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In nonequilibrium systems, the relative fluctuation of a current has a universal trade-off relation
with the entropy production, called the thermodynamic uncertainty relation (TUR). For systems
with broken time reversal symmetry, its violation has been reported in specific models or in the linear
response regime. Here, we derive a modified version of the TUR analytically in the overdamped
limit for general Langevin dynamics with a magnetic Lorentz force causing time reversal broken.
Remarkably, this modified version is simply given by the conventional TUR scaled by the ratio of the
reduced effective temperature of the overdamped motion to the reservoir temperature, permitting
a violation of the conventional TUR. Without the Lorentz force, this ratio becomes unity and the
conventional TUR is restored. We verify our results both analytically and numerically in a specific
solvable system.

I. INTRODUCTION

The thermodynamic uncertainty relation (TUR) states
that current fluctuation has a universal trade-off relation
with thermodynamic cost [1–3]. To be precise, the prod-
uct of the relative error square of an accumulated cur-
rent Φ and the total entropy production 〈∆Stot〉ss in the
steady state is bounded from below as

QΦ ≡ Varss[Φ]

(〈Φ〉ss)2 〈∆S
tot〉ss ≥ 2kB , (1)

where QΦ is called the TUR factor for the current Φ,
the variance Varss[Φ] ≡ 〈Φ2〉ss − (〈Φ〉ss)2 with a steady-
state average 〈·〉ss, and the Boltzmann constant kB. As
an example, consider a molecular motor in a directional
stochastic motion. Stochastic fluctuations and heat dis-
sipation are two key quantities needed to be minimized
for ideal performance. The above TUR enlightens that
both quantities can not be minimized simultaneously and
there should be a trade-off between them.
After the first discovery of the TUR for systems in the

linear response regime and Markov processes on simple
networks [1], many studies have explored its generality
and applicability by investigating various systems [3, 4].
Exploiting a large deviation theory or an information the-
ory, the TUR was derived for continuous-time Markov
jump processes and overdamped Langevin dynamics [5–
10]. It has also been reported that the TUR is related
to the efficiency bound of molecular motors [11], the
power-efficiency trade-off relation for heat engines [12–
14], the generic stochastic equation for entropy produc-
tion [15, 16], the Cramer-Rao inequality [9, 10], and the
symmetry of the joint distribution for the current and the
entropy production [17, 18] known as the detailed fluc-
tuation theorem [19–21]. Recently, various studies have
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developed methods for the entropy production inference
based on the TUR [22–25].

Some recent studies have shown that the TUR is vi-
olated and should be modified when dynamics has an
intrinsic time scale [26–31], breaks the time-reversal sym-
metry [32–34], or involves any odd-parity variable under
time reversal such as velocity [35–37]. Especially, in the
underdamped Langevin dynamics, the TUR is trivially
violated for reversible currents [36] or for finite duration
time [38]. Some evidence supports that the TUR could be
valid for irreversible currents in the long-time limit [38],
but a rigorous proof is missing. Although a variant of the
TUR including dynamic activity was reported for the un-
derdamped Langevin systems [36] and then extended to
systems with velocity-dependent forces [37], their use is
limited because their lower bounds depend on dynamic
details and become trivial in the overdamped limit.

Recently, Chun et al [34] showed that, in an exactly
solvable underdamped Langevin system with a magnetic
Lorentz force, work and heat currents violate the con-
ventional TUR of Eq. (1) even in the small-inertia (over-
damped) limit. This violation may not be surprising as
the Lorentz force breaks the time reversal symmetry. In-
stead, they reported a modified bound for the TUR factor
in the overdamped limit for infinitely long duration time.
Interestingly, this modified lower bound is very similar
to the conventional TUR bound except for a simple di-
mensionless multiplication factor. However, this system
is a special harmonic system, thus the applicability of
their finding to general systems should not be taken for
granted.

In this paper, we consider a general underdamped dy-
namics with a magnetic Lorentz force and rigorously
show that Chun et al’s finding is surprisingly still in-
tact for general systems in the overdamped limit. More
remarkably, this modified TUR is valid for general cur-
rents (odd under time reversal) including work and heat
currents and even for a finite duration time. This modi-
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fied TUR reads

QΦ ≥ 2kB
TB
T

, (2)

where T is the reservoir temperature and TB (< T ) is the
reduced effective temperature of the overdamped motion,
which will be defined in the next section. We note that
TB = T without a Lorentz force and the conventional
TUR is restored.
The derivation is rather tricky, mainly because the

overdamped (small-inertia) limit in the presence of a
Lorentz force generates a non-white noise [39]. We in-
troduce an alternative but equivalent description with a
white noise by employing a standard small-inertia expan-
sion [40] on an extended Fokker-Planck equation with a
current as an additional variable. The main strategy to
derive the modified TUR is based on the Cramer-Rao in-
equality with a slightly different perturbation from the
conventional one adopted in Refs. [9, 10]. We also gen-
eralize the modified TUR for an arbitrary initial state.
Finally, we calculate analytically the finite-time TUR fac-
tors for work, heat, and entropy production currents in
the overdamped limit for the solvable harmonic system
with a Lorentz force in two dimensions, which confirm
our modified TUR.

II. THE OVERDAMPED LANGEVIN

EQUATION WITH A MAGNETIC FIELD

For convenience, we consider two-dimensional dynam-
ics of a charged Brownian particle in thermal contact
with a heat bath at temperature T and subjected to a
static magnetic field perpendicular to the motion plane.
We also consider a general in-plane force f(x) acting on
the particle, as shown in Fig. 1. As the Lorentz force
induced by the magnetic field has an in-plane compo-
nent only, the particle motion is constrained on the two-
dimensional plane with a proper initial condition.
The equation of motion of the particle is given by the

Langevin equation as

ẋ(t) = v(t),

mv̇(t) = f(x(t))−Gv(t) + ξT (t) ,
(3)

where ȧ represents the derivative of a variable a with re-
spect to time t, x(t) and v(t) are the two-dimensional
position and velocity vector of the particle, m is the par-
ticle mass,

G =

(

γ −B
B γ

)

(4)

is an asymmetric friction coefficient tensor with the fric-
tion constant γ and the magnetic field magnitude B,
and ξT (t) is the thermal noise described by a Gaussian
white noise. The fluctuation-dissipation relation imposes
〈ξT (t)ξT

T (t
′)〉 = 2γT Iδ(t − t′) with the identity matrix

I, where the superscript T denotes the transpose. The

FIG. 1. A illustration describing the system.

particle charge and the Boltzmann constant are set to be
unity.
Under usual experimental conditions, the friction coef-

ficient is so large that the inertia effects can be ignored.
The equation of motion in this overdamped (small-mass)
limit was obtained by integrating out Eq. (3) (see Ap-
pendix A and [39]) as

ẋ(t) = G−1f(x(t)) + ηT (t) , (5)

where ηT (t) is a non-white Gaussian noise characterized
by 〈ηT (t)η

T

T (t
′)〉 = Z(t− t′) with

Z(u) =

{

2TG−1δ(u), for u > 0,

2T
(

G−1
)T

δ(u), for u < 0 ,
(6)

which is clearly singular at u = 0.
The symmetric part of the correlation matrix Z is

Zs(u) ≡
Z(u) + ZT(u)

2
=

2TB
γ

Iδ(u) (7)

with TB =
1

1 + (B/γ)2
T , (8)

indicating that the particle in the overdamped limit ex-
periences a heat reservoir with the effective temperature
TB lower than the original reservoir temperature T . This
is consistent with the diffusion coefficient decrease for a
charged Brownian particle in the presence of magnetic
field, reported in [41].
The antisymmetric part of the correlation matrix plays

a crucial role for featuring nonequilibrium-ness in this
subtle overdamped limit, which generates a rotational
probability current (curl flux), verified recently by nu-
merical simulations for various systems [42–45]. This can
be more transparent by deriving the probability current
directly in the Fokker-Planck description.
The systematic way to obtain a small-mass expansion

of the underdamped Fokker-Planck (Kramer) equation
is well established [39, 40, 46]. Its leading order gives
the overdamped Fokker-Planck (FP) equation governing
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the time evolution of the position distribution function
pη(x, t) as [39]

