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We establish a unified fluctuation–response relation for Langevin dynamics. By exploiting the
common mathematical structures underlying fluctuations and responses of empirical density and
current, we derive a unified identity that generalizes the fluctuation–dissipation theorem from equi-
librium to nonequilibrium settings. This relation connects global fluctuations of observables with
their local responses to perturbations in force, mobility, and temperature. We further derive finite-
time fluctuation–response inequalities, leading to response uncertainty relations that complement
the identity by providing more practical bounds. These derivations establish a unified theoretical
framework linking the fluctuation–dissipation theorem and thermodynamic uncertainty relations.
Using the F1-ATPase molecular motor model, we illustrate how these response-based bounds con-
strain the long-time diffusion coefficient.

Introduction– Understanding the relationship between
fluctuations and response is a central theme in statisti-
cal physics. Near equilibrium, this relationship is firmly
established by the seminal fluctuation-dissipation theo-
rem (FDT), which expresses the linear response of a sys-
tem in terms of its equilibrium fluctuations [1–3]. How-
ever, far from equilibrium, this relation no longer holds
in its original form, motivating efforts to uncover gen-
eralized principles. One important direction has been
the extension of the FDT to nonequilibrium systems [4–
9], where dissipation and dynamical activity play cen-
tral roles in characterizing the response [6, 8]. In par-
allel, thermodynamic and kinetic uncertainty relations
(TUR and KUR) have revealed fundamental bounds on
current fluctuations, highlighting intrinsic trade-offs be-
tween fluctuation and dissipation and between fluctua-
tion and dynamical activity [10–16]. These two lines of
research on nonequilibrium fluctuations have advanced
independently, without a clear link between them.

More recently, the response-TUR (R-TUR) was pro-
posed as a conjecture for Markov jump processes [17],
constraining the response of currents in terms of fluc-
tuations and dissipation. This conjecture was subse-
quently proven in the long-time limit through the discov-
ery of fluctuation-response relations (FRRs) [18], iden-
tities that connect fluctuations with nonequilibrium re-
sponses to local perturbations of system parameters. The
R-TUR then follows as a corollary of these identities.
Later, fluctuation-response inequalities (FRIs) were for-
mulated, sharing the same structural form as the FRRs
but appearing as finite-time inequalities that converge
asymptotically to the FRRs [19]. Complementary stud-
ies, including the response kinetic uncertainty relation
(R-KUR) [20] and quantum generalizations [19, 21], have
further broadened this framework. Yet, existing formu-
lations of the FRRs and FRIs have been largely con-
fined to Markov jump processes. Thus, although extend-

ing these relations to Langevin dynamics, the central
paradigm for continuous-state nonequilibrium systems,
has been repeatedly highlighted as an important direc-
tion [18, 20, 22, 23], it has remained largely unexplored.

In this Letter, we establish a unified FRR for nonequi-
librium Langevin dynamics in the long-time limit. This
relation arises from a structural correspondence between
fluctuations and responses to local perturbations of em-
pirical density and current. By incorporating the lo-
cal Onsager reciprocal relation that we derive in equi-
librium, we demonstrate that the FRR reduces to the
FDT in the equilibrium limit. Moreover, using the
Cramér-Rao bound, we derive finite-time FRI that ex-
tends the connection between fluctuations and responses
beyond the long-time limit and to arbitrary initial con-
ditions. From the FRI, we further obtain response un-
certainty relations, which provide experimentally acces-
sible formulations based on global perturbations, as we
shall demonstrate with the F1-ATPase molecular motor
model. These derivations complete the overall hierarchi-
cal relationship among the FRI, FRR, FDT, and TUR.

Setup– We formulate the main results in one-
dimensional overdamped Langevin systems for clarity
of presentation. This simple case already captures the
essence of the FRR and FRI while avoiding technical
complications. The extension to multidimensional set-
tings is presented in Ref. [24]. Thus, we consider a one-
dimensional overdamped Langevin system described by

ẋt = µ(xt)F (xt) +
√

2µ(xt)T (xt)⊛ ξt , (1)

where ⊛ denotes the anti-Itô product [25, 26], F (x) is
an external force, and ξt is a zero-mean Gaussian white
noise with ⟨ξtξs⟩ = δ(t − s). µ(x) and T (x) represent
the position-dependent mobility and bath temperature,
respectively. We set the Boltzmann constant to unity
throughout. The corresponding Fokker-Planck equation
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ϕ K̂ϕ
x Nϕ(x) = K̂ϕ

xπ(x)

µ F (x)− T (x) ∂x jss(x)/µ(x)

F µ(x) µ(x)π(x)

T −µ(x) ∂x −µ(x) ∂xπ(x)

TABLE I. Perturbation operators K̂ϕ
x and prefactors Nϕ(x)

for different choices of the perturbed function ϕ ∈ {µ, F, T}.

for the propagator P (x, t|y, s) is given by

∂tP (x, t|y, s) = L̂xP (x, t|y, s), (2)

where L̂x ≡ −∂xµ(x)[F (x)−T (x)∂x]. Hereafter, the dif-
ferential operators, such as L̂x and ∂x, apply to all func-
tions to their right, unless parentheses are used to restrict
their range. For instance, ∂xf(x)g(x) = [∂xf(x)]g(x) +
[∂xg(x)]f(x). For notational convenience, we introduce
the differential operator Ĵx ≡ µ(x)[F (x) − T (x)∂x], so
that L̂x = −∂xĴx. We consider the following time-
averaged observable:

Θ(τ) =
1

τ

∫ τ

0

[f(xt) + ẋt ◦ g(xt)]dt (3)

with arbitrary functions f(x) and g(x), where ◦ denotes
the Stratonovich product [27]. Its steady-state average
is given by ⟨Θ⟩ss =

∫

[f(x)π(x) + g(x)jss(x)]dx, where
π(x) represents the steady-state probability distribution
satisfying L̂xπ(x) = 0, and jss(x) ≡ Ĵxπ(x) is the steady-
state probability current [28].

