes the
average over the trajectory ensemble at position g and
time ¢. When B; is independent of position and time,
all short-time trajectories can be utilized for estimating
the diffusivity. For an underdamped dynamics, B; can
be estimated from the ensemble of velocity trajectories
as

(00i(t)*) (q,1)

Bilat)=Jm 5

(underdamped)  (35)

where dv;(t) = v;(t + 5t) — v;(t). With these estimations

for B;, we calculate (I._Z(-e) (t))a,s from Eq. (26). Note that

2
limg; s % = 0 in the underdamped case.

2. Measurement of an observable current

Now, we describe how to measure the observable cur-
rent rate in Eq. for both overdamped and under-
damped dynamics. First, in the overdamped dynam-
ics with g(t) = (x1,--- ,zpr), the i-th component of an
observable current rate can be measured by averaging
A o(q(t)) o&;(t) over the ensemble of system trajectories
as

(©ia(t)) = (Niala(t) o &:i(1)) (q); (36)

where o denotes the Stratonovich product. This can
be checked from the fact that (H(q,t) o &)y =
[ dg H(q,t)J(q,t) with an arbitrary function H(q,t).
For A; o(g) = 1, the observable current is the displace-
ment in the x; direction as ©; o(7) = z;(7) — ;(0).

In the underdamped dynamics with q(t) =
(1, -+ ,xN,v1, -+ ,0N), by plugging Eq. (33) into
Eq. (25), we have

(©0a() =~ L{Asal@vida + — (Ara(@F(a.0)q

m m
+ Bi(q, t){0v, Nija(q))q - (37)

When F/™ = 0 and A;, has no explicit velocity de-
pendence, the observable current is proportional to
(Ai,a(@)vi)q, similar to the overdamped case in Eq. (36]).
Note that the EP bound oMFB(®)(¢) in Eq. is inde-
pendent of an overall constant like —v/m. Otherwise,
when Fiirr = 0 and A;, has an explicit velocity depen-
dence, extra calculation of the last term in Eq. is
necessary. Then for the most general case with FI'™ 2 (
(velocity-dependent force), (©; 4(t)) cannot be deter-
mined solely by system trajectories, but rather concrete
information on the force is necessary.

3.  EP FEstimation

Utilizing numerical data for I;E[) and (O;q(t)) ob-
tained in Secs. [TC1I| and [TC2, one can evaluate




MEB“)( ) from Eq. (24), and then obtain EMEB(Z)( )=
f dt oMEBUO)(¢) for each ¢ = 1,2,3,- As proved
in Sec. YMEBWE) (1) is an increasing function of ¢
and saturates to the maximum value at some ¢%**. This
saturation indicates that Afm coincides with A$(q,t),
thus satisfying the equality of the EB. Therefore, the
total EP corresponds to the MEB estimator at £ = £53%,
Le., ASt(r) = SMEB(E) (1),

IIT. RELATION BETWEEN MEB AND TUR

In this section, we discuss the relation between MEB
and TURs. We first consider a one-dimensional (1D)
overdamped Langevin dynamics in the steady state
(without a time-dependent protocol) as described by
Eq. (29). The total EP AS™(¢,¢') during a small time
segment between ¢ and ¢’ = t + §t and the corresponding
accumulated current ©(¢,¢') are written as

/ dt O_tot

o(t,t') =0(") —0(t) :/ dt A(x(t),t) oi(t). (38)

t

AStOt (ﬁ, t/) — AStot (t ) Stot

Then, the TUR is given by
200t 1')?

ASTU(t, ) > CIROEE (39)
where (O(t,t')) and AO(¢,1') are
(Ot 1)) = /t dt/dx A, )T (2, 1),
AB(t,t") = O(t,t') — (B(t,t')). (40)

In the short-time limit 6t — 0, (O(t,t')) = (O(t))6t and
(AO(t,1)2) = ((A o dz — (O(t))5t)?) = 2(ABA)dt +
O(6t?). With these short-time forms, Eq. becomes
identical to the rate EB equation . Therefore, the
previous EP estimation methods using the multidimen-
sional TUR [I1], [48] are identical to our MEB method
for a 1D overdamped Langevin system in the short-time
limit. For a higher dimensional process, the multidimen-
sional TUR cannot be written with a single component
term, and thus the MEB and the TUR do not coincide
with each other even in the short-time limit.