∂tpη(x, t) = −∇
T · Jη(x, t) , (9)

with the probability current

Jη(x, t) = G−1(f(x)− T∇)pη(x, t) , (10)

where the subscript η denotes the non-white ηT noise.
Note that the probability current has an asymmetric dif-
fusion matrix TG−1, which is consistent with the singu-
lar correlation matrix in Eq. (6) (explicitly shown in [39])
and is also responsible for the curl flux mentioned above.
Nevertheless, the antisymmetric part of the diffusion

matrix does not contribute to the time evolution of
pη(x, t), as it is sandwiched between the same gradi-
ent operators in the FP equation. Thus, the distribu-
tion pη(x, t) should be identical to that for the (naive)
overdamped system with the symmetric diffusion matrix
(TB/γ)I, which is the symmetric part of the original dif-
fusion matrix TG−1.
This naive overdamped Langevin equation can be sim-

ply obtained by setting m = 0 in the underdamped equa-
tion of Eq. (3) as

ẋ(t) = G−1f(x(t)) + ξTB
(t) (11)

with a white Gaussian noise ξTB
(t) = G−1ξT (t) satisfy-

ing 〈ξTB
(t)ξT

TB
(t′)〉 = Zs(t− t′) = (2TB/γ)Iδ(t− t′). The

corresponding naive probability current is

Jξ(x, t) =

(

G−1f(x)− TB
γ

∇

)

pξ(x, t) , (12)

We will refer this naive dynamics as ξ-dynamics, whereas
the original overdamped dynamics with the non-white
noise as η-dynamics.
The equivalence of the distribution functions for both

dynamics as pη(x, t) = pξ(x, t) guarantees that the aver-
age of any position-dependent observable (internal en-
ergy, system Shannon entropy, etc) does not discrim-
inate the true overdamped η-dynamics and the naive
(incorrect) ξ-dynamics. However, the average of path-
dependent observables such as currents could depend on
the antisymmetric part of the diffusion matrix. One spe-
cific example has been already reported in Ref. [39] by an
explicit calculation of the average work currents for two
different dynamics for an exactly solvable model, which
turn out to be clearly different from each other. There-
fore, one should be careful in discussing the TUR in-
volving the current average as well as its variance in the
presence of a magnetic Lorentz force.

III. EXTENDED FP EQUATION AND

ALTERNATIVE DYNAMICAL OBSERVABLE

Consider a general accumulated current Φ in the over-
damped regime as

Φ(Γ) =

∫ t

0

dt′ΛT(x(t′)) ◦ ẋ(t′) , (13)

where Γ = {x(t′)|t′ ∈ (0, t)} denotes a trajectory in the
state space, Λ(x) is an arbitrary state-dependent vec-
tor (‘weight’ function), and ◦ represents the Stratonovich
product.
It is convenient to consider the joint distribution

p̂(x,Φ, t) for the position and the current, from which
the current average and its fluctuations can be easily cal-
culated. As an additional stochastic variable, the current
satisfies

Φ̇(t) = ΛT(x(t)) ◦ ẋ(t) . (14)

Together with Eq. (11), one can derive the extended FP
equation for the naive ξ-dynamics as

∂tp̂ξ(x,Φ, t) = L̂ξ,Φp̂ξ(x,Φ, t) , (15)

with the FP operator

L̂ξ,Φ = −∇̃
T

Φ ·
(

G−1f(x)− TB
γ

∇̃Φ

)

(16)

where ·̂ denotes quantities and operators in the extended
phase space and ∇̃Φ = ∇ + ∂ΦΛ(x) is a tilted gradient
operator. For detailed derivation, see Appendix B. By
integrating out over Φ in Eq. (15), one can recover the
ordinary FP equation with the probability current given
in Eq. (12).
Now, let us derive the extended FP equation for the

original η-dynamics. As the ηT noise is non-white, it is
not straightforward to derive the extended FP operator
directly. Thus, we again go back to the underdamped ver-
sion and take the small-mass expansion. After a lengthy
but straightforward calculation (shown in Appendix C),
we obtain

∂tp̂η(x,Φ, t) = L̂η,Φp̂η(x,Φ, t) , (17)

with

L̂η,Φ = −∇̃
T

ΦG
−1
(

f(x)− T ∇̃Φ

)

= L̂ξ,Φ − ∂Φϕ(x) ,

(18)

where the scalar function

ϕ(x) = −T∇TG−1
a Λ(x) (19)

with G−1
a = (G−1 − (G−1)T)/2. Note that the gra-

dient operator in Eq. (19) works only inside the scalar
function (not on the distribution function). This scalar
function is originated from the antisymmetric part of the
diffusion matrix and contributes to the time evolution
of the joint distribution, in contrast to the ordinary dis-
tribution case. Thus, p̂η(x,Φ, t) 6= p̂ξ(x,Φ, t) and thus
〈A(Φ)〉η 6= 〈A(Φ)〉ξ for an arbitrary function A(Φ).
Our key observation is that the extended FP opera-

tor L̂η,Φ has the same mathematical structure with the

time evolution operator L̂ξ,Ψ for the joint distribution
p̂ξ(x,Ψ, t) with the alternative dynamic observable

Ψ(Γ) = Φ(Γ) +

∫ t

0

dt′ϕ(x(t′)) (20)
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in the ξ-dynamics. In short, we find the operator corre-
spondence relation

L̂η,Φ = L̂ξ,Ψ

∣

∣

∣

Ψ→Φ
, (21)

which is easily verified from Eq. (B5) in Appendix B for

the explicit derivation of L̂ξ,Ψ and Eq. (18). Note that
the alternative dynamic observable Ψ and the original
current Φ differ by the accumulated state-dependent ob-
servable ϕ, meaning that Ψ is not antisymmetric under
time reversal in contrast to Φ.
The correspondence relation between the extended FP

operators implies that the random variables Φ in the
η-dynamics and Ψ in the ξ-dynamics should be equiv-
alent in their distributions at any time during the evolu-
tion, starting with the same initial distribution. In other
words, we can identify the equivalence relations as

p̂η(x,Φ, t) = p̂ξ(x,Ψ, t)|Ψ→Φ and 〈A(Φ)〉η = 〈A(Ψ)〉ξ .
(22)

Using these relations, we can avoid complex calculations
for the averages, caused by the singular nature of the non-
white noise in the original η-dynamics. Figure 2 shows
the schematic description of this relation. For example,
the current average and its variance in the η-dynamics are
identical to those of the alternative dynamic observable
in the ξ-dynamics as

〈Φ〉η = 〈Ψ〉ξ and Varη[Φ] = Varξ[Ψ] , (23)

which are useful to calculate the TUR factor QΦ for the
original η-dynamics.
The time evolution of the alternative dynamic observ-

able Ψ reads from Eq. (20)

Ψ̇(t) = ΛT(x(t)) ◦ ẋ(t) + ϕ(x(t)) , (24)

yielding the relation between the average current rates

〈Φ̇〉η = 〈Ψ̇〉ξ = 〈Φ̇〉ξ + 〈ϕ〉ξ . (25)

It is worth mentioning that the non-zero average scalar
term 〈ϕ〉ξ represents the difference of two different aver-
ages of the current Φ.
As in the traditional stochastic thermodynamics like

in the ξ-dynamics, the average current rate in the η-
dynamics is also written in an integral form involving
the probability current (shown in Appendix D) as

〈Φ̇〉η =

∫

dx ΛT(x) · Jη(x, t) . (26)

The average rate of Ψ in the ξ-dynamics is also written
in a similar form, using Eq. (24), as