Fluctuation-response relations– We consider first the
response of ⟨Θ⟩ss to a local perturbation in a function
ϕ(x) at x = z, expressed as the functional derivative
δ⟨Θ⟩ss/δϕ(z). We restrict ϕ to the set {µ, F, T}, as these
cases share a common structural form for the response
function. A local perturbation in ϕ at position z amounts
to a shift of the differential operator Ĵx into the form of
Ĵx + εδ(x− z)K̂ϕ

x , where ε is an infinitesimal factor and
K̂ϕ

x is an operator determined by the choice of ϕ (see
Table I). For two observables Θ1 and Θ2, our first main
result–the FRR–relates the scaled covariance CΘ1,Θ2

≡
limτ→∞ τCov{Θ1(τ),Θ2(τ)} to the responses associated
with two functions ϕ1 and ϕ2 through the identity

CΘ1,Θ2
=

∫

2π(z)D(z)

Nϕ1
(z)Nϕ2

(z)

δ⟨Θ1⟩ss
δϕ1(z)

δ⟨Θ2⟩ss
δϕ2(z)

dz , (4)

where D(z) ≡ µ(z)T (z) is the diffusion coefficient and
Nϕ(x) ≡ K̂ϕ

xπ(x) (see Table I). This relation repre-
sents the continuum (Langevin) counterpart of the FRRs
established for Markov jump processes [18]. This sin-
gle identity holds for all cross-combinations of ϕ1 and
ϕ2 ∈ {µ, F, T}. It thus provides a generalization of the
FDT, connecting global fluctuations of observables to
their local responses in nonequilibrium Langevin systems.

A brief outline of the derivation of Eq. (4) is given
below. Linear response analysis yields the following ex-
pressions (see Appendix A):

δπ(x)

δϕ(z)
= Nϕ(z)∂zH(x|z),

δjss(x)

δϕ(z)
= Nϕ(z)R(x, z) (5)

with H(x|z) ≡
∫∞

0
[P (x, t|z, 0) − π(x)]dt and R(x, z) ≡

δ(x−z)+Ĵx∂zH(x|z). Since the factorNϕ(z) is shared by
both the response of π(x) and that of jss(x), the ratio of
the local response of a general observable Θ with respect
to Nϕ is independent of the choice of ϕ, i.e.,

1

Nϕ(z)

δ⟨Θ⟩ss
δϕ(z)

=

∫

[

f(x)∂zH(x|z)+g(x)R(x, z)
]

dx. (6)

To evaluate CΘ1,Θ2
, we reexpress Θi(τ) in terms of the

empirical density ρ(x, τ) ≡ τ−1
∫ τ

0
δ(xt − x)dt and the

empirical current ȷ(x, τ) ≡ τ−1
∫ τ

0
ẋt ◦ δ(xt − x)dt as

Θi(τ) =

∫

[fi(x)ρ(x, τ) + gi(x)ȷ(x, τ)]dx. (7)

Then, CΘ1,Θ2
can be written as

∫∫

dxdy
[

f1(x)f2(y)Cρ(x),ρ(y) + f1(x)g2(y)Cρ(x),ȷ(y)

+ g1(x)f2(y)Cȷ(x),ρ(y) + g1(x)g2(y)Cȷ(x),ȷ(y)

]

= CΘ1,Θ2
.

(8)

The scaled covariances Cα(x),β(y), where α, β ∈ {ρ, ȷ}, are
evaluated as (see Appendix B for details)

Cα(x),β(y) =

∫

2π(z)D(z)Aα(x)Aβ(y)dz (9)

with Aρ(x) = ∂zH(x|z) and Aȷ(x) = R(x, z). We can
evaluate the right-hand side of Eq. (4) by substituting
Eq. (6) into Eq. (4). Likewise, the left-hand side can be
obtained by inserting Eq. (9) into Eq. (8). Comparing
these two expressions confirms the FRR.
Reduction to the fluctuation-dissipation theorem–

The FRR reduces to the FDT in the equilibrium
limit. To demonstrate this, we take the observables
to be the empirical currents, Θ1(τ) = ȷ(x, τ) and
Θ2(τ) = ȷ(y, τ). In this case, the FRR (4) becomes
Cȷ(x),ȷ(y) =

∫

2π(z)D(z)R(x, z)R(y, z)dz. In equilib-
rium, we can show that the local Onsager reciprocal
relation, [δ⟨ȷ(x)⟩/δF (z)]eq = [δ⟨ȷ(z)⟩/δF (x)]eq, holds
(see Appendix C). This relation implies the symmetry
πeq(z)D(z)Req(x, z)/T (z) = πeq(x)D(x)Req(z, x)/T (x)
which follows from Eq. (5) together with the identity
⟨ȷ(x)⟩ss = jss(x). Using this symmetry, along with the
projection property

∫

R(x, z)R(z, y)dz = R(x, y) (see
Appendix A), the FRR for Cȷ(x),ȷ(y) in the equilibrium
limit reduces, for spatially homogeneous temperature, to
the standard linear relation between local fluctuation and
response:

Ceq
ȷ(x),ȷ(y) = 2T

[

δ⟨ȷ(x)⟩

δF (y)

]

eq

. (10)
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This equality is the FDT for local currents. Multiply-
ing Eq. (10) by g1(x) and g2(y) and integrating with re-
spect to x and y, we obtain equilibrium FDT for two
currents Ji =

∫

gi(x)ȷ(x, τ)dx (i = 1, 2). For example,
for a free Brownian particle, choosing g1(x) = g2(y) = 1
yields the Einstein relation D∞ = µ∞T , where D∞ =
limτ→∞⟨[x(τ)− x(0)]2⟩/2τ is the long-time diffusion co-
efficient and µ∞ = [∂⟨ẋ⟩/∂F ]eq is the linear-response mo-
bility. Thus, the FRR can be regarded as the nonequi-
librium generalization of the equilibrium FDT.

Fluctuation-response inequality– While the FRR offers
an exact connection between fluctuation and response, it
applies only in the τ → ∞ limit and under steady-state
initial conditions. Analogous to the case of Markov jump
processes [19], a complementary FRI can be formulated
for Langevin dynamics, which is valid for finite observa-
tion times and arbitrary initial conditions.

To formulate the FRI, we consider a spatiotemporally
localized perturbation of ϕ ∈ {µ, F, T}, which amounts
to shifting ϕ(x) to ϕ(x) + εδ(x − z)δ(t − s) with an in-
finitesimal ε. The corresponding response is defined via
the functional derivative δ⟨Θ(τ)⟩/δϕ(z, s). In the follow-
ing, we first consider the case ϕ = F , and then extend the
result to the cases ϕ ∈ {µ, T}. The lower bound on the
variance of an observable Θ(τ) can be evaluated from
a functional version of the Cramér-Rao bound treating
the force field F (x, t) as the perturbation parameter (See
Appendix D):

Var[Θ(τ)] ≥

∫∫

dxdz

∫∫ τ

0

dtds I−1
F (x, t; z, s)

×
δ⟨Θ(τ)⟩

δF (x, t)

δ⟨Θ(τ)⟩

δF (z, s)
,

(11)

where IF (x, t; z, s) denotes the Fisher information
kernel (see (36) for the explicit expression) and
I−1
F (x, t; z, s) is its functional inverse satisfying

∫

dy
∫ τ

0
dr IF (x, t; y, r)I

−1
F (y, r; z, s) = δ(x − z)δ(t − s).

