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Speed limit for a highly irreversible process and tight finite-time Landauer’s bound
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Landauer’s bound is the minimum thermodynamic cost for erasing one bit of information. As this
bound is achievable only for quasistatic processes, finite-time operation incurs additional energetic
costs. We find a “tight” finite-time Landauer’s bound by establishing a general form of the classical
speed limit. This tight bound well captures the divergent behavior associated with the additional
cost of a highly irreversible process, which scales differently from a nearly irreversible process. We
also find an optimal dynamics which saturates the equality of the bound. We demonstrate the
validity of this bound via discrete one-bit and coarse-grained bit systems. Our work implies that
more heat dissipation than expected occurs during high-speed irreversible computation.

Introduction — Memory erasure is an elementary op-
eration in irreversible computation. As the erasing op-
eration incurs a thermodynamic cost and takes a finite
physical time, low energy consumption and a short pro-
cess time are critical requirements for efficient computa-
tion. The fundamental limitation of the energetic cost is
given by Landauer’s principle [1, 2], which states that at
least kT In2 of work is necessary to erase a single bit
memory, where kp is the Boltzmann constant and 7" is the
environment temperature. Landauer’s bound is universal
in the sense that it is independent of memory device type
or physical platform. This bound has been confirmed ex-
perimentally using various physical setups, including a
double-well potential realized by optical tweezers [3, 4]
and virtual potential [5, 6], an electric-circuit system [7],
and a nanomagnetic memory bit [8, 9].

In real-world situations, however, this fundamental
bound is less practical as it requires a quasistatic process,
which far exceeds the system’s relaxation time scale. The
reported experimental time scale of the “quasistatic” era-
sure process ranges from a few hundred milliseconds [10]
to several tens [4] or hundreds [5] of seconds, which
is far from the time required for practical computation.
Therefore, it is important to understand the finite-time
effect on thermodynamic cost, which generally increases
as a process becomes faster and more irreversible [11-
15]. Several experimental studies have suggested that
the minimum energetic cost should increase by an addi-
tional cost inversely proportional to the erasing time 7,
ie., kgT'In2 + C/7, with a system-dependent constant
C' [3-6]. This behavior has also been investigated theo-
retically for the classical stochastic system described by
the overdamped Langevin equation [16, 17], and an open
quantum system described by the Lindblad equation [18].

These studies suggest that a trade-off relation plays
a central role in understanding the overhead cost of
the Landauer’s bound. Over the last decade, various
types of trade-off relations have been reported in stochas-
tic systems and also for open quantum systems such
as thermodynamic uncertainty relations [19-27], kinetic

uncertainty relations [28-32] and speed limits for state
change [33-42]. Recently, Zhen et al. [43] showed that
the 1/7 behavior of the “minimum work bound” of eras-
ing processes is governed by the speed-limit inequality
associated with the thermodynamic cost.

In this Letter, we first present a simpler way to derive
the general form of the speed limit introduced in Ref. [42],
which can have various functional forms. Two different
speed limit regimes are considered in terms of the de-
gree of irreversibility. For a nearly reversible process, we
retrieve the previous speed limits [33, 34] by taking a
simple functional form, that provide a tight bound on
the operation time in terms of entropy production (EP)
and dynamical activity. However, this bound gradually
loosens as the process becomes more irreversible. We find
a tight bound for a highly reversible process from the
general speed limit with a different functional form. In
the limit of high irreversibility, this new bound becomes
finite, depending solely on dynamical activity.

We apply this general speed limit to calculate the tight
bound of the additional cost associated with a finite-
time erasing operation. We demonstrate that this bound
scales as 1/7 for a nearly reversible process, while much
stronger divergence appears for a fast or highly irre-
versible process. As a result, high-speed irreversible com-
putation requires much more heat dissipation and thus
associated supporting cooling architecture. We also find
an explicit protocol which meets the equality condition
of the bound.