〈Ψ̇〉ξ =

∫

dx (ΛT(x) · Jξ(x, t) + ϕ(x)pξ(x, t)) (27)

≡
∫

dx ΛT(x) ·J ξ(x, t) (28)

FIG. 2. A schematic description representing the relation
between the original η-dynamics and the naive ξ-dynamics.

with the effective probability current

J ξ(x, t) = Jξ(x, t)− TG−1
a ∇pξ(x, t) (29)

= G−1(f(x)− T∇)pξ(x, t) , (30)

where we used Eq. (19) and the relation
∫

dx (G−1
a ∇)T ·

Λ(x)pξ(x, t) = 0. Comparing this with Jη(x, t) in
Eq. (10), we find the relation of

J ξ(x, t) = Jη(x, t) , (31)

with the distribution equivalence of pη(x, t) = pξ(x, t).
This relation along with Eqs. (26) and (28) confirms
Eq. (25).
To discuss the TUR, we consider the steady-state en-

tropy production rate for the η-dynamics. Its stochastic
version in the steady state can be written as

Ṡtot(t) = ΛT

S(x(t)) ◦ ẋ(t) with ΛS(x) =
GJss

η (x)

Tpssη (x)
(32)

where the superscript ‘ss’ denotes a steady-state quan-
tity such as Jss

η (x) = G−1(f(x) − T∇)pssη (x) with the
steady-state distribution pssη (x) (see Appendix D.3 for
its derivation). Using Eqs. (32) and (26), we obtain the
average steady-state rate

〈Ṡtot〉ssη =
γ

T

∫

dx
|Jss

η (x)|2
pssη (x)

(33)

=
γ

T

∫

dx
|J ss

ξ (x)|2
pssξ (x)

≡ 〈Σ̇〉ssξ (34)

where the relation of Eq. (31) is used with
J

ss
ξ (x) = G−1(f(x)− T∇)pssξ (x) and Eq. (25) guaran-

tees 〈Ṡtot〉ssη = 〈Σ̇〉ssξ with the corresponding alternative

dynamic variable Σ, defined as Σ̇(t) = Ṡtot(t)+ϕS(x(t))
with the scalar function ϕS(x) = −T∇TG−1

a ΛS(x) (see
the explicit calculation in Appendix D.4).
Using Eqs. (23) and (34), the TUR factor QΦ for the

η-dynamics is now expressed in terms of quantities in the
ξ-dynamics as

QΦ =
Varssη [Φ]

(〈Φ〉ssη )2
〈∆Stot〉ssη =

Varssξ [Ψ]

(〈Ψ〉ssξ )2
〈∆Σ〉ssξ ≡ RΨ (35)
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with 〈∆Σ〉ssξ =
∫ t

0 dt
′〈Σ̇(t′)〉ssξ . We refer to RΨ as the

alternative TUR factor for Ψ in the perspective of the
ξ-dynamics. In the normal overdamped ξ-dynamics, the
conventional TUR should be valid for general irreversible
currents of the generic type in Eq. (13) with an arbitrary
duration time t [9, 10]. However, our alternative dynamic
observable Ψ is not of the generic type, but is given by
the combination of the current Φ and the accumulated
state-dependent variable ϕ. Furthermore, ∆Σ is not the
entropy production for the ξ-dynamics (see Eq. (D19) for
the true entropy production). Thus, the alternative TUR
factor RΨ may violate the conventional TUR bound of
2kB. In the next section, we show that this violation
indeed occurs and derive a new bound analytically.

IV. MODIFIED TUR

The derivation of the conventional TUR is based on the
observation that the TUR is a special case of the Cramer-
Rao (CR) inequality [47, 48]. Here, we take a similar
but slightly different approach from the conventional one
adopted in Refs. [9, 10], to derive a new lower bound for
the alternative TUR factor RΨ in the ξ-dynamics.
The CR inequality generally provides a lower bound

of the variance of any dynamic observable O(Γ) in a
stochastic process with a parameter θ as

Varθ [O]

|∂θ 〈O〉θ |2
I(θ) ≥ 1 , (36)

where 〈O〉θ =
∫

dΓO(Γ)Pθ(Γ) with the trajectory prob-
ability Pθ(Γ) and the Fisher information is defined as

I(θ) =
〈

−∂2θ lnPθ(Γ)
〉

θ
. (37)

If the dynamics of our interest is defined at θ = 0, it is
crucial to find an appropriate modified dynamics with a
nonzero θ, which yields limθ→0 ∂θ 〈O〉θ = 〈O〉0. Then,
the (alternative) TUR factor in Eq. (35) naturally comes
into the CR inequality at θ = 0.
We take the ξ-dynamics as the unperturbed one at

θ = 0. Similar to the perturbation term in the previous
studies [9, 10], we consider a linear perturbation on the
force as

fθ(x) = f(x) + θG
J

ss
ξ (x)

pssξ (x)
. (38)

The steady-state distribution pssξ (x) satisfies ∇T ·
Jss
ξ (x) = 0 and we also find ∇T ·J ss

ξ (x) = 0 as well from

Eq. (29). In the previous studies for the conventional
TUR [9, 10], γJss

ξ (x) was used instead of GJ
ss
ξ (x) in

the perturbation term of Eq. (38).
It is easy to see that the perturbed steady-state distri-

bution is identical to the unperturbed one, i.e. pssξ,θ(x) =

pssξ (x), as the perturbed steady-state probability current

Jss
ξ,θ(x) =

(

G−1fθ(x)−
TB
γ

∇

)

pssξ,θ(x) (39)

satisfies the steady-state condition of ∇T · Jss
ξ,θ(x) = 0.

The perturbed effective probability current in the steady
state becomes

J
ss
ξ,θ(x) = G−1(fθ(x)− T∇)pssξ,θ(x) = (1 + θ)J ss

ξ (x),
(40)

which yields 〈Ψ̇〉ssξ,θ = (1 + θ) 〈Ψ̇〉ssξ from Eq. (28), thus
we find

∂θ 〈Ψ̇〉ssξ,θ = 〈Ψ̇〉ssξ . (41)

The remaining task is to express the Fisher information
I(θ) at θ = 0 in terms of 〈∆Σ〉ssξ . Using the Onsager-

Machlup theory [49] in Eq. (11), the trajectory probabil-
ity is written as

Pθ[Γ] = pssξ,θ(x(0))Nθe
−

γ
4TB

∫
t

0
dt′[ẋ(t′)−G

−1fθ(x(t
′))]2

(42)
where the initial probability pssξ,θ(x(0)) and the normal-
ization factor Nθ are θ-independent. Then, one can eas-
ily find the explicit form of the Fisher information from
Eq. (37) as

I(θ) =
tγ

2TB

∫

dx
|J ss

ξ (x)|2
pssξ (x)

, (43)

which is θ-independent. Using Eq. (34), we find

I(θ) = t
T

2TB
〈Σ̇〉ssξ =

T

2TB
〈∆Σ〉ssξ . (44)

Using Eqs. (35), (36), (41) and (44) along with Eq. (8)
and setting θ = 0, we finally obtain the modified TUR
for the overdamped η-dynamics as

QΦ =
Varssη [Φ]

(〈Φ〉ssη )2
〈∆Stot〉ssη = RΨ ≥ 2kB

TB
T

=
2kB

1 + (B/γ)2
,

(45)

which is the main result of our paper. Note that we
restored the Boltzmann constant kB here. The result
shows that the Lorentz magnetic force always lowers the
threshold of the TUR factor, which weakens the trade-off
constraint. Obviously, the conventional TUR is recovered
at B = 0. Interestingly, Chun et al [34] found the same
form of the TUR lower bound in an exactly solvable linear
model for the work and heat current in the long-time
(t → ∞) limit. Our result applies to a general current
in a general nonlinear system for an arbitrary duration
time. In the next section, we derive the TUR factors
exactly for the linear model for a finite duration time
and confirm the validity of our modified TUR.
The equality condition of the modified TUR can be

determined by the equality condition of the Cramer-Rao
inequality in Eq. (36) as

∂θ lnPθ(Γ) ∝ O(Γ) − 〈O〉θ for any Γ . (46)
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After a straightforward calculation following a similar
procedure in Ref. [9], we find that the equality holds with
the two constraints as