For such a localized perturbation, the kernel simplifies
to (see Appendix E)

IF (x, t; z, s) =
µ(x)p(x, t)

2T (x)
δ(x− z)δ(t− s) , (12)

where p(x, t) is the probability density at time t evolved
from an arbitrary initial distribution p0(x). Thus,
I−1
F (x, t; z, s) = 2T (x)/[µ(x)p(x, t)]δ(x−z)δ(t−s). Upon

substituting this result into Eq. (11), we obtain the FRI
for the force perturbation:

Var[Θ(τ)] ≥

∫

dz

∫ τ

0

ds
2T (z)

µ(z)p(z, s)

(

δ⟨Θ(τ)⟩

δF (z, s)

)2

.

(13)
Similar to the case of time-independent perturbations,
the combination [Ñϕ(z, s)]

−1δ⟨Θ(τ)⟩/δϕ(z, s), where

Ñϕ(z, s) ≡ K̂ϕ
z p(z, s), is independent of the choice of ϕ

(see Sec. II of Ref. [24]). This leads to

Var[Θ(τ)] ≥

∫

dz

∫ τ

0

ds
2p(z, s)D(z)

[Ñϕ(z, s)]2

(

δ⟨Θ(τ)⟩

δϕ(z, s)

)2

.

(14)
This unified FRI provides a universal lower bound on
the variance of any trajectory-dependent observable, in
terms of its linear response to local perturbations.
For the steady-state initial condition, p(z, s) and

Ñϕ(z, s) reduce to π(z) and Nϕ(z), respectively.
By applying the inequality

∫ τ

0
[δ⟨Θ(τ)⟩/δϕ(z, s)]2ds ≥

τ−1[
∫ τ

0
δ⟨Θ(τ)⟩/δϕ(z, s)ds]2 = τ−1[δ⟨Θ(τ)⟩/δϕ(z)]2 to

Eq. (14), we obtain

τVar[Θ(τ)] ≥

∫

2π(z)D(z)

[Nϕ(z)]2

(

δ⟨Θ(τ)⟩

δϕ(z)

)2

dz . (15)

This inequality has the same structural form as the
FRR (4) with Θ = Θ1 = Θ2 and ϕ = ϕ1 = ϕ2, but
appears as an inequality rather than an equality. This
inequality holds for any finite-time τ and becomes satu-
rated in the limit τ → ∞.
Response uncertainty relation– The FRI provides a

fundamental lower bound but requires full knowledge of
the spatiotemporal response function δ⟨Θ(τ)⟩/δϕ(z, s),
which is typically inaccessible to experimental or
numerical settings. To obtain a more practi-
cal bound, though generally looser, we apply the
Cauchy–Schwarz inequality to Eq. (14). For an
arbitrary function ψ(z, s), we have the inequality
∫∫

[X(z, s)Y (z, s)]2 ≥ [
∫∫

Y (z, s)]2/
∫∫

[1/X(z, s)]2 with

X(z, s) ≡
√

2p(z, s)D(z)/[ψ(z, s)Ñϕ(z, s)] and Y (z, s) ≡
ψ(z, s)δ⟨Θ(τ)⟩/δϕ(z, s), where

∫∫

=
∫

dz
∫ τ

0
ds. Rec-

ognizing that δϕ⟨Θ(τ)⟩ ≡
∫∫

Y (z, s) corresponds to the
response to the global perturbation ϕ(x, t) 7→ ϕ(x, t) +
εψ(x, t), we obtain the response uncertainty relation:

[δϕ⟨Θ(τ)⟩]2

Var[Θ(τ)]
≤
ψ2
max

2

∫

dz

∫ τ

0

ds
[Ñϕ(z, s)]

2

p(z, s)D(z)
, (16)

where ψmax = supx,t |ψ(x, t)| is the maximum amplitude
of the perturbation function over the domain of integra-
tion. This inequality depends only on the response to a
global perturbation, rather than the full local response
profile, making it substantially more feasible than the
FRI for practical implementation.
When ϕ = F , Eq. (16) becomes

[δF ⟨Θ(τ)⟩]2

Var[Θ(τ)]
≤ ψ2

maxA(τ) , (17)

where A(τ) ≡
∫

dx
∫ τ

0
dt µ(x)p(x, t)/2T (x). This in-

equality represents the continuum analog of the R-KUR
previously derived for Markov jump processes [19, 20],
where the ratio of response to fluctuation is bounded by
the dynamical activity. While the dynamical activity di-
verges in the Langevin limit due to its inverse scaling
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equilibrium
limit

FRI Eq. (14)

FRR Eq. (4)

FDT Eq. (10)

R-TUR Eq. (18)

TUR

long-time
limit

global 

perturbation

uniform 

perturbation

FIG. 1. Hierarchy among the FRI, FRR, FDT, R-TUR, and
TUR.

with the microscopic length scale, this length scale factor
is canceled in the continuum formulation by expressing
the response as a functional derivative.

A particularly meaningful choice of perturbation is
ϕ = lnµ. A perturbation in lnµ represents a kinetic per-
turbation [29–31], which modifies the system’s dynamics
without altering thermodynamic forces in overdamped
Langevin dynamics. This choice leads to Nlnµ(x, t) =
j(x, t), the probability current at time t, while preserving
the theoretical framework developed so far. Substituting
this into Eq. (16), we obtain the R-TUR:

[δlnµ⟨Θ(τ)⟩]2

Var[Θ(τ)]
≤
ψ2
maxΣτ

2
, (18)

where Στ =
∫

dx
∫ τ

0
dt [j(x, t)]2/p(x, t)D(x) is the total

entropy production [32]. The R-TUR establishes a ther-
modynamic trade-off between response, fluctuation, and
dissipation. Moreover, for current-like observables of the
form J(τ) =

∫

g(x)ȷ(x, τ)dx, choosing a uniform pertur-
bation ψ(x, t) = ψ ∀(x, t) recovers the conventional TUR,
⟨(1 + τ∂τ )J(τ)⟩

2/Var[J(τ)] ≤ Στ/2 [33] (see Sec. III of
Ref. [24] for the derivation). The hierarchical structure
from the FRI to the R-TUR and finally to the TUR re-
veals that the FRI serves as a unifying response-theoretic
foundation for existing uncertainty relations. It also es-
tablishes the theoretical connection between the FDT
and the TUR in Langevin dynamics, as shown in Fig. 1.