Speed limit for a highly irreversible process — Sup-
pose that the time evolution of a probability distribution
p(t) = {pn(t)} at time ¢ is described by

where the transition rate matrix R(t) satisfies the
condition R,.,(t) > 0 for m # n and Rp,(t) =
=2 n(#n) Bomn(t). The statistical distance between the
initial and the final distributions after time 7 can be mea-



sured by the total variational distance

**Z|pn pn(0)].

We first establish a general form of the speed limit, in
terms of the distance ¢, the EP ¥*, and the total activity
(number of jumps) Ao, during 7, given by

L >
Atot S f <Atot) ’ (1)

with an appropriate choice of a monotonically increasing
concave function f as listed in Table I. Hereafter, we
set kg = 1 for convenience. The EP ¥* = fOT(Z*)dt
is characterized by the transition matrix of the adjoint
process R*(t) [44-47], where the corresponding EP rate
is defined as

= Z Ry (6)pm (t) In [an(t)pm(t)} .
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We assume that the adjoint process is also stochastic
with the same escape rate; Ry, (1) = = 3_,,2n) B (1) =
R, (t). A trivial choice of the adjoint process is taking it
the same as the time-reversal process, R, (t) = Ryn(t),
which leads to the total EP X, ie. ¥* = X. Alter-
natively, by considering the instantaneous steady-state
p*(t) such that p*(t) = 0, the adjoint process defined
as R, (1) = Rum(t) (2:8&5;) leads to the Hatano-Sasa
(GXCGSS) EP ¥* = EHS- Since 0 < EHS < by [44, 48], EHS
always gives a tighter bound than ¥ in Eq. (1).
To derive Eq. (1), we first note that
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from the triangle inequality. Using R, (t) = R, (t), the

instantaneous change of the probability distribution is
bounded by

Z ‘pn(t” = Z

= dy(p(

(2)

Z an pm

m(#n)

) + Ron (8)pn (1)

= Z Z {an(t)pm(t) - R'Tnn(t)p”(t)}

m(#n)
<D [Rum(O)pm(t) = Ry (0)pa(2)]
n#m
=2A(t)dr(Q(t), Q" (1)), (4)

where A(t) = Zn;ém Ry ()pm () = ngén R (0)pn(t)
is a jump rate at time ¢ and Q(t) (Q*(t)) denotes the
normalized conditional joint probability distribution of
the forward (reverse) process which is defined as follows:

Q1) = Pl nline) = A(t) ;

A(t)

TABLE I. Various choices of the concave function f(z) satis-

fying Eq. (7) and its inverse (convex) function h(v) = f~(v).
f(=) h(v)
Pinsker [49] (z/2) 202
Bretagnolle-Huber [50] V1—e=® —In(1 — v?)
Vajda [51] nfat () -2
Gilardoni [52] n/a® In %]
Symmetric KLD * [53, 54] n/a ® vin [iff}]

2 Analytic compact expression is not available.
b This bound is valid only when the KLD is symmetric.

Thus, dr(Q(t),Q*(t)) captures how much irreversible
the process is at time t. We remark that Ay, = fOT dtA(t)
has a meaning of the total number of jumps during the
entire process. By combining Egs. (3) and (4), we have
the following inequality:

(< / " dt AW dr (Q(). Q (1), (5)

It is worth nothing that the EP rate can be expressed
in terms of the conditional joint distributions as

QMIQ™ (1)), (6)

where D(p||q) = >, pz In(p2/qz) is the Kullback-Leibler
divergence (KLD) between two probability distributions
p and q. Note that the KLLD corresponding to the total
EP rate (2) is symmetric (D(p||q) = D(q||p)), while the
KLD is generally asymmetric for other choices such as
ZHS. There exist various choices of a monotonic concave
function f (see Table I) that connects the total varia-
tional distance and the KLD to obey the following in-
equality [49-52]:

¥ = A(t)D(

dr(p,q) < f(D(pllq)). (7)

The speed limit is obtained by plugging in Eqs. (6) and
(7) to Eq. (5), and then dividing both sides with A¢t,
which leads to

¢ Jyatawms (3) 5
Ator = fOT dtA(t) = (Atot)’ (8)

from the concavity of f.
As g(z) = h(z)/(2x) is a monotonically increasing
function for all A’s in Table I, where h = f~!, we can

rewrite Eq. (8) as

14
el ?)