We note that other modified TURs with an arbitrary
time-dependent protocol or an arbitrary initial state do
not approach the rate EB in the short-time limit even
in one dimension. As an example, consider a 1D over-
damped Langevin system driven by a time-dependent
protocol. The modified TUR for this process with an ar-
bitrary protocol was introduced by Koyuk and Seifert [13]
as

AS© (¢t 1) > = ASKS(t,t), (41)

2 [y 1))
(AO(t, t)?)

where h(t) = t8; —wd,, and w denotes the protocol speed.
In the 6¢ — 0 limit, the numerator of ASKS(t,t") becomes
2{(1 —wd,)(O(t))}?6t?, and thus this TUR is written as

Jtot(t) > 2{<1 _<(Z%K§?(t)>} = O’KS(t), (42)

which is different from the rate EB in general. Exper-
imental estimation of o9(t) is a very laborious task
since we need a sufficiently large ensemble of trajecto-
ries, slightly perturbed with respect to w at time ¢ for
every single t. Therefore, compared to this modified
TUR method, MEB is a much more efficient approach
to correctly estimate the EP of a system driven by a
time-dependent protocol.

In addition, short-time TURs for underdamped dy-
namics do not correspond to the rate EB either. The
TUR for a 1D underdamped system with a time-
dependent protocol and the observable current (©(t)) =
(A(z,t)v), can be written as [42]

2 [h(#)(0(, )]
meqrE 10

AS™©H (¢, 1) > (43)

where fzu(t) = t0y — 8Os — 10,
initial-state dependent term, defined as I(¢t) = 2((1 +
B! In P(x,t))2) with b/, = 28, — s0s — r0, — wd,,. Here,
s and r are scaling parameters for force and position,
respectively. In the 6t — 0 limit, (AO(¢,t')?) = ((Av —
(©(t)))?)6t%, which is not O(5t). Thus, in the 6t — 0
limit, Eq. becomes

— wd,, and I(t) is the

2[(1 - 50, — 0, —wil)6(1)]
o™t (t)5t >

- (Ao = (1))

- I(t)a
(14)

which is also different from the rate EB. For evaluat-
ing Eq. experimentally, slight scalings of all forces
and position variables are necessary, which demands full
knowledge and full controllability of all forces. Thus, it is
clear that the underdamped TUR is not practically use-
ful to estimate the EP for a complicated system, such as
complex biological systems where such detailed informa-
tion is not available.

We conclude that MEB is a unified tool that enables
the efficient estimation of EP from a trajectory ensemble
for a general Langevin process. Finally, it is interesting
to note that the integral MEB can be tight when we
choose the optimal observable current, a feature that no
finite-time TUR can achieve.

IV. NUMERICAL VERIFICATION OF MEB

In this section, we estimate the EP of three physi-
cal systems driven by time-dependent protocols via the
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FIG. 1. Plot for the rate EP estimator ¢ normalized with

respect to the total EP rate o*%(t) as a function of time ¢.
The green solid and red dotted line denote the MEB results
of the overdamped and underdamped dynamics, respectively.
The orange dashed line represents the result of the modified
TUR by Koyuk and Seifert, o%5(t)/o*°*(t). The parameters
used for this plot are k = p =w =T = 1. The inset shows a
schematic of the Brownian particle dragged by optical tweez-
ers.

MEB method. All these systems can be realized exper-
imentally using optical tweezers. The first example is a
dragged Brownian particle, the second is a pulled har-
monic chain, and the last is an RNA unfolding process.
We also compare the MEB results to those of other well-
established EP measurement methods such as the direct
method utilizing AS*™t = AS%S + Q/T, and a machine
learning technique (NEEP) [33] 34] [37].