Application to F1-ATPase– We now apply the response
uncertainty relations to a giant-diffusion phenomenon:
the long-time diffusion coefficient of a Brownian particle
moving in a tilted periodic potential can be enhanced by
several orders of magnitude near the critical tilt of the
potential [35]. Since its discovery, this phenomenon has
been extensively explored both theoretically [36–38] and
experimentally [34, 39, 40], particularly in studies of F1-
ATPase. The inset of Fig. 2(a) illustrates the experimen-
tal setup used in Ref. [34], where a duplex of polystyrene
beads is attached to the γ subunit of F1-ATPase [41, 42].
An external electric field induces a constant dielectric
torque on the rotor. The dynamics of the cumulative an-
gular displacement θ, i.e., without applying modulo 2π,

FIG. 2. Application of the response uncertainty relations to
F1-ATPase. (a) Comparison of D∞ with the three response-
uncertainty bounds associated with perturbations in F , lnµ,
and T . Inset: Schematic of the experimental setup for F1-
ATPase attached to a duplex of polystyrene beads [34]. (b)
Temperature dependence of D∞/D0 at F ≈ 120 pN · nm,
compared with the three bounds. T0 = 298K denotes the
room temperature. In (a) and (b), solid, dotted, dashed,
and dashdot lines represent the analytical results of D∞,
T
µ
(∂Fω)

2, (∂lnµω)
2/σ, and T

µ
(∂Tω)

2/I, respectively, while

markers with error bars (indicating the standard deviation)
denote numerical simulation results obtained from Eq. (19).

is modeled by the overdamped Langevin equation [34],

θ̇t = µ[−∂θU(θ)|θ=θt + F ] +
√

2µTξt, (19)

where U(θ) = U0 cos(3θ) represents the periodic chemo-
mechanical potential with 120◦ rotational symmetry of
the motor, F is the externally applied torque, µ is the
rotational mobility of the bead duplex, and T is the am-
bient temperature.

Here, we consider steady-state initial conditions and a
switch-on perturbation ϕ(x) 7→ ϕ(x)+εh(t) where h(t) is
the Heaviside step function. The observable of interest is
the time-averaged angular velocity, ω̄(τ) = τ−1

∫ τ

0
θ̇tdt,

whose variance determines the long-time diffusion co-
efficient through D∞ = limτ→∞ Var[θτ ]/2τ . Applying
Eq. (16) to the cases ϕ = F , lnµ, and T in the limit
τ → ∞, we obtain the following bounds on D∞,

D∞ ≥
T (∂Fω)

2

µ
, D∞ ≥

(∂lnµω)
2

σ
, D∞ ≥

T (∂Tω)
2

µI
,

(20)
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where ω ≡ ⟨ω̄⟩ss is the steady-state angular velocity, σ ≡
∫ 2π

0
[j2ss/µTπ(θ)]dθ is the steady-state entropy production

rate, and I ≡
∫ 2π

0
[π′(θ)]2/π(θ)dθ = ⟨[dθSsys(θ)]

2⟩. Here
Ssys(θ) ≡ − lnπ(θ) is the system entropy, and thus I
denotes the mean squared differential entropy. This set-
ting is experimentally most relevant, as molecular-motor
transport is typically probed under constant external
driving and characterized via steady-state transport co-
efficients.

Figure 2(a) compares D∞ with the three bounds. The
analytical results are supplemented by direct numerical
simulations of Eq. (19), using parameter values (µ =
0.91rad/s/pN · nm, U0 = 10kBT , T = 298K) reported
in Ref. [34]. To better reflect experimental sampling lim-
itations, 100 stochastic trajectories are simulated for each
torque value, with each trajectory observed for a duration
of τ = 100. As F increases, D∞ exhibits a pronounced
peak near F ≈ 120 pN · nm, signaling the onset of the
giant diffusion regime. Notably, the response functions
with respect to F and T exhibit similar enhancement be-
haviors. To further assess the tightness of the bounds
in the giant diffusion regime, we analyze their temper-
ature dependence at the torque value corresponding to
the diffusion peak, F = 120 pN · nm; see Fig. 2(b). It is
known that the ratio of the peak value of D∞ to the bare
diffusion constant D0 = µT diverges as T−2/3 in the low-
temperature limit [35]. The bounds associated with per-
turbations in F and T appear to follow this T−2/3 scaling,
tracking the divergence of the fluctuations. In contrast,
the bound associated with µ scales with T 1/3, which van-
ishes at low temperatures, but becomes nearly as tight
at higher temperatures as the torque-based bound.

Discussion– In this Letter, we established the FRR and
the finite-time inequalities (the FRI, R-TUR, R-KUR,
and TUR) for Langevin dynamics. The FRR provides a
universal identity that connects fluctuations to linear re-
sponse, both in and out of equilibrium, in the long-time
limit under steady-state initial conditions. The inequali-
ties complement this identity by offering more practically
accessible bounds that remain valid at finite observation
times and for arbitrary initial conditions. From the FRI,
we systematically recovered the R-KUR, the R-TUR, and
finally the TUR, thereby unveiling a hierarchical struc-
ture underlying existing uncertainty relations. This hier-
archy also elucidates the theoretical connection between
the FDT and the TUR.

It is instructive to compare our work with two re-
cent studies investigating fluctuation–response relations
for Langevin dynamics [43, 44]. Both studies are for-
mulated in the frequency domain, whereas our approach
is entirely time-domain based. The FRI-type inequality
in Ref. [43] saturates for linear systems irrespective of
equilibrium, but does not reveal any explicit connection
to the equilibrium FDT [43, 44]. In contrast, our frame-
work naturally recovers the FDT in the equilibrium limit,

regardless of the nonlinearity of the dynamics. Further-
more, our FRI and response uncertainty relations apply
not only to steady states but also to arbitrary initial con-
ditions, and encompass a broad class of perturbations.