by defining (A), = Aiot/T and g~ 1(x) the inverse func-
tion of g(x). Equation (9) is the general form of the



speed limit, where various types of bounds can be ob-
tained based on the choice of h(z). The previous speed
limit 7 > 202/((A),X*) in Refs. [33, 34] is readily ob-
tained by taking h(x) = 2? (Pinsker [49]), which is
tight only for a nearly reversible (slow) process but yields
a very loose bound for a highly irreversible process. We
note that for any X* > 2¢, this bound is even worse than
the fundamental bound 7 > ¢/({A), obtained from the
minimum activity to change the probability distribution
regardless of the EP, Ayt = (A),7 > £ [42].

We find that a speed limit can be tightened for a highly
irreversible process with alternative choices of h(z) such
as Bretagnolle-Huber, Vajda, Gilardoni, and symmetric
KLD as listed in Table I. All these four functions provide
speed limits, always tighter than the fundamental bound,
which can be accessible only when ¥* — co. Therefore,
in the highly irreversible limit, time is bounded solely by
the dynamical activity, but not the EP. The symmet-
ric KLD bound is always the tightest among all h(z),
though it is valid only for the symmetric KLD. Other-
wise, the Gilardoni bound is the tightest for ¥* /¢ > 1.14,
while the Pinsker bound is the tightest elsewhere. Simple
derivation of the symmetric KLD bound is presented in
Supplemental Material (SM) [55].

Tight finite-time Landauer’s bound — The speed limit
in Eq. (1) can be rearranged to bound the EP as

h 26@ = By, (10)
where v = (/Ao is the average distance change per
jump, which ranges from 0 to 1, measuring the irre-
versibility of the process. When v is close to 0 (1), the
distribution changes gradually (abruptly), so the process
is nearly reversible (highly irreversible). The bound By
monotonically increases with v for all h’s, where H de-
notes a specific functional form, e.g., H = P (Pinsker)
and H = S (symmetric KLD) with Bp = 20 and
Bs = 20 tanh ™! .

Now, we use the EP bound to estimate the minimum
cost for a finite-time erasing process. Suppose an erasing
operation resets a one-bit system composed of 0 and 1
states with the associated probabilities po(t) and pi(¢),
respectively. Let us assume that the initial bit is ran-
dom with probability distribution as (p(0),p1(0)) =
(1/2,1/2), and the erasing process yields the final dis-
tribution (po(7),p1(7)) = (1 — €,€) with erasing error
e after time 7. The statistical distance between the

initial and final states becomes ¢ = 1/2 — ¢, and the
Shannon entropy change of the system can be computed
as ASgys = —In2 — (1 — €)In(l — €) — elne. Fur-

thermore, by setting ¥* as the total EP [56], we have
Y% = ASgys + Q/T, where @ is the heat dissipated into
the surrounding environment with temperature 7" during
the erasing process. As the total EP ¥ corresponds to
the symmetric KLD, we use the symmetric KLD bound

to obtain the tightest Landauer’s bound.

In the perfect erasing limit e — 0, we get £ — 1/2 and
ASsys — —In2 and the finite-time Landauer’s bound
from Eq. (10) is expressed as

% >1n2+ Bg =In2+ tanh o, (11)

where Bg represents the additional cost due to finite-
time operation. For small v (nearly reversible), Bg ~ v =
1/(27(A)), which corresponds to the previously known
1/7 behavior [3-6, 43]. As we approach v = 1~ (highly
irreversible regime), Bg diverges asymptotically as

BS:—;ln(l—v):—iln<l—2T<lA>T>. (12)

This implies that much higher dissipation should occur
in a highly irreversible erasing operation.