A. Brownian particle dragged by optical tweezers

We consider a 1D Brownian particle dragged by opti-
cal tweezers as illustrated in Fig. The center of the
harmonic potential of the tweezers is initially (¢ < 0) lo-
cated at the origin and moves with a constant speed w
for ¢ > 0. Then the corresponding overdamped Langevin
equation for the position z(t) is written as

i (t) = —pk(z(t) — A(t)) + V2BE(t), (45)

where A\(t) = wt is a time-dependent protocol, u is the
mobility, & is the spring constant of the harmonic poten-
tial, and B = pT with the environmental temperature 7.
The initial state at t = 0 is set as the equilibrium state.
As the driving force is linear in position, we can solve the
equation of motion analytically. The procedure for de-
riving the analytic solutions is presented in Appendix [B]

We measure the displacement of the particle, that is,
we take the weight vector A(x,t) = 1. With this ob-
servable current, we evaluate the rate MEB estimator
oMEB(t) for each time t analytically and plot the results
in Fig. [I] Note that the normalized estimator is defined
by ¢ = oMEB(t)/0t°(t), which turns out to be unity,

i.e., the estimated EP exactly matches the true EP. This
is a rather surprising result, as we use only one current
(displacement). In fact, one can analytically find the
tight weight factor A®(z,t) in Eq. with the help of
the exact solution in Eq. as

JT(z,t) w

AS(z,t) = c(t)m = c(t)M—T(l

—e M), (46)

where 7, = 1/(uk). Note that A°(z,t) is -independent.
Thus, by choosing the arbitrary c(t) to cancel the ¢-
dependence exactly in Eq. , one can easily see that
the unity weight vector A® =1 also satisfies the equality
condition of the rate EB.

For the purpose of comparison, we also plot the esti-
mated EP rate from the modified TUR by Koyuk and
Seifert [Eq. ] in Fig. |1} which deviates largely from
the correct one for small t. This confirms that our MEB
method outperforms the modified TUR method for this
simple case.

We also consider the same process in the underdamped
version. The corresponding underdamped Langevin
equation is written as

(t) =u(t)
o(t) =— Lv(t) - E(9c(t) — A1) + V2BE(t),  (47)

mu m

where \(t) = wt and B = T/(um?). The initial state is
also set as the equilibrium state. The analytic solution
of this equation is also available via similar procedure
for solving Eq. . The derivation is presented in Ap-

pendix [B| From Eq. (B14), the tight weight vector is
obtained as

J (2,0, 1)

A°(z,v,t) = c(t)m

=c(t) (_%) , (48)

where (v(t)) is evaluated by taking the time derivative
of (z(t)) in Eq. (B12). We find that A°(z,v,t) depends
only on time but not position, like in the overdamped
case. Therefore, the unit weight vector again provides the
EP exactly. The analytic result of & = oMEB(¢) /ot ()
for this underdamped dynamics is also plotted in Fig.
which confirms the exact estimation of the EP from the
rate MEB by measuring only the displacement.

B. Harmonic chain pulled by optical tweezers

The next example is an M-bead harmonic chain
dragged by optical tweezers as illustrated in Fig. (a).
The harmonic potential of the optical tweezers is exerted
on the rightmost particle of the chain, and the leftmost
spring clings to the wall. Here, we consider an over-
damped Langevin dynamics described by

@(t) = —puKae(t) + pkA(t) + V2BE(1), (49)
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(a) Schematic of the harmonic chain pulled by optical tweezers. (b) Estimated EP via the MEB method (black) and

the NEEP method (green) as a function of time ¢. The inset shows the EP of the i-th bead. O, X, 4+, 0, and ¢ represent
the estimated EPs for x1, x2, x3, 4, and x5 beads, respectively. Solid lines denote the analytic results. Four Gaussian weight
vectors are used for the MEB estimation. (c) Plot of AS™" at ¢ = 1.0 against the number of weight vectors £. The green dashed
line represents the NEEP result, while the red solid lines in (b) and (¢) denote the analytic results. The parameters used for

these plotsare k=5, u =1, w=>5,and T = 1.