Extending our results to quantum stochastic processes,
as done previously [45], represents a compelling direction
for exploring the fundamental relationships among re-
sponse, fluctuations, dissipation, and possibly quantum
coherence in nonequilibrium systems.
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END MATTER

Appendix A: Derivation of response functions–The re-
sponse functions to local perturbations can be derived
using standard linear response theory [2, 27]. We con-
sider a local perturbation in ϕ ∈ {µ, F, T} at location
z, implemented as L̂x 7→ L̂x − ε∂xδ(x − z)K̂ϕ

x with
an infinitesimal ε and an operator K̂ϕ

x . Assuming a
steady-state initial condition, we write the probability
distribution as p(x, t) = π(x) + εq(x, t; z) + O(ε2). In-
serting this expression into the Fokker-Planck equation
∂tp(x, t) = L̂xp(x, t) and keeping terms of order ε gives

∂q(x, t; z)

∂t
= L̂xq(x, t; z)− ∂xδ(x− z)K̂ϕ

xπ(x) , (21)

and q(x, 0; z) = 0. The propagator P (x, t|y, s) is the so-
lution of the unperturbed Fokker-Planck equation with
initial condition limt→s P (x, t|y, s) = δ(x − y). By the
Green’s function method, the solution of the linear dif-
ferential equation for q(x, t; z) is

q(x, t; z) = −

∫ t

0

ds

∫

dy P (x, t|y, s)∂yδ(y − z)K̂ϕ
yπ(y) .

(22)
Integrating by parts with respect to y leads to

q(x, t; z) = Nϕ(z)

∫ t

0

ds ∂zP (x, t|z, s) . (23)

Using the fact that limt→∞ q(x, t; z) = δπ(x)/δϕ(z) and
the definition of H(x|z), we obtain the compact expres-
sion for the response function given in the first expression
of Eq. (5). The time-integrated propagator H(x|y) has
the following three properties, which are used throughout
the derivations:

L̂yH(y|z) = π(y)− δ(y − z), (24)

L̂†
zH(y|z) = π(y)− δ(y − z), (25)

∫

H(y|z)π(z) dz = 0. (26)

The first two identities follow from time-integrating
the forward and backward Fokker-Planck equations,
∂tP (y, t|z, 0) = L̂yP (y, t|z, 0) and ∂tP (y, t|z, 0) =

L̂†
zP (y, t|z, 0). The last property is a consequence of sta-

tionarity,
∫

P (y, t|z, 0)π(z)dz = π(y).

Similarly, the probability current shifts as j(x, t) =
jss(x) + εk(x, t; z) + O(ε2), where k(x, t; z) = δ(x −
z)K̂ϕ

xπ(x) + Ĵxq(x, t; z). Taking the limit t → ∞ and
using the definition of R(x, z) in Eq. (5) yields the sec-
ond expression of Eq. (5). The function R(x, y) satisfies
∫

R(x, z)R(z, y)dz = R(x, y). This projection property

holds in general and follows from the identity

∫

dz [Ĵx∂zH(x|z)][Ĵz∂yH(z|y)]

=

∫

dz [ĴxH(x|z)][∂yL̂zH(z|y)] (27)

= −

∫

dz [ĴxH(x|z)][∂yδ(z − y)] = −Ĵx∂yH(x|y),

where the first equality is obtained by integration by
parts and the second equality uses Eq. (24).
Appendix B: Derivations of Eq. (9)– We begin by de-

riving the covariance of the empirical density, ρ(x, τ) =
τ−1

∫ τ

0
δ(xt−x)dt. Noting that Cov{δ(xt−x), δ(xs−y)}

is given by P (x, t|y, s)π(y) − π(x)π(y) for t > s and
P (y, s|x, t)π(x)− π(x)π(y) for t < s, we have

Cρ(x),ρ(y) = lim
τ→∞

1

τ

∫ τ

0

dt

∫ t

0

ds [P (x, t|y, s)− π(x)]π(y)

+ lim
τ→∞

1

τ

∫ τ

0

dt

∫ t

0

ds [P (y, t|x, s)− π(y)]π(x) ,

(28)
where the integral variables are exchanged in the sec-
ond integral. Using the time-translation invariance
P (x, t|y, s) = P (x, t−s|y, 0) and a change of integral vari-

ables u ≡ t − s, we can rewrite limτ→∞ τ−1
∫ τ

0
dt

∫ t

0
ds

as
∫∞

0
du and thus obtain Cρ(x),ρ(y) = H(x|y)π(y) +

H(y|x)π(x).
To connect the scaled covariance to the response func-

tions, we rewrite Cρ(x),ρ(y) in terms of the local compo-
nents ∂zH(x|z). To this end, we use the two properties
of H in Eqs. (25) and (26), which allow us to obtain

H(x|y)π(y) =

∫

π(z)H(x|z)δ(y − z)dz

= −

∫

π(z)H(x|z)L̂†
zH(y|z)dz

= −

∫

[Ĵzπ(z)H(x|z)]∂zH(y|z)dz

=

∫

π(z)D(z)[∂zH(x|z)][∂zH(y|z)]dz

−

∫

jss(z)H(x|z)∂zH(y|z)dz ,

(29)

where the first and second terms in the last expression
are symmetric and antisymmetric under the exchange
x ↔ y, respectively. Adding the corresponding expres-
sion for H(y|x)π(x) gives H(x|y)π(y) + H(y|x)π(x) =
∫

2π(z)D(z)[∂zH(x|z)][∂zH(y|z)]dz. Since ∂zH(x|z) can
be written as ∂zH(x|z) = [Nϕ(z)]

−1δπ(x)/δϕ(z) for any
ϕ, the empirical density satisfies the FRR

Cρ(x),ρ(y) =

∫

2π(z)D(z)

Nϕ1
(z)Nϕ2

(z)

δπ(x)

δϕ1(z)

δπ(y)

δϕ2(z)
dz (30)

valid for arbitrary choices of ϕ1, ϕ2 ∈ {µ, F, T}.
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To evaluate the covariance of the empirical current, we
first rewrite it as ȷ(x, τ) = Ĵxρ(x, τ) + ζ(x, τ), where the
time-integrated noise ζ(x, τ) = τ−1

∫ τ

0

√

2D(xt)ξtδ(xt −
x) satisfies Cζ(x,τ),ζ(y,τ) = 2π(x)D(x)δ(x − y) and
Cρ(x),ζ(y) = 2π(y)D(y)∂yH(x|y) (see Sec. I.B of
[24] for details). Using the identity Cρ(x),ρ(y) =
∫

2π(z)D(z)[∂zH(x|z)][∂zH(y|z)]dz together with the

definition R(x, z) = δ(x− z) + Ĵx∂zH(x|z), we obtain

Cρ(x),ȷ(y) =

∫

2π(z)D(z)[∂zH(x|z)]R(y, z)dz , (31)

Cȷ(x),ȷ(y) =

∫

2π(z)D(z)R(x, z)R(y, z)dz . (32)

Equation (9) collects Eqs. (30–32) into a single expres-
sion.