Λ(x) = µ
Jss
η (x)

pssη (x)
(47)

with an arbitrary constant µ, and

〈Ṡtot〉ssη =
γ

T

∣

∣

∣

∣

Jss
η (x)

pssη (x)

∣

∣

∣

∣

2

− γ
∇TG−1

a Jss
η (x)

pssη (x)
. (48)

Note that the entropy production current automatically
satisfies the first constraint for B = 0, but not for B 6= 0
(see Eq. (32)). Other currents may satisfy the first con-
straint for some specific dynamics (see the example in
the next section), but not in general. The second con-
straint is independent of the choice of currents, Λ(x),
and more interesting. For B = 0, the second term in
the right hand side of Eq. (48) vanishes, thus it reduces
to the equality condition for the conventional TUR [9],
which requires uniform local entropy production. This
second constraint becomes trivially satisfied in the equi-
librium limit where Jss

η (x) vanishes (detailed balance).
For B 6= 0, however, the second term exists and in fact
dominates near equilibrium, as it is of the first order in
Jss
η (x), while the others, including 〈Ṡtot〉ssη , are of the

second order. Hence, the equality condition is violated
even in the equilibrium limit. Instead, the second con-
straint can be satisfied by tuning B (thus, G−1

a ) to make
the second term also be of the second order in Jss

η (x).
In the next section, we will show this example explic-
itly, where the equality of the modified TUR holds out
of equilibrium.
It is straightforward to extend our modified TUR to

the η-dynamics with an arbitrary initial state. This gen-
eralization in the normal overdamped ξ-dynamics was
reported recently in [50, 51]. We also study this gener-
alization in the η-dynamics and find the modified TUR
with an arbitrary initial state for a finite duration time t
as

Varη [Φ]

〈tΦ̇(t)〉2η
〈∆Stot〉η ≥ 2kB

TB
T

, (49)

where Φ̇(t) is the current at the final time t of duration
and Eq. (45) is recovered in the steady state. The deriva-
tion details are given in Appendix E.
A generalization to higher dimensional cases is also

possible. The overdamped motion in the perpendicular
plane to the magnetic field follows the same behavior dis-
cussed before with the effective temperature TB. In the
parallel plane, the particle does not feel the Lorentz force
and the normal overdamped motion is expected with the
temperature T . The contribution to the Fisher informa-
tion in Eq. (43) from this normal overdamped motion in
the parallel plane is smaller as T > TB, thus the total
Fisher information is smaller than the entropy produc-
tion of the η-dynamics in Eq. (33). Therefore, our main

result still holds in higher dimensions, even though the
TUR equality condition can not be satisfied for non-zero
B. For details, see Appendix F.

V. EXAMPLE

To confirm our main result, we consider an analytically
solvable system with a linear force as

f(x) = −Fx with F =

(

k −ǫ
ǫ k

)

. (50)

The diagonal elements represent a force applied by a har-
monic potential with spring constant k, while the off-
diagonal elements indicate a nonequilibrium driving force
with strength ǫ. This system has been investigated in
various studies [34, 37, 39, 52–54], because it is analyt-
ically solvable. In the remaining text, we will omit the
subscript η for brevity.
We consider two accumulated currents of workW done

on the system and heat Q dissipated into the reservoir,
which are defined in Eq. (13) with weight finctions

ΛW (x) = Wx with W =

(

0 ǫ
−ǫ 0

)

for work W ,

(51)

ΛQ(x) = Qx with Q = −F for heat Q . (52)

Since the model basically belongs to the Ornstein-
Uhlenbeck process [40, 55, 56], the steady-state distri-
bution pss(x) should be Gaussian as

pss(x) =
1

√

det(2πC)
exp

{

−1

2
xTC−1x

}

(53)

with the covariance matrixC = 〈xxT〉. From the steady-
state condition, we can easily find in Eq. (G3) as

C =
γT

γk + ǫB
I , (54)

which is stable for γk + ǫB > 0. The steady-state prob-
ability current is then obtained from Eq. (10) as

Jss(x) =
1

γ
Wxpss(x) . (55)

The steady-state averages of work W and heat Q are
calculated by Eq. (26) as

〈W 〉ss = t

∫

dx ΛT

W (x) · Jss(x) (56)

= t
2ǫ2T

γk + ǫB
= 〈Q〉ss , (57)

which agrees with the result in [39]. The scalar function
in Eq. (19) becomes a constant as ϕ(x) = 2ǫBT/(γ2+B2)
for both currents, which represents the difference between
the true and the naive average in Eq. (25).
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FIG. 3. Duration-time-dependent behavior of the TUR factors (a) for work QW , (b) for heat QQ, and (c) for the entropy
production QS . The symbols represent the numerical data from the underdamped dynamics with m0 = 0.001. Lines represent
the analytic results obtained in the overdamped η-dynamics. Black dotted lines indicate the modified TUR bound in Eq. (45).
We fixed (a) B0 = 0.5 with several values of ǫ0 = 0.1 (red circle), 0.5 (blue triangle), and 1.0. (cyan square) for work, (b)
B0 = 0.75 with ǫ0 = −0.6 (red circle), −0.5 (blue triangle), 0.6 (cyan square), and 2.0 (violet diamond) for heat, and (c)
B0 = 0.6 and ǫ0 = −0.1 (red circle), 1.0 (blue triangle), 1.875 (cyan square), and 2.0 (violet diamond) for entropy production.

One can also consider the total entropy production
∆Stot with ΛS(x) = GJss(x)/[Tpss(x)] in the steady
state (see Eq. (32)). Using Eq. (55), we find the weight
function as

ΛS(x) = Sx with S = GW/(Tγ) for ∆Stot , (58)

from which we obtain 〈∆Stot〉ss = 〈Q〉ss /T and the cor-
responding scalar function ϕS(x) = 2ǫB/(γ2 + B2), as
expected.
The most complex task is to find the variance of work,

heat, and enropy production. From the extended FP
equation of p̂(x,Φ, t) in Eqs. (17) and (18), we derive
the formal solution for the variance in terms of auxiliary
matrices (see Appendix G). Finding the explicit forms of
the auxiliary matrices, we obtain the variance and the
TUR factor in the steady state with a finite duration
time t.
First, the TUR factor for work is given as

QW =
2(1 + ǫ20)

(1 + ǫ0B0)2
− 2(B0 − ǫ0)

2

(1 +B2
0)(1 + ǫ0B0)2

1− e−t0

t0
,

(59)
where the dimensionless parameters are

ǫ0 =
ǫ

k
, B0 =

B

γ
, t0 =

2t

τ

(

1 + ǫ0B0

1 +B2
0

)

(60)

with τ = γ/k and the stability condition becomes 1 +
ǫ0B0 > 0. It monotonically increases with t0 with the
minimum, Qm

W = 2/(1+B2
0) at t0 = 0+, which is exactly

the same as the TUR lower bound in Eq. (45). This
confirms the validity of our modified TUR.
Eq. (55) indicates that the work current obeys the first

equality constraint in Eq. (47). In addition, it is easy to
show that the second constraint in Eq. (48) is satisfied
at ǫ0 = B0, where the TUR equality should hold. From
Eq. (59) with this condition, the TUR factor takes its
minimum QW = Qm

W , which is independent of t0. Thus,
the TUR lower bound is achieved out of equilibrium with

ǫ0 6= 0. This may be useful in inferring the entropy pro-
duction by measuring current statistics [22–25], which
should be more feasible in nonequilibrium.