where Kij = Qk(;i,j — k(5i+17j + (51‘_173'), /\z = wtéM,i, and
B;; = pT6; j with4,j € {1,..., M'}. We can solve Eq. (49)
in a similar way used for the dragged Brownian particle.
The derivation details are presented in Appendix [B]

For validating the MEB estimator, we generate 10°
trajectories of 7 = 1 by solving Eq. numerically
with M = 5 and T = 1 via the 2nd-order stochastic
differential equation integrator. The initial state of the
chain is in equilibrium with the center of the harmonic
potential being located at the origin. From the trajec-
tories, we estimate AS;, the EP for the i-th bead, by
using the rate MEB estimator with the ¢/ = 4 Gaussian
weight vector set. The estimated data are plotted in the
inset of Fig. b). As the figure shows, the estimated EP
of each bead perfectly matches the analytic result. We
plot the total EP by adding all these AS; in Fig. 2[b).
For comparison, we also estimate the total EP with the
NEEP machine learning technique [33], which coincides
with the MEB result precisely. The detailed procedure
for the NEEP calculation is explained in Appendix [C}
Both methods exactly estimate the total EP within 0.5%
error.

Figure c) is a plot of the total EP at t = 1 against the
number of weight vectors. Surprisingly, the EP estimated
by the MEB with only one weight vector is already very
close to the analytic result. This is due to the fact that
a constant weight vector results in the exact EP value
in this system, as explained Appendix[B] As a Gaussian
function with a broad width can be approximated as a
constant, the EP can be approximately estimated solely
with the broadest Gaussian function. The EP for £ > 1
saturates to the analytic result as expected in Sec.[[TB] In
Fig. c), we also plot the result of the NEEP calculation,
which is also close to the analytic result.

C. RNA unfolding process

The final example is an RNA unfolding process, which
involves a nonlinear potential and thus an analytic treat-
ment is not possible. A typical experimental setup con-
sists of a single RNA hairpin molecule whose terminals
are connected to DNA handles that are controlled by two
optical tweezers, as illustrated in Fig. a). By moving
the center of the rightmost optical tweezers, a pulling
force is exerted on the rightmost particle and the RNA
is unfolded. For the RNA hairpin P5GA [49)], a pulling
force that amounts to 14.7 pN yields equal probabilities
for folded and unfolded states. The governing equation
of motion in this case is

#(t) = frar(a(t)) +wt + V2DE(D), (50)

where z(t) is the distance between the two ends of the
RNA at time t. The force function f14.7 is estimated
from coarse-grained molecular dynamics simulation data
when the RNA is pulled by a 14.7 pN force [49], where
a polynomial function of degree 10 is employed to fit the
force. The reflection boundary condition is imposed at
Tmin = 1.01 nm and xp.x = 9.07nm, as distances larger
than Tpa.x and smaller than z,;, were not found in the
simulation [49]. We set the initial condition as the equi-
librium state at room temperature 300 K, which is an
ordinary experimental setup. During the process time
7 = 7.19 ns, the pulling force linearly increases up to
19.7pN with a constant rate w = % pN/ns. We gen-
erate 10° trajectories from the simulations. The initial
and final distributions at ¢ = 0 and 7 are presented in
Fig. [3{(a), respectively.