Practical computation requires a small erasing error as
well as a short operation time. To this end, the transi-
tion rate from 1 to O state has to be large for fast opera-
tion, necessitating large driving (large (A4).). In compar-
ison, the reverse transition (0 to 1) should be suppressed
to prevent erasing-error operations. Therefore, the best
strategy for a desired erasing operation is that all “par-
ticles” initially located at state 1 jump to state 0 once,
and no jump occurs afterwards; this condition can be
read as Agor = 1/2 with p1(0) = 1/2. Consequently, the
operation for a practical erasing process should be highly
irreversible with v = ¢/Aios =~ 1. Thus, Eq. (12) for a
highly irreversible process is well deserved for practical
computation.

We find explicitly the optimal dynamics which min-
imizes the EP, satisfying the equality of Eq. (10) with
h = hg. Its sufficient condition is

Ro1(t)p1(t)

Rro(pold) = ¢ (const.),

Vo<t<rt, (13)

along with monotonic change of p,(¢) in time. The de-
tailed derivation is presented in SM [55], where we also
show that a process with v & 1~ (v & 0) is realized with
large ¢ and short 7 (¢ ~ 1 and long 7).

The finite-time Landauer’s bound, Eqgs. (10) and (11),
is also applicable to a bit system made by coarsening,
such as a Langevin system with a double-well poten-
tial [3-6]. This can be verified by the fact that the EP
of a coarse-grained bit system is equal to or smaller than
that of its original system without coarse-graining. See
Eq. (10) in Ref. [43] and SM [55] for details. Therefore,
the original EP is also bounded by the same additional
cost term in Eq. (10).

Numerical confirmation — Here we investigate two ex-
amples. The first one is a discrete one-bit system con-
sisting of states 0 and 1 with energy levels Ey = 0 (fixed)
and F4(t) (time-varying), respectively. Its dynamics is
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FIG. 1. (a, b) Schematics of the two erasure models: discrete

one-bit system (a) and coarse-grained bit system (b). (c) Plot
of ©/¢ versus v~ for discrete system (gray x) and continuous
system (green @). The orange solid (sky-blue dashed) curve
denotes the Pinsker (symmetric KLD) bound.  The result
of the optimal protocol is denoted by red dot @. (d) Plot of
3 divided by the the symmetric KLD bound Bg versus v~!

For a fixed £ and A(t), v™' can be simply regarded as a scaled
time. The same data are used for (c) and (d).

described by the following master equation:
Po(t) =Ro1(t)p1(t) — Rio(t)po(t),
P1(t) =Ri10(t)po(t) — Ro1(t)p1(t). (14)

The transition rate Ry, (t) satisfies the detailed balance
condition, that is, with y(t) = e F1(/T /(1 4 e~ F1()/T)

Rao(t) = u(t)y(t), Roi(t) = u(t)(1 =~(t),  (15)

where p(t) is an overall transition rate. Erasing process is
illustrated in Fig. 1(a). The system is prepared with the

4

initial distribution (po,p1) = (1/2,1/2) with E; = 0 and
w =0 fort < 0. Here, u = 0 indicates that the transition
is blocked. FEj; and p are abruptly raised to Fepas and
Leras at time ¢ = 0, respectively, and maintained up to
t = 7. And then, both E; and p are immediately lowered
to 0 at ¢ = 7. The final distribution at ¢t = 7 is (po,p1) =
(1 — €,€). This protocol is the simplest one in the n-step
energy-raising procedure [43, 57]. The exact solution of
this model is

pit) =e"pi(0)+ (1 —e ")pily . (16)

where p"y = 1/[1 4 exp(Eeras/T)]. Using Eq. (16),
we explicitly calculate the entropy change of the system
ASgys = —>;[pi(7) Inp;(7)—p;i(0) In p; (0)] and heat Q =

Eeras[p1(7) — p1(0)], which leads to the total EP ¥ =
ASsys+ Q/T, as well as the total activity Air. We also
construct an optimal time-dependent control of R, (t)
satisfying the saturation condition Eq. (13), of which the
explicit form can be found in SM [55].