We check our analytic results numerically by simulat-
ing the underdamped dynamics with a very small mass
m. Using a generalized velocity-Verlet algorithm [57],
we perform numerical integrations of the underdamped
Langevin equation in Eq. (3) with dimensionless mass
m0 = km/γ2 = 0.001. Numerical data are plotted in
Fig. 3 (a) for several values of ǫ0 with B0 = 0.5 and
k = γ = T = 1. We used 107 samples to evaluate the av-
erage and the variance of work as well as the average en-
tropy production. The numerical data are in an excellent
agreement with Eq. (59) with a small deviation due to
finite-mass corrections. Note that QW takes the modified
TUR bound value, independent of t0 at ǫ0 = B0 = 0.5,
as expected.

We also find the TUR factor for heat as

QQ =
2(1 + ǫ20)

(1 + ǫ0B0)2
− 2(1 + ǫ20)(ǫ

2
0 − 1− 2ǫ0B0)

ǫ20(1 +B2
0)(1 + ǫ0B0)2

1− e−t0

t0
,

(61)
which monotonically increases with t0 for ǫ

2
0−1−2ǫ0B0 >

0 and decreases for ǫ20 − 1− 2ǫ0B0 < 0. Interestingly, the
heat TUR factor QQ is always larger than the work TUR
factor QW as

QQ −QW =
1

ǫ20(1 +B2
0)

1− e−t0

t0
≥ 0 , (62)

with the equality in the t0 → ∞ limit. Thus, QQ also
satisfies the modified TUR. The equivalence ofQW = QQ

in the t0 → ∞ limit was also reported in [34]. Numerical
data for QQ also agree with the analytic results very
well, shown in Fig. 3 (b). The TUR equality can not be
achieved for heat current, as the first equality constraint
in Eq. (47) is not satisfied.

The TUR factor for the entropy production (also called
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the entropy Fano factor [15]) is

QS =
2(1 + ǫ20)

(1 + ǫ0B0)2
− 2ǫ0(ǫ0 − 2B0 − ǫ0B

2
0)

(1 + ǫ0B0)2
1− e−t0

t0
,

(63)
which is always larger than the work TUR factor as

QS −QW =
2B2

0

1 +B2
0

1− e−t0

t0
≥ 0 . (64)

Thus, QS also satisfies the modified TUR. Interest-
ingly, all three TUR factors take the same value of
2(1 + ǫ20)/(1 + ǫ0B0)

2 in the limit of t0 → ∞. The first
equality constraint for QS is satisfied only for B0 = 0,
where the friction tensor G becomes proportional to I.
As the second equality contraint of Eq. (48) is satisfied at
ǫ0 = B0, we find the TUR equality only at B0 = ǫ0 = 0
with QS = 2.
It is also interesting to see that limt0→0+ QS = 2, in-

dependent of the values of B0 and ǫ0. This may hint a
possibility of the short-time TUR for inferring the en-
tropy production [23] even with the presence of a mag-
netic field. However, this does not come from the TUR
equality constraint and may not hold with a nonlinear
force. Figure 3 (c) shows this property of QS and the
consistency between the numerical data and the analytic
results.
Now, we make some remarks on near equilibrium with

small ǫ0, where the TUR factors for work, heat, and the
entropy production become

QW ≈ 2− 2B2
0

1 +B2
0

1− e−t0

t0
< 2 (65)

QQ ≈ 2 +
2

ǫ20(1 +B2
0)

1− e−t0

t0
> 2 (66)

QS ≈ 2− 4ǫ0B0

(

1− 1− e−t0

t0

)

≈ 2 . (67)

Even in the equilibrium limit, the work current always vi-
olates the conventional TUR for finite t0, which implies
that any simulation result should show a violation even
with very small ǫ0 and very long t0. In contrast, the heat
current always satisfies the conventional TUR for small
ǫ0, but its finite-ǫ0 correction is huge, implying that it is
almost impossible to reach the conventional TUR lower
bound in any practical simulation near equilibrium. In
the case of the entropy production, the TUR factor ap-
proaches the conventional bound from below for B0ǫ0 > 0
and from above for B0ǫ0 < 0. In the limit of t0 → ∞
and ǫ0 → 0, the TUR factor for all currents approaches
2 (the conventional TUR bound), independent of B0.
Finally, we point out that a variant of the TUR in-

cluding the dynamic activity for the underdamped dy-
namics [36, 37] is not useful in the overdamped limit, as
the dynamic activity diverges with m → 0 (see Eq. (40)
in Ref. [37] for this specific example). We also note that
the result from the linear response theory is not infor-
mative [32] as the Onsager matrix is symmetric in this
example [56].

VI. CONCLUSION

We present the modified TUR for the Langevin sys-
tems subject to a static magnetic field in the over-
damped limit. The system is described by the over-
damped Langevin equation with a non-white singularly
correlated noise. By using the extended Fokker-Planck
equation with a current variable in addition, we find the
alternative dynamics with the conventional white noise
and an alternative dynamic observable, which generates
the extended distribution function equivalent to the orig-
inal one.
Utilizing the Cramer-Rao inequality, we derive the

modified TUR, which turns out to be surprisingly simple
with one scale factor on the conventional TUR bound.
This factor is given by the ratio of the reduced effective
temperature of the overdamped motion to the reservoir
temperature. This TUR is universal in the sense that the
lower bound is independent of system parameters. We
emphasize that this TUR is valid for a finite duration
time and for general currents. Our modified TUR shows
that the magnetic field lowers down the bound and the
standard TUR is recovered without the magnetic field.
From the exactly solvable models, we confirm the va-
lidity of our results. We also find that the TUR lower
bound can be reached out of equilibrium with the mag-
netic field, which may be useful in inferring the entropy
production by measuring non-entropic current statistics
in nonequilibrium. We also generalize our TUR for an
arbitrary initial state.
Our analysis is limited to systems with isotropic ther-

mal reservoirs. It could be interesting to extend it to
systems with anisotropic baths such as microscopic heat
engines with broken time-reversal symmetry.
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Appendix A: Derivation of the overdamped

Langevin equation

We start from the formal solution of the underdamped
equation, Eq. (3), as

v(t) =
1

m

∫ t

−∞

dτ e−
1
m

G(t−τ)f(x(τ)) + ηm(t) (A1)

where

ηm(t) =
1

m

∫ t

−∞

dτ e−
1
m

G(t−τ)ξT (τ) , (A2)

with 〈ξT (t)ξT

T (t
′)〉 = 2γT Iδ(t− t′).
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Then, the noise-noise correlation matrix Zm(t − t′) =
〈ηm(t)ηT

m(t′)〉 can be easily obtained as

Zm(u) =
T

m
e−

1
m

Gu and Zm(−u) = ZT

m(u) (A3)

for u > 0. Its Laplace transform becomes

∫ ∞

0

du e−suZm(u) = T (msI+G)−1 , (A4)

which becomes TG−1 in the m → 0 limit. Its in-
verse Laplace transform gives Z(u) = 2TG−1δ(u) and
Z(−u) = ZT(u) from Eq. (A3).

Appendix B: The extended FP equation for the

overdamped ξ-dynamics

We consider the ξ-dynamics in Eq. (11) and the current
dynamic equation of Eq. (14). The extended equation of
motion can be rewritten as

q̇(t) = Aq(q(t)) +Bq(q(t)) ◦ ξq(t) (B1)

with q =

(

x

Φ

)

, Aq(q) =

(

G−1f(x)
ΛT(x)G−1f(x)

)

,

ξq =

(

ξTB

0

)

, and Bq(q) =

(

I 0
ΛT(x) 0

)

,

(B2)

where ẋ in Eq. (14) is replaced in terms of x and ξTB
by

Eq. (11) and 〈ξTB
(t)ξT

TB
(t′)〉 = (2TB/γ)Iδ(t− t′).