We estimate the total EP by evaluating the rate MEB
from the trajectory ensemble. Here we use the Gaussian
weight vector set from Eq. for evaluating the rate
MEB estimator. Figure [3[b) shows a plot of the esti-
mated EP as a function of time for £ = 4. As the analytic
expression of the EP for this system is not available, we
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FIG. 3. EP estimation results for the RNA unfolding process. (a) Histogram of the distance x between the two ends of P5GA
at initial time O ns (light blue) and final time 7.19 ns (orange). The inset shows a schematic of the RNA pulled by optical
tweezers. (b) EP estimated via MEB with four Gaussian weight vectors (black) and NEEP (green) as a function of time ¢. The
red solid line denotes the results obtained from Eq. (51). (c) Estimated EP via MEB at ¢t = 7.19ns as a function of the number
of weight vectors ¢ (black). The green dashed line and the red solid line denote the results of the NEEP and the EP obtained

from Eq. (5I), respectively.

evaluate the EP using other numerical methods to check
the validity of the MEB method. First, we employ the
NEEP using the same trajectory ensemble and present
the result in Fig. 3(b). We find that the MEB and NEEP
results coincide with each other precisely. Second, we ap-
ply the direct method using the following equality:

AS™ (1) = ASVS(7) + % /OT ((f1a7(z) + wt) o ) dt,
(51)

where AS¥5(7) = (—Inp(z,7) + Inp(z,0)). The inte-
gration over the process time of the last term in Eq.
denotes the dissipated heat during the process. The ini-
tial and the final PDFs can be estimated from the tra-
jectory ensemble. This task becomes much harder with
increasing system dimension. The estimated total EP
from the direct method is denoted as the red solid line
in Fig. [}(b), which matches the MEB and NEEP re-
sults very well. We note that the computational cost of
the MEB method is much lower than that of the NEEP
method; it takes 3 s for the MEB method with 4 weight
vectors, while it takes 60 s for the NEEP process includ-
ing the learning time [50].

Figure[3|c) shows the way how to determine the proper
number of weight vectors . From a given trajectory en-
semble, we estimate the total EP by using the MEB esti-
mator; the estimated EP as a function of £ for this RNA
unfolding process is plotted in Fig. c). For ¢ < 3, the
estimated EP increases as ¢ increases, which indicates
that no combinations of two Gaussian weight vectors,
Eq. , are sufficiently close to the optimal weight vec-
tor, Eq. . The estimated EP saturates to a certain
value for ¢ > 3, which indicates that the estimator is now
sufficiently close to the optimal one. Thus, accurate EP
estimation can be obtained by choosing ¢ > 3.

V. CONCLUSION

In this study, we suggested an EP estimator, named
MEB, by applying multidimensional observable currents
to the entropic bound. MEB provides a unified way to
estimate the EP for both overdamped and underdamped
Langevin dynamics regardless of the time dependence of
the protocol. The MEB estimator can be obtained in
either integral or rate form. The tight EP bound is al-
ways achievable for any finite-time processes via both the
integral and the rate MEBs, whereas it is possible for
TURs only in the short-time limit. From numerical sim-
ulations, we confirmed that MEB estimates the EP with
high accuracy from an ensemble of system trajectories of
a general Langevin system. Therefore, a precise estima-
tion of the EP may be possible via MEB even for various
complicated physical processes, in particular biological
systems.

In future research, it will be interesting to develop a
method to estimate the stochastic EP at the level of a
single trajectory for general Langevin dynamics, rather
than the averaged EP over an ensemble of trajectories.
Moreover, extension of the EP estimation to an open
quantum system will be another intriguing problem.
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Appendix A: Derivation of Eq.

Here, we focus on the derivation of the integral MEB.
The derivation for the rate MEB is essentially the same
as that of the integral MEB. LZ(-ZH) can be expressed as
the following block matrix form:

LI+D = [Ly) b]

7 bT h (A1>

cD

1)

. . ¢
the inverse matrix of Lg 1) can be expressed as

(£)y—1
(LEHl))_l:{(Li ) O} Y (h— bT(LZ(/))_lb)_lddT,

0 0
(A4)

where dT = (—bT (L")~

1'1). Using Eq. (A4), we can
prove Eq. as follows:

AGMEB(E+1) :<®(z+1)>T(L(£+1))_1<®(z+1)>

=A5 P 4 (= pT(L) o) AT (@)

>ASMEBO), (A5)
The positiveness of h — bT(L(-e))_lb is used for showing
the last inequality of Eq. (A5)).