Appendix C: Local Onsager reciprocal relation–
Here, we derive the local Onsager reciprocal relation
[δ⟨ȷ(x)⟩/δF (z)]eq = [δ⟨ȷ(z)⟩/δF (x)]eq, which is equiva-
lent to πeq(z)µ(z)Req(x, z) = πeq(x)µ(x)Req(z, x), as fol-
lows from Eq. (5). Since the delta term in Req(x, z) =

δ(x− z)+ Ĵx∂zHeq(x|z) trivially satisfies this symmetry,
it suffices to show that

πeq(z)µ(z)Ĵx∂zHeq(x|z) = πeq(x)µ(x)Ĵz∂xHeq(z|x) .
(33)

In equilibrium, the absence of steady-state cur-
rents implies F (x)πeq(x) = T (x)∂xπeq(x), which yields

ĴzHeq(x|z)πeq(z) = −πeq(z)D(z)∂zHeq(x|z). Applying

Ĵx to both sides gives

ĴxĴzHeq(x|z)πeq(z) = −πeq(z)D(z)Ĵx∂zHeq(x|z) .
(34)

By detailed balance, Heq(x|z)πeq(z) = Heq(z|x)πeq(x),
the left-hand side of Eq. (33) is invariant under exchang-
ing x ↔ z. Therefore, the right-hand side of Eq. (34)
must also be invariant. For a homogeneous temperature
field T (x) = T (z) = T , this reduces to Eq. (33), which is
equivalent to the local Onsager reciprocal relation.

Appendix D: Functional version of the Cramér-Rao

bound– The Cramér-Rao bound for multiple perturba-
tion parameters (θ1, · · · , θK) reads

Var[Θ(τ)] ≥
K
∑

α,β=1

∂θα⟨Θ(τ)⟩[I−1(τ)]θαθβ∂θβ ⟨Θ(τ)⟩.

(35)
Here, I(τ) denotes the Fisher information ma-
trix, whose elements are given by Iθαθβ (τ) =
⟨{∂θα lnP[Γτ ]}{∂θβ lnP[Γτ ]}⟩ [19, 46], where P[Γτ ] is
the probability of observing a stochastic trajectory Γτ .
Equation (35) can be extended to the case where the

perturbation parameter is a function defined on contin-
uous space and time by discretizing the space-time do-
main into infinitesimal segments, such that the sums are
replaced by integrals, i.e.,

∑

α →
∫

dx
∫

dt. Accord-
ingly, by replacing ∂θα with the functional derivative
δ/δF (x, t), we immediately recover Eq. (11).
Appendix E: Derivation of the Fisher information ker-

nel– Here we derive the explicit expression for the Fisher
information kernel

IF (x, t; z, s) =

〈

δ lnP[Γτ ]

δF (x, t)

δ lnP[Γτ ]

δF (z, s)

〉

. (36)

To this end, we evaluate the path probability and com-
pute the functional derivative of its logarithm with re-
spect to the force field. The probability of a trajectory
Γτ = {xt}

τ
t=0 is P[Γτ ] = Np0(x0)e

−A[Γτ ], where p0(x)
is the initial distribution, A[Γτ ] is the Onsager-Machlup
action, and N is a normalization factor. The action takes
the form

A[Γτ ] =

∫ τ

0

dt
[ẋt − v(xt)]

2

4µ(xt)T (xt)
(37)

where v(x) = µ(x)F (x) + [∂xµ(x)T (x)] is the effective
drift including the spurious drift term arising from con-
verting the anti-Itô product to the Itô product. Tak-
ing the functional derivative of lnP[Γτ ] with respect to
F (x, t) yields

δ lnP[Γτ ]

δF (x, t)
=

〈

δA[Γτ ]

δF (x, t)

〉

−
δA[Γτ ]

δF (x, t)
, (38)

where the identity δ lnN/δF (x, t) = ⟨δA[Γτ ]/δF (x, t)⟩ is
used. The functional derivative of A[Γτ ] is given by

δA[Γτ ]

δF (x, t)
= −

ẋt − v(xt)

2T (xt)
δ(x−xt) = −

√

µ(x)

2T (x)
ξtδ(x−xt),

(39)
where the second equality uses the Langevin equation
(1), which relates ẋt − v(xt) to the noise ξt. Thus,
⟨δA[Γτ ]/δF (x, t)⟩ = 0. Using Eqs. (38) and (39), we
evaluate Eq. (36) as

IF (x, t; z, s) =

√

µ(x)µ(z)

4T (x)T (z)
⟨ξtξsδ(x− xt)δ(z − xs)⟩

(40)
Since the noise at the later time is independent of

all variables determined by earlier noise realizations, the
correlation ⟨ξtξs δ(x − xt)δ(z − xs)⟩ vanishes for t ̸= s.
When t = s, the two noise values are delta-correlated,
⟨ξtξs⟩ = δ(t − s), and the noise at that time is in-
dependent of the state xt. Consequently, we obtain
⟨ξtξsδ(x− xt)δ(z − xs)⟩ = ⟨δ(x− xt)δ(z − xt)⟩δ(t− s) =
p(x, t)δ(x− z)δ(t− s), where p(x, t) = ⟨δ(x− xt)⟩ is the
probability density at time t. The Fisher information
kernel therefore simplifies to Eq. (12).
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I. FLUCTUATION-RESPONSE RELATION FOR MULTIDIMENSIONAL OVER-

DAMPED LANGEVIN SYSTEMS

In this section, we extend the derivation of the fluctuation-response relation (FRR) from

the one-dimensional overdamped Langevin case presented in the main text to a general N -

dimensional system. Analogous to the one-dimensional case, we derive explicit expressions

for the response functions and the scaled covariance matrix of the empirical density and

empirical current. Throughout this section, blackboard bold symbols (A, B, · · · ) are used to

denote matrices (of dimension N×N or N2×N), while bold-faced italic symbols (x, y, · · · )
denote column vectors (of dimension N × 1). The transposes of bold-faced italic symbols

(xT, yT, · · · ) denote the corresponding row vectors (of dimension 1×N). Furthermore, we

define ∇x ≡ (∂x1 , · · · , ∂xN
) as a row-vector differential operator with respect to x.