The corresponding FP operator for the Langevin equa-
tion of Eq. (B1) with a Stratonovich-type multiplicative
noise is well established, e.g. see the textbook [55], which
yields

L̂ξ,Φ = −∂T

q ·Aq(q) +
TB
γ

(

∂T

q Bq(q)
)

·
(

∂T

q Bq(q)
)T

,

with ∂q =

(

∇

∂Φ

)

. (B3)

From Eq. (B2), we finally obtain

L̂ξ,Φ = −∇̃
T

ΦG
−1f(x) +

TB
γ

∇̃
T

Φ · ∇̃Φ (B4)

where ∇̃Φ = ∇+∂ΦΛ(x) is the tilted gradient operator.
We can derive the extended FP equation with the al-

ternative dynamic observable Ψ given in Eqs. (20) and
(24) for the ξ-dynamics. This new variable changes only
the second component of Aq(q) by adding ϕ(x). There-
fore, we find the extended FP operator for this case as

L̂ξ,Ψ = −∇̃
T

ΨG
−1f(x) +

TB
γ

∇̃
T

Ψ · ∇̃Ψ − ∂Ψϕ(x) (B5)

with ∇̃Ψ = ∇+ ∂ΨΛ(x).

Appendix C: The overdamped limit of the extended

FP equation for the underdamped dynamics

We start with the extended FP equation for the under-
damped dynamics and then take the overdamped (small-
mass) limit to find the extended FP equation for the
original η-dynamics. This procedure is quite similar to
that for deriving the ordinary overdamped FP equation
of Eqs. (9) and (10).
The underdamped equation of motion is given by

Eq. (3) and the accumulated current is written as

Φ(Γ) =

∫ t

0

dt′ΛT(x(t′)) · v(t′) , (C1)

with a trajectory Γ = {x(t),v(t)|t ∈ (0, τ)}, of which the
dynamic evolution is given by

Φ̇(t) = ΛT(x(t)) · v(t) . (C2)

As v is a state variable in the underdamped description,
the extended equation of motion including Φ does not
induce any multiplicative noise, in contrast to the over-
damped ξ-dynamics. Thus, the type of stochastic calcu-
lus such as Ito and Stratonovich is meaningless for the
FP operator.
Considering the underdamped equation of motion in

Eq. (3) together with the above current dynamic equa-
tion, we can write the extended FP equation as

∂tp̂(x,v,Φ, t) =
(

L̂rev,Φ + Lirr

)

p̂(x,v,Φ, t) , (C3)

where the extended FP operator is split into the re-
versible and the irreversible part as

L̂rev,Φ = −∇̃
T

Φ · v − 1

m
∇

T

v · (f(x)−Bv) (C4)

Lirr =
γ

m
∇

T

v ·
(

v +
T

m
∇v

)

(C5)

with ∇̃Φ = ∇+ ∂ΦΛ(x) , the velocity gradient operator
∇v, and the magnetic-field matrix B = Ga (the anti-
symmetric part of G). For convenience, we include the
Lorentz term (Bv) in the reversible operator.
Note that the information of the current variable Φ is

fully contained in the tilted position gradient operator
∇̃Φ in the exactly same way as in the overdamped case
(Appendix B). Hence, we can easily expect that the over-
damped (small-mass) limit of the extended FP equation
should be the same as that for the ordinary FP equa-
tion of Eqs. (9) and (10), except for replacing ∇ by ∇̃Φ,
which is presented in Eq. (18).
For completeness, we briefly sketch the standard pro-

cedure for the small-mass expansion [39, 40, 46]. The
strategy is to find a series expansion of the distribution
p̂(x,v,Φ, t) in terms of the orthonormal basis of the irre-
versible operator Lirr. Then, the extended FP equation
provides a hierarchy of coupled differential equations for
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the expansion coefficients known as the Brinkman’s hi-
rarchy [40, 58]. In the small-mass limit, most of higher-
order coefficients can be neglected in this expansion and
the overdamped extended FP equation can be rather eas-
ily obtained.
First, it is convenient to rotate the operator Lirr in a

Hermitian form by introducing

L̄irr = (
√

pss(v))−1Lirr

√

pss(v) (C6)

with

pss(v) =
m

2πT
exp
[

− m

2T
|v|2

]

, (C7)

which is the steady-state solution of Lirr, satisfying
Lirrp

ss(v) = 0.
In terms of the classical analogue of the bosonic ladder

operators

a± =
1

2

√

m

T
v ∓

√

T

m
∇v , (C8)

the rotated operator is written as

L̄irr = − γ

m
aT

+ · a− , (C9)

which is reminiscent of the Hamiltonian of the quan-
tum harmonic oscillator. Its orthonormal eigenfunctions
ψ̄n1,n2

(v) are well known with two quantum numbers
(n1, n2), which are simply related to each other by the
raising and lowering ladder operators, a±. The ground-

state eigenfunction is given as ψ̄0,0(v) =
√

pss(v). It
is useful to consider the same rotation on the reversible
operator L̂rev,Φ as

L̄rev,Φ =−
√

T

m
∇̃

T

Φ · a− −
√

T

m

(

∇̃Φ − f(x)

T

)T

· a+

− 1

m
aT

+B a− . (C10)

The FP equation (C3) can be rewritten in terms of the
rotated operators as

∂tp̄(x,v,Φ, t) =
(

L̄rev,Φ + L̄irr

)

p̄(x,v,Φ, t) , (C11)

with the transformed distribution

p̄(x,v,Φ, t) ≡ (ψ̄0,0(v))
−1 p̂(x,v,Φ, t) . (C12)

We expand p̄(x,v,Φ, t) in terms of the orthonormal
eigenfunctions as

p̄(x,v,Φ, t) =

∞
∑

n1,n2=0

Ĉn1,n2
ψ̄n1,n2

(v) (C13)

with the expansion coefficient Ĉn1,n2
= Ĉn1,n2

(x,Φ, t).
By putting this expansion form into Eq. (C11) and fo-
cussing on the lower-order terms for small m [39], we

find

∂tĈ0,0 = −
√

T

m
∇̃

T

Φ · Ĉ1 , (C14)

GĈ1 = −
√
mT

(

∇̃Φ − f(x)

T

)

Ĉ0,0 +O(m) (C15)

with Ĉ1 =

(

Ĉ1,0

Ĉ0,1

)

.

The overdamped extended distribution p̂η(x,Φ, t) is
obtained by integrating out the velocity variable of
p̂(x,v,Φ, t). Using Eqs. (C12) and (C13) with the
orthogonality property of the eigenfunctions, we find
Ĉ0,0 = p̂η(x,Φ, t). Combining Eqs. (C14) and (C15),
we find the overdamped extended FP operator as

L̂η,Φ = −∇̃
T

ΦG
−1
(

f(x)− T ∇̃Φ

)

. (C16)

Appendix D: Stochastic thermodynamics for the

η-dynamics

In this appendix, we develop the stochastic thermody-
namics for the η-dynamics. As the noise ηT has a singular
character in the noise-noise correlation, the framework
of the stochastic thermodynamics should be reexamined.
Thus, we start from the underdamped dynamics where
the stochastic thermodynamics is well established.

1. FP operator and probability distribution

The underdamped FP equation with the Lorentz force
is

∂tp(x,v, t) = (Lrev + Lirr)p(x,v, t) , (D1)

where the ordinary FP operators Lrev and Lirr are given
in Eqs. (C4) and (C5) with the replacement ∇̃Φ by ∇.
With the same series expansion, we finally get the same
equations as Eqs. (C14) and (C15) for the expansion co-

efficients Cn1,n2
(x, t) =

∫

dΦĈn1,n2
(x,Φ, t), again by re-

placing ∇̃Φ with ∇. As we have

pη(x, t) =

∫

dv p(x,v, t) = C0,0 (D2)

and

Jη(x, t) =

√

T

m
C1 = G−1 (f(x)− T∇)pη(x, t) ,

(D3)

then the overdamped FP operator becomes

Lη = −∇
TG−1 (f(x)− T∇) . (D4)
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The underdamped distribution for the small-mass limit
is obtained from the expansion like in Eq. (C13)

p(x,v, t) ≈ ψ̄0,0(v)

[

C0,0ψ̄0,0(v) +CT

1 ·
(

ψ̄1,0(v)
ψ̄0,1(v)

)

+ · · ·
]

≈ pss(v)
[

pη(x, t) +
m

T
JT

η (x, t) · v + · · ·
]

(D5)

≈ pη(x, t)
( m

2πT

)

exp

[

− m

2T

∣

∣

∣

∣

v − Jη(x, t)

pη(x, t)

∣

∣

∣

∣

2
]

,

where we used the eigenfunction relations as
ψ̄1,0(v) = v1

√

m
T
ψ̄0,0(v) and ψ̄0,1(v) = v2

√

m
T
ψ̄0,0(v).