Appendix B: Analytic solutions of a dragged
Brownian particle and pulled harmonic chain by
optical tweezers

We consider a Brownian particle dragged by optical
tweezers of which dynamics is governed by the following
equation [13], 51]:

@(t) = —pk(z(t) -

where B = uT and A(t) is an arbitrary time-dependent
protocol with the condition A(0) = 0. The initial state
is set as the equilibrium distribution of Eq. with
A(0) = 0, and thus, (x(0)) = 0. To obtain the ana-
lytic solution of Eq. , we decompose z(t) into the
deterministic part (z(¢)) and the stochastic part X (t) =
x(t)—(x(t)). Taking the average of both sides of Eq. (B1])
leads to an equation for the deterministic part as

(@(t)) = —pk({z(t)) = A®))-

A1) + V2BE(t), (B1)

(B2)

A B]™' [Al4+A-1B(D - CA-1B)"ICA-!
= —(D— CA~'B)~1CA-!

10

where b = B [(Li)ex1,1,- -, (Li)eg1e] and h =
(I—i)€+1,€+1 = fO dt<Ai,g+1BiAi,g+1>q. From the Schur

complement, the determinant of the block matrix Ll(-”l)
in Eq. (Al) is given by

det(LIHY)) = det (L)) [h - bT(Lga)*lb} . (A2)

The determinant of Lgé) for any ¢ is positive since it is
a positive-definite matrix. This implies that the term

h—b"(LW)~1b in Eq. (A2) is also positive. Moreover,
via the following inverse block matrix formula,

—A-'B(D — CA—1B)~!
(D—CAB)"1 |

(

Then, the solution of (x(t)) is given by
t
(x(t)) . (x(O)) + Tu_l/ dt'e_(t_t')/”")\(t’)
0

t
=A(t) — / dt'e= 1T (¢, (B3)

0
where 7, = (uk)™' is a characteristic relaxation time.
The equation for the stochastic component X (¢) can be
obtained by simply substituting X (¢) + (x(t)) for z(¢) in
Eq. as
X(t) = -7, 'X(t) + V2BE(t). (B4)
Since the initial state is in equilibrium, the distribution of

X (t) does not change in time. Therefore, the distribution
for all time is given by the equilibrium distribution as

P(X,t) = \/f—ke*%/w.
™

By substituting « — (x(t)) for X in Eq. (B5]), we have

(B5)

Bk —xpa—(@w))?

P(x,t) = (B6)
T
Using Egs. and , the irreversible current is
T, t) = [~pk(z — A(t)) — BO,] P(x,t)
=pk[A(t) — (z(t)]P(x,1)
t
=k / dt'e= /TN P(z,t).  (BT)
0

When A(t) = wt as in Sec. the irreversible current
and EP rate are

JU (2, 1) =w[1 — eV ™| P(x,t), (B8)
tot gy _ Jlrr(x t)Q
o'(t) = | dx BPat)
2
:ﬂu —e7t)2, (B9)

I



The derivation procedure for the underdamped
Langevin equation is essentially the same as that
of the overdamped equation. By decomposing z(t) into
(z(t)) and X (t) = z(t) — (z(¢)) and v(t) into (v(t)) and

V(t) = v(t) — (x(¢)), we have
d? 1 d k
2 (zt) = —FM%(w(t)) =~ ((z(t)) —wt), (B10)
%V(t) = —miNV(t) - EX(t) +V2Bg(t).  (B11)

For this underdamped case, B = Tu 'm=2. The
second-order differential equation can be solved
with the boundary conditions (z(0)) = 0 and (v(0)) =
d/dt{z(t))|t=0 = 0. The result is

(@(t)) = Cype*t + C_e™ ' 4wt — ﬁ
where ay = —1/(2mp) £ 1/1/(2mu)2 — k/m and Cy =
Fw(og/(nk) + 1)/(oy — a—). As the initial state is
in equilibrium, the distribution of X(¢) and V(¢) in
Eq. @ for all time is the following equilibrium dis-
tribution:

P(X,V,t) \/ 1/6m { (kX% +mV?)|.