We consider an N -dimensional overdamped Langevin system described by

ẋ(t) = M(x(t))F (x(t)) +
√
2B(x(t))⊛ ξ(t)

= v(x(t)) +
√
2B(x(t)) • ξ(t),

(S1)

where • and ⊛ denotes the Itô and anti-Itô products, respectively, M(x) is the mobility ma-

trix, F (x) is the force, B(x) is a square root of the diffusion matrix D(x) = B(x)BT(x), and

ξ(t) is a zero-mean Gaussian white noise with ⟨ξi(t)ξj(t′)⟩ = δijδ(t− t′). The second equality

follows from converting the stochastic integration scheme from the anti-Itô convention to

the Itô convention, yielding the effective drift

v(x) = M(x)F (x) +
[
∇xD

T(x)
]T
. (S2)

We assume that the mobility and diffusion matrices satisfy D(x) = M(x)T(x), where T(x) =

diag{T1, · · · , TN} is a temperature matrix. In the following, we assume that the diffusion

matrix is symmetric, DT(x) = D(x). For later convenience, we also define a Gaussian noise

η(t) =
√
2B(x(t)) • ξ(t), (S3)

which satisfies ⟨ηi(t) ηj(t′)⟩ = 2Dij(x(t)) δ(t− t′).

The corresponding Fokker–Planck equation for the propagator P (x, t|y, s) reads

∂tP (x, t|y, s) = L̂xP (x, t|y, s) , (S4)
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with the differential operator

L̂x = −∇xM(x)[F (x)− T(x)∇T

x] . (S5)

We also introduce the associated probability current operator Ĵx = M(x)[F (x)−T(x)∇T

x].

We assume the existence of a unique steady-state distribution π(x) satisfying L̂xπ(x) = 0,

and denote the corresponding steady-state probability current as jss(x) = Ĵxπ(x).

To establish the FRR, we derive the linear responses of the empirical density and empirical

current under local perturbations, as well as the scaled covariances of these observables. The

empirical density is defined as ρ(x, τ) = τ−1
∫ τ

0
δ(x(t) − x) dt and the empirical current as

ȷ(x, τ) = τ−1
∫ τ

0
ẋ(t)◦δ(x(t)−x) dt, whose steady-state averages are ⟨ρ(x, τ)⟩ss = π(x) and

⟨ȷ(x, τ)⟩ss = jss(x), respectively.

A. Linear response of the empirical density and current

We consider a local perturbation in a system parameter ϕ ∈ {Mij, Fi, Ti} at position z,

implemented as L̂x 7→ L̂x − ε∇xδ(x− z)K̂ϕ
x, where ε is an infinitesimal parameter, and K̂ϕ

x

is an operator determined by ϕ. The explicit forms of K̂ϕ
x for each type of perturbation are

given by

K̂Mij
x = Eij[F (x)− T(x)∇T

x], K̂Fi
x = M(x)ei, K̂Ti

x = −M(x)Eii∇
T

x, (S6)

where Eij is the matrix with zeros everywhere except for the (i, j) component, which is 1,

and ei is the unit vector with 1 in the i-th component and zeros elsewhere.

Assuming steady-state initial condition, we write the probability distribution as p(x, t) =

π(x) + εq(x, t; z) +O(ε2). Inserting into the Fokker-Planck equation ∂tp(x, t) = L̂xp(x, t)

and keeping terms of order ε gives

∂q(x, t; z)

∂t
= L̂xq(x, t; z)−∇xδ(x− z)K̂ϕ

xπ(x) , (S7)

and q(x, 0; z) = 0. The propagator P (x, t|y, s) is the solution of the unperturbed Fokker-

Planck equation with the initial condition limt→s P (x, t|y, s) = δ(x − y). By the Green’s

function method, the solution for q(x, t; z) can be written as

q(x, t; z) = −
∫ t

0

ds

∫

dy P (x, t|y, s)∇yδ(y − z)K̂ϕ
yπ(y) . (S8)
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Integrating by parts with respect to y leads to

q(x, t; z) =NT

ϕ (z)

∫ t

0

ds ∇
T

zP (x, t|z, s) , (S9)

with Nϕ(z) = K̂ϕ
zπ(z). The explicit forms of the mth component of Nϕ(z) for each type of

perturbation are given by

[NMij
(z)]m = δim[Fj(z)− Tj(z)∂zj ]π(z),

[NFi
(z)]m =Mmi(z)π(z), [NTi

(z)]m = −Mmi(z)∂ziπ(z),
(S10)

Using the fact that limt→∞ q(x, t; z) = δπ(x)/δϕ(z) and defining the convergent time-

integrated propagator

H(x|z) =
∫ ∞

0

[P (x, t|z, 0)− π(x)]dt , (S11)

we obtain the compact expression for the response function of the probability density

δπ(x)

δϕ(z)
=NT

ϕ (z)∇
T

zH(x|z) . (S12)

The time-integrated propagator has three properties:

L̂yH(y|z) = π(y)− δ(y − z), (S13)

L̂†
zH(y|z) = π(y)− δ(y − z), (S14)

∫

H(y|z)π(z)dz = 0. (S15)

The first two identities follow from time-integrating the forward and backward Fokker-

Planck equations, ∂tP (y, t|z, 0) = L̂yP (y, t|z, 0) and ∂tP (y, t|z, 0) = L̂†
zP (y, t|z, 0). The

last property is a consequence of stationarity,
∫
P (y, t|z, 0)π(z)dz = π(y).

Similarly, the probability current can be expanded as j(x, t) = jss(x)+εk(x, t; z)+O(ε2)

where k(x, t; z) = δ(x− z)K̂ϕ
xπ(x) + Ĵxq(x, t; z). Taking t→ ∞ limit yields

δjss(x)

δϕ(z)
= R(x, z)Nϕ(z) (S16)

with R(x, z) = Iδ(x − z) + Ĵx∇zH(x|z). The matrix R(x,y) satisfies the projection

property
∫
R(x, z)R(z,y)dz = R(x,y). Denoting I(x, z) ≡ Iδ(x − z) and J(x, z) ≡

Ĵx∇zH(x|z), the projection property follows from the identities
∫
I(x, z)I(z,y)dz =
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I(x,y),
∫
I(x, z)J(z,y)dz =

∫
J(x, z)I(z,y)dz = J(x,y), and

∫

dz [J(x, z)]ij[J(z,y)]jk =
∑

j

∫

dz [Ĵx∂zjH(x|z)]i[Ĵz∂ykH(z|y)]j

=

∫

dz [ĴxH(x|z)]i[∇T

y L̂zH(z|y)]k

= −
∫

dz [ĴxH(x|z)]i[∇T

yδ(z − y)]k

= −[Ĵx∂ykH(x|y)]i = −[J(x,y)]ik,

(S17)

where the second equality uses integration by parts and the third equality uses the property

of H in Eq. (S13).