As expected, the average local velocity 〈v〉v =
∫

dv vp(x,v, t) = Jη(x, t). This approximate probabil-
ity distribution form near the overdamped limit is also
valid for the normal ξ-dynamics.

2. average current and entropy production

The average current of Eq. (C2) is calculated as

〈Φ̇〉 =
∫

dxdv ΛT(x) · v p(x,v, t)

=

∫

dx ΛT(x) · Jη(x, t) , (D6)

where we used Jη(x, t) =
∫

dv vp(x,v, t). This form is
the same as that for the normal overdamped ξ-dynamics.
However, note that the probability current Jη(x, t) 6=
Jξ(x, t).
The total entropy production rate is given as [59, 60]

〈Ṡtot〉 = m2

γT

∫

dxdv
|Jirr(x,v, t)|2
p(x,v, t)

, (D7)

where the irreversible probability current is given by

Jirr(x,v, t) = − γ

m

(

v +
T

m
∇v

)

p(x,v, t) . (D8)

Note that the Lorenz term is not included for the ir-
reversible current, so the total entropy production here
does not involve the so-called unconventional entropy
production term and becomes the Clausius entropy in
the steady state [60–62].
Using the approximate distribution function in

Eq. (D5) for the overdamped limit, we find

Jirr(x,v, t) ≈ − γ

m

Jη(x, t)

pη(x, t)
p(x,v, t) , (D9)

which yields the entropy production rate in the over-
damped limit as

〈Ṡtot〉 ≈ γ

T

∫

dx
|Jη(x, t)|2
pη(x, t)

. (D10)

This form is also standard for the normal overdamped
Langevin system with the probability current Jη(x, t).

3. stochastic currents

The stochastic work current done by the external force
fext(x) is given as

Ẇ (t) = fT

ext(x(t)) · v(t) , (D11)

in the underdamped dynamics. Thus, it is natural to
define its overdamped η-dynamics as

Ẇ (t) = fT

ext(x(t)) ◦ ẋ(t) , (D12)

which is consistent with its average in Eq. (D6).
The stochastic heat current dissipated into the reser-

voir is given as

Q̇(t) = (γv(t)− ξT (t))
T ◦ v(t) , (D13)

= (f(x(t)) −Bv(t))
T · v(t)− d

dt

(

1

2
m|v(t)|2

)

,

(D14)

where the underdamped equation of motion, Eq. (3), is
used. The Lorentz term vanishes due to the antisym-
metric property of B. The above form manifests that
the heat current is not of the generic type in Eq. (C2).
However, in the overdamped η-dynamics by taking the
small-mass limit, the heat current becomes the generic
current type of Eq. (14) as

Q̇(t) = fT(x(t)) ◦ ẋ(t) . (D15)

The stochastic entropy production rate in the over-
damped η-dynamics can be obtained from the system
Shannon entropy production rate and the Clausius en-
tropy production due to the heat dissipation. Taking the
time derivative of the stochastic system Shannon entropy,
we find

Ṡsys
η (t) = − d

dt
ln pη(t) = −∂tpη(t)

pη(t)
− ∇Tpη(t)

pη(t)
◦ ẋ(t)

= −∂tpη(t)
pη(t)

− Q̇(t)

T
+

(GJη(x(t), t))
T

Tpη(t)
◦ ẋ(t)

(D16)

with pη(t) = pη(x(t), t). We used Eq. (10) for the final
equality, which yields

Ṡtot
η (t) = Ṡsys

η (t) +
Q̇(t)

T
= −∂tpη(t)

pη(t)
+ΛT

S(x(t), t) ◦ ẋ(t)
(D17)

with ΛS(x, t) = GJη(x, t)/(Tpη(x, t)). We note that
this expression is not of the generic type for currents
in Eq. (14) due to the presence of the first term in the
right hand side of the equation and the explicit time-
dependency of the weight function. But, in the calcu-
lation of its average, the first term does not contribute
and Eq. (D10) is easily recovered using Eq. (D6). Fur-
thermore, in the steady state, the first term vanishes by
definition and the weight function is time-independent as
in Eq. (32), thus the stochastic total entropy production
rate becomes the generic type.
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4. entropy production for the ξ-dynamics

It is worthwhile to derive explicitly the stochastic en-
tropy production rate and its average in the naive ξ-
dynamics. At the first glance, one may think that the
result may be trivial because the ξ-dynamics is a stan-
dard overdamped dynamics with a white Gaussian noise.
It turns out to be rather subtle due to the mismatch of
the asymmetric friction tensor G and the symmetric dif-
fusion matrix (TB/γ)I. When we take the distribution
equivalence pξ(t) = pξ(x(t), t) = pη(x(t), t) into account,
it is obvious that the time derivative of the stochastic
system entropy has the same form as in Eq. (D16). Fol-
lowing the similar procedure as above, we get

Ṡtot
ξ (t) = Ṡsys

ξ (t) +
Q̇(t)

T
= −∂tpξ(t)

pξ(t)
+ΛT

S(x(t), t) ◦ ẋ(t) ,
(D18)

where the heat dissipation rate Q̇(t) is defined in
Eq. (D15) and ΛS(x, t) = GJ ξ(x, t)/(Tpξ(x, t)) with
the effective probability current J ξ(x, t) defined in
Eq. (30). From the relation between currents (J ξ(x, t) =
Jη(x, t)) in Eq. (31), we find that the stochastic entropy

expressions for both dynamics are identical, i.e. Ṡtot
η (t) =

Ṡtot
ξ (t) ≡ Ṡtot(t).
However, its average should be different as expected

from Eq. (25). In the ξ-dynamics, we find

〈Ṡtot〉ξ =
∫

dx
(GJ ξ(x, t))

T

Tpξ(x, t)
· Jξ(x, t)

=
γ

T

∫

dx
|J ξ(x, t)|2
pξ(x, t)

+ 〈∇TG−1
a f〉ξ

= 〈Σ̇〉ξ − 〈ϕS〉ξ (D19)

where the scalar function ϕS(x, t) = −T∇TG−1
a ΛS(x, t)

with ΛS(x, t) = GJ ξ(x, t)/(Tpξ(x, t)) from Eq. (19)
and the corresponding alternative dynamic observable Σ,
defined as Σ̇(t) = Ṡtot(t) + ϕS(x(t), t), satisfies 〈Σ̇〉ξ =

〈Ṡtot〉η, consistent with Eq. (25).