(B13)

(B12)

Therefore, P(x,v,t) is given by substituting x — (z(t))
for X and v — (v ( )) for V in Eq. (BI3)), as was done in
Eq. (B . From Eq. (5| . the irreversible current is written
as

) iy
o P(x,v,t).

(B14)

T (z,0,t) =0,  J(x,0,t) =

Finally, the EP rate is evaluated as
SOt = /d I (2,0, 1) <v(t)>2.
BP(x,v,t) uT
The analytic solution of Eq. (49) can be obtained in a

similar way. By decomposing a:z(t) into X;(t) = x;(t) —
(z;(t)) and rearranging the terms of Eq. (49), we have

(B15)

(x(t)) = —pK(z(t)) + pkA(t), (B16)
X (t) = —uKX (t) + V2BE(1). (B17)

The expression of (x;(t)) can be obtained by solving
Eq. (B16), and it is certain that (z;(t)) is a function
of time. Since the initial state is the equilibrium state
of Eq. , the probability density function (PDF)
is given by the Boltzmann factor exp[—pU(X)], where
UX) = %XTKX is the potential energy of the har-
monic chain. Thus, by substituting X = a — (x) into
the Boltzmann factor, the PDF is written as

e~ g (@—(@(1))K(z—(=(1)))

Pz, t) = ;

det(2rK™"/3)

—[kA(t) — 1K (@()]P(a, ).

(B18)

J(x, 1) (B19)
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The tight weight vector is then given by

AS(, t) = Ci(t)m

=¢;(1) | phAi(t

H’ZKU x]

Note that Ji(z,t)/P(z,t) depends on time but not po-
sition. Thus, the MEB estimator evaluated by measuring
displacement, i.e., AS(z,t) = 1, results in the correct EP.

(B20)

Appendix C: NEEP algorithm

Here we explain the training details of the NEEP and
its architecture configurations [33]. We apply the NEEP
to one step from x; to ¢y a¢. For brevity, we will use the
notation x; for &(t). The NEEP is designed to maximize
the following objective function:

0(9) = <ASQ(.’Bt+At, I, t) — 67Asg(zt+At"mt’t)> (Cl)

where ASy is an antisymmetric function with respect to
the exchange of &y and x4 a; as

h9(mt+Ata T, t)-
(C2)

ASp(xiyat, e, t) = ho(xs, Tiat,t) —

In Eq. , the function hg is the output of a multi-layer
perceptron (MLP) and 6 denotes the trainable parame-
ters of the MLP. The MLP has a scalar output unit and
three hidden layers of 512 units with the rectified lin-
ear unit (ReLU) activation function. It is shown that
ASy = AS™" with the optimized 6* in Ref. [33].

In order to employ the cross-validation method, we
split the trajectory data into 20% for the validation set
and 80% for the training set. We train the MLP hy to
maximize Eq. . by using the Adam optimizer [52]
with learnmg rate 1074, batch size 4096, and weight de-
cay 5 x 107°. Before feeding the input (®iyas, 4, t) to
the MLP, we normalize each element of trajectory data
x by using the following equation:

2 (289 — mean[z ) /std[z?],
where z(?) indicates the i-th component of , mean[z(*)]
is the mean of 2", and std[z(?)] is the standard devi-
ation of (). We also normalize the time information
t=0...7 to be set as t = —0.5...0.5 so that mean of
the input vector (€4 a¢, ¢, t) becomes a zero vector. The
total number of training iterations is 104, and we evalu-
ate C'(0) values from the validation set per every 500 (50)
training iterations for the pulled harmonic chain (RNA
unfolding process). The best trained parameter set 6* is
determined from the case where the NEEP produces the
maximum value of C' during the training process. The
results presented in Sec. [[V] are those evaluated at the
best trained parameter 8* over the total trajectory data.
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