The second example is a coarse-grained bit system con-
sisting of a one-dimensional Brownian particle trapped in
a double-well potential. Dynamics of the particle is gov-
erned by the following overdamped Langevin equation:

vi= WD pre, )

where z is position of the particle, £(t) is a Gaussian
white noise satisfying (£(¢)¢(t')) = 6(t — t'), and the
double-well potential Vpw (z,t) is given as

+O(t)——, (18)

Vow(,t) =Ey .

where ©(t) provides a time-dependent protocol. This
model corresponds to the experimental setup in Ref. [58].
The system can be treated as a coarse-grained bit mem-
ory by regarding the system being in state “0” (“1”) when
2 < 0 (z > 0). Then, the probabilities for the coarse-
grained state i (i € {0,1}) are

dzP(z,t) and p®(t) =1-—p®
z<0

po’(t) = (#), (19)

where P(z,t) is the probability distribution of the origi-
nal continuous system. The erasing process of this model
is presented in Fig. 1(b). An initial state is prepared as
the equilibrium state determined by the double-well po-
tential with ©(¢f) = 0 for ¢ < 0. As the potential is
symmetric with respect to z = 0, p2(0) = pi¥(0) =
1/2. At t = 0, we immediately raises O(t) t0 Ocras
and maintain it up to ¢ = 7. ©O(t) then returns to
0 at t = 7. Due to the nonlinearity of the potential
force, an analytic solution is not available. Instead,
the total EP ¥ = ASgs + Q/T is estimated by nu-
merically evaluating ASyys = — [ da[P(z,7)In P(z,7) —



P(2,0)In P(x,0)] and Q = [ dt(—9,Vbwm) o @(t), where
o is the Stratonovich product. £ and Ay are estimated
by using p;®(t) and by counting the number of transitions
between the different coarse-grained states [59].

Figure 1(c) shows the plot of /¢ against v=! for the
discrete and the coarse-grained bit models. The data
for the discrete model are obtained by varying parame-
ters Feras and 7 within the ranges 107° < E,.s < 10 and
10710 < 7 < 20 with fixed fteras = 1 and T = 1. The data
of the coarse-grained bit model are the simulation results
for the parameter ranges (used in real experiment [58])
of 0.1kgT < Ocpas < 10kgT and 0.1 ms < 7 < 110 ms
with fixed 2,,, = 50 nm, kg7 = 4.1 pN-nm (7 = 300 K),
Ey = 3kpT, and v = 24v/2kpT - ms/mx2,. Each point of
the coarse-grained bit model in the plot is obtained by av-
eraging 10° realizations. The Pinsker and the symmetric
KLD bounds are presented along with the result of the
optimal erasing process in the figure and the comparison
with other bounds is shown in SM [55].

Indeed, the symmetric KLD tightly bounds the EP
of the discrete bit model for all v. This tightness can
be also checked in Fig. 1(d), which presents the total
EP divided by Bs (see Eq. (10)). Note that the Pinsker
bound is quite tight for nearly-reversible processes (small
v); however, it becomes extremely loose near v = 1. The
data of the coarse-grained model are also well bounded
by Bs. However, the bound is not tight due to the “intra
EP” induced by transitions between microstates inside
the same coarse-grained state. The detailed explanation
is presented in SM [55]. Thus, it is also important to
reduce the intra EP for lowering the thermodynamic cost
for a coarse-grained system.

Conclusion — We find the finite-time Landauer’s
bound, which is tight for an erasing process with any
irreversiblility and any error rate, from the general form
of the speed limit. We also find an optimal dynamics
which saturates the equality of the bound. This bound
is applicable to a coarse-grained bit system as well as
an intrinsically two-state system. We demonstrate that,
for a highly irreversible process, the diverging behav-
ior of the additional cost is much steeper than that of
a nearly reversible process. This indicates that, in a
practical computation, which belongs to a highly irre-
versible regime, reducing the operation time and error
rate gives rise to much more heat dissipation than ex-
pected. Thus, enhancing the cooling power or heat tol-
erance of a memory device to maintain a proper device
temperature is more critical when computation becomes
more irreversible. Our formula is also directly applica-
ble for estimating the proper bound of cooling power for
a given computation speed, and the density of memory.
Furthermore, to save thermodynamic costs, it is impor-
tant to reduce the dissipation produced inside the same
coarse-grained state. Subsequent experimental studies in
various physical systems are anticipated in the future.
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