Appendix E: Modified TUR with an arbitray initial

state

We consider a time-dependent perturbation on the
force as

fθ(x, t) = f(x) + θG
J ξ(x, t̄)

pξ(x.t̄)
, with t̄ = (1 + θ)t ,

(E1)
where the perturbation term is defined by the quantities
for the unperturbed dynamics at a later time scaled by
a factor of 1 + θ with respect to the perturbed dynamics
at time t.
Similar to the steady-state case, we can easily show

that the perturbed distribution function at t is iden-
tical to the unperturbed one at the scaled time t̄,

i.e. pξ,θ(x, t) = pξ(x, t̄). This can be easily checked as
the perturbed probability current with this relation

Jξ,θ(x, t) =

(

G−1fθ(x)−
TB
γ

∇

)

pξ,θ(x, t) (E2)

= Jξ(x, t̄) + θJ ξ(x, t̄) (E3)

satisfies the Fokker-Planck equation for the perturbed
dynamics

∂tpξ,θ(x, t) = −∇
T · Jξ,θ(x, t) , (E4)

where we used the relation ∇T ·J ξ(x, t) = ∇T ·Jξ(x, t).
It is simple to show that

J ξ,θ(x, t) = G−1(fθ(x)− T∇)pξ,θ(x, t) = (1+θ)J ξ(x, t̄) ,
(E5)

which yields

〈Ψ〉ξ,θ =

∫ t

0

dt′dx ΛT(x) ·J ξ,θ(x, t
′)

=

∫ (1+θ)t

0

dt̄′dx ΛT(x) ·J ξ(x, t̄
′)

=

∫ (1+θ)t

0

dt̄′ 〈Ψ̇(t̄′)〉ξ . (E6)

Thus, we get

lim
θ→0

∂θ 〈Ψ〉ξ,θ = t 〈Ψ̇(t)〉ξ = t 〈Φ̇(t)〉η . (E7)

Using the expression for the trajectory probability in
Eq. (42) with the same initial condition for any value of
θ, we can also find the Fisher information from Eq. (37)
as

I(θ) =
1

2(1 + θ)

(

γ

TB

∫ (1+θ)t

0

dt′dx
|J ξ(x, t

′)|2
pξ(x, t′)

)

.

(E8)

Setting θ = 0 and using Eq. (31) , we find

I(0) =
γ

2TB

∫ t

0

dt′dx
|Jη(x, t

′)|2
pη(x, t′)

=
T

2TB
〈∆Stot〉η ,

(E9)

where 〈∆Stot〉η is the total entropy production for dura-
tion time t and Eq. (D10) is used.
Finally, we have a modified TUR for the overdamped

η-dynamics with an arbitrary initial state for a finite du-
ration time t as

Varη [Φ]

〈tΦ̇(t)〉2η
〈∆Stot〉η ≥ 2kB

TB
T

, (E10)

where the Boltzmann constant kB is restored.
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Appendix F: Extension to higher dimensions

Consider a three-dimensional dynamics with a mag-
netic field in one direction. The two dimensional plane
perpendicular to the magnetic field is spanned by the first
and second component of the position vector x. Its third
component describes the magnetic field direction. Then,
the friction coefficient tensor in Eq. (4) is given by

G =





γ −B 0
B γ 0
0 0 γ



 . (F1)

The derivation procedure of the modified TUR is basi-
cally the same as before in the two-dimensional case, so
we list here only the differences. The symmetric part of
the correlation matrix in Eq. (7) becomes

Zs(u) =
2TB
γ





1 0 0
0 1 0
0 0 T

TB



 δ(u) ≡ 2Dsδ(u) , (F2)

and the naive probability current in Eq. (12) becomes

Jξ(x, t) =
(

G−1f(x)−Ds∇
)

pξ(x, t) . (F3)

For the ξ-dynamics, TB/γ should be replaced by Ds ev-
erywhere.
The key replacement is in the trajectory probability in

Eq. (42), which yields the Fisher information as

I(θ) =
t

2

∫

dx

(

J
ss
ξ (x)

)T

D−1
s J

ss
ξ (x)

pssξ (x)
(F4)

<
tγ

2TB

∫

dx
|J ss

ξ (x)|2
pssξ (x)

, (F5)

where the third component of |J ss
ξ (x)|2 makes the in-

equality for TB < T . As the entropy production for the
η-dynamics in Eq. (33) does not change in form, we fi-
nally get the same modified TUR in Eq. (45) for three
dimensions. The extensions to higher dimensions and
also for arbitrary initial states are obvious. But, due to
the inequality in Eq. (F5), the TUR equality cannot be
attained for nonzero B in three or higher dimensions.

Appendix G: Exact solutions in the solvable model

Consider the FP equation in Eqs. (9) and (10) for the
η-dynamics with the linear force f(x) = −Fx in Eq. (50),
given as

∂tp(x, t) = ∇
T · (Ax+D∇)p(x, t) , (G1)

with the drift matrix A = G−1F and the asymmetric
diffusion matrix D = TG−1. We dropped the subscript
η for brevity. It is easy to show that the covariant matrix
C ≡ 〈xxT〉 = CT should satisfy

AC+CAT = D+DT , (G2)

in the steady state [40, 55, 56]. Then, we find

C =
γT

γk + ǫB
I =

T

k(1 + ǫ0B0)
I , (G3)

where the dimensionless parameters are used with ǫ0 =
ǫ/k and B0 = B/γ.
We consider an accumulated current Φ of the generic

type in Eq. (13) with Λ(x) = Jx. The linearity in x

makes the exact calculation of their means and variances
in the steady state rather simpler. The extended FP
equation in Eqs. (17) and (18) is written as

∂tp̂(x,Φ, t) = ∇̃
T

Φ ·
(

Ax+D∇̃Φ

)

p̂(x,Φ, t) , (G4)

with the tilted gradient operator ∇̃Φ = ∇+ ∂Φ(Jx). By
multiplying a function of variables and integrating out
over x and Φ on both sides of the extended FP equa-
tion, we can derive the dynamic equation of its average
in terms of the averages of other functions. As we are
interested in the steady-state average only, we take the
initial condition p̂(x,Φ, 0) = pss(x)δ(Φ).
For the first moment of Φ, we can easily obtain,

through simple integrations by parts,

∂t 〈Φ〉 = Tr{JT(D−AC)} ≡ φ , (G5)

where Tr{X} stands for the trace of a matrix X. As φ
is a constant of time, we get the average accumulated
current as 〈Φ〉 = tφ. Of course, we can get the same
result by integrating Eq. (D6).
It is straightforward but rather involved to calculate

〈Φ2〉. Here, we only sketch the calculation procedure.
First, we obtain the dynamic equation for the second
moment of Φ as

∂t 〈Φ2〉 = 2Tr{φDTJt− JTAM(t) + JTDJC} (G6)

withM(t) = 〈ΦxxT〉. This equation contains higher mo-
ments M(t) and its dynamic equation will again contain
higher moments, but only 4th moments of the position
variable x. Since pss(x) is Gaussian as in Eq. (53), the
standardWick’s theorem splits a 4th moment into a com-
bination of second moments, which can be given by the
covariant matrix C. Finally, the dynamic equation for
M(t) is given by the following closed equation,

∂tM(t) =−AMT(t)−M(t)AT + φ(C+ (D+DT)t)

+ACJC+CJTCAT . (G7)

This is a linear differential equation for M(t), so that the
formal solution is given by

M(t) = φCt+H−E(t)HET(t) , (G8)

where an auxiliary symmetric matrix H is defined by the
relation

ACJC+CJTCAT = AH+HAT , (G9)
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and a matrix E(t) is defined by

E(t) = e−At = e
−

γk+ǫB

B2+γ2 t

(

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)

(G10)

with ω = (kB− γǫ)/(B2+ γ2). By inserting the solution
into Eq. (G6) and using the relation ∂tVar[Φ] = ∂t 〈Φ2〉−
2φ2t, we obtain

∂tVar[Φ] = 2DΦ + 2Tr{JTAE(t)HET(t)} , (G11)

where the diffusion coefficient DΦ is given by

DΦ = Tr{JT(DJC −AH)} . (G12)

By introducing another auxiliary symmetric matrix K,
for convenience, such that

JTA+ATJ = KA+ATK , (G13)

we finally reach the formal solution

Var[Φ] = 2DΦt+Tr{K(H−E(t)HET(t))} . (G14)

The formal solution allows us to obtain the variance
by solving the linear equations in the elements of H and
K provided by Eq. (G9) and (G13). By determining the
auxiliary matrices for J = W, Q, and S, we obtain the
variance for work, heat, and entropy production.
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