B. Scaled covariances of the empirical density and current

We first derive the explicit expressions of the scaled covariances of empirical density,

which is a time-integrated Dirac delta function. Noting that Cov{δ(x(t)− x), δ(x(s)− y)}
is given by P (x, t|y, s)π(y)− π(x)π(y) for t > s and P (y, s|x, t)π(x)− π(x)π(y) for t < s,

we have

Cρ(x),ρ(y) = lim
τ→∞

1

τ

∫ τ

0

dt

∫ t

0

ds [P (x, t|y, s)− π(x)]π(y)

+ lim
τ→∞

1

τ

∫ τ

0

dt

∫ t

0

ds [P (y, t|x, s)− π(y)]π(x) ,

(S18)

where the integral variables are exchanged in the second integral. Using the time-translation

invariance P (x, t|y, s) = P (x, t− s|y, 0) and a change of integral variables u ≡ t− s, we can

rewrite limτ→∞ τ−1
∫ τ

0
dt

∫ t

0
ds as

∫∞

0
du and thus obtain

Cρ(x),ρ(y) = H(x|y)π(y) +H(y|x)π(x) . (S19)

To connect the scaled covariance to the response functions, we rewrite Cρ(x),ρ(y) in terms

of the local components∇zH(x|z). To this end, we use the two properties ofH in Eqs. (S14)

and (S15), from which we obtain

H(x|y)π(y) =
∫

π(z)H(x|z)δ(y − z)dz = −
∫

π(z)H(x|z)L̂†
zH(y|z)dz

= −
∫

[Ĵ T

z π(z)H(x|z)]∇T

zH(y|z)dz

=

∫

π(z)[∇zH(x|z)]D(z)[∇T

zH(y|z)]dz

−
∫

[jss(z)]TH(x|z)∇T

zH(y|z)dz ,

(S20)
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where the first and second terms in the last expression are symmetric and antisymmetric un-

der the exchange x↔ y, respectively. Adding the corresponding expression for H(y|x)π(x)
yields

H(x|y)π(y) +H(y|x)π(x) =
∫

2π(z)[∇zH(x|z)]D(z)[∇T

zH(y|z)]dz . (S21)

The term ∇zH(x|z) also appears in the expression of the response function of the empir-

ical density in (S12). To invert (S12) and express ∇zH(x|z) in terms of the response func-

tions, we explicitly label the spatial components of the perturbation parameters as ϕm(z),

where m ∈ {1, · · · , N} for ϕ = F and T , and m ∈ {(11), (12), · · · , (NN)} for ϕ = M .

Introducing a column vector [δπ(x)/δϕ(z)]m = δπ(x)/δϕm(z), Eq. (S12) becomes

δπ(x)

δϕ(z)
= Nϕ(z)∇

T

zH(x|z) , (S22)

where the matrix Nϕ(z) is defined by [Nϕ(z)]mn = [Nϕm
(z)]n. Assuming Nϕ(z) is left-

invertible, Eq. (S21) leads to the FRR for the empirical density:

Cρ(x),ρ(y) =

∫

2π(z)

[
δπ(x)

δϕ(1)(z)

]T

[N−1
ϕ(1)(z)]

T
D(z)N−1

ϕ(2)(z)
δπ(y)

δϕ(2)(z)
dz (S23)

valid for any combination of ϕ(1),ϕ(2) ∈ {M,F ,T}. This generalizes the FRR for one-

dimensional overdamped Langevin systems derived in the main text to multidimensional sys-

tems. As an illustrative case, when ϕ(1) = ϕ(2) = F and thus N−1
F (z) = (MT)−1(z)/π(z) =

D−1(z)T(z)/π(z), the FRR reduces to

Cρ(x),ρ(y) =

∫
2

π(z)

[
δπ(x)

δF (z)

]T

T(z)D−1(z)T(z)
δπ(y)

δF (z)
dz , (S24)

provided that M(z) is invertible. The left-invertibility condition for the mobility pertur-

bation is particularly stringent, since NM(z) is a large rectangular (N2 × N) matrix. It is

therefore useful to consider a reduced form of the FRR by noting that
∑

j[NlnMij
(z)]m =

∑

j Mij[NMij
(z)]m = δimj

ss
i (z):

Cρ(x),ρ(y) =
∑

i,j,k,l

∫
2π(z)Dij(z)

jssi (z)j
ss
j (z)

δπ(x)

δ lnMik(z)

δπ(y)

δ lnMjl(z)
dz . (S25)
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Next, to evaluate the covariance of empirical current, we first rewrite it as

ȷ(x, τ) =
1

τ

∫ τ

0

ẋ(t) ◦ δ(x− x(t))dt

=
1

τ

∫ τ

0

[v(x(t)) + D(x(t))∇T

x(t) + η(t)] • δ(x− x(t))dt

=
1

τ

∫ τ

0

{

M(x(t))F (x(t))δ(x− x(t)) +
[
∇x(t)D(x(t))δ(x− x(t))

]T
}

dt

+
1

τ

∫ τ

0

η(t) • δ(x− x(t))dt
︸ ︷︷ ︸

≡ζ(x,τ)

=
1

τ

∫ τ

0

[
M(x)F (x)− D(x)∇T

x

]
δ(x− x(t))dt+ ζ(x, τ)

= Ĵxρ(x, τ) + ζ(x, τ) .

(S26)

The time-integrated noise ζ(x, τ) satisfies

⟨ζi(x, τ)ζj(y, τ)⟩ss =
1

τ 2

∫ τ

0

dt

∫ τ

0

dt′ ⟨ηi(t)ηj(t′)δ(x− x(t))δ(y − x(t′))⟩ss

=
2

τ 2

∫ τ

0

dt Dij(x)δ(x− y)⟨δ(x− x(t))⟩ss

= 2τ−1π(x)Dij(x)δ(x− y) .

(S27)

We denote the scaled covariance matrix of two vector-valued observables u and v by Cu,v,

whose components are defined as [Cu,v]ij = Cui,vj . With this notation, the scaled covariance

matrix of the time-integrated noises is given by Cζ(x),ζT(y) = 2π(x)D(x)δ(x− y). Similarly,

we denote the scaled covariance of a scalar observable a and a vector-valued observable v

by Ca,v, which is a column vector with components [Ca,v]i = Ca,vi . The scaled covariance
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between ρ(x, τ) and ζ(y, τ) is given by

Cρ(x),ζ(y) = lim
τ→∞

τ⟨ρ(x, τ)ζ(y, τ)⟩ss

= lim
τ→∞

1

τ

∫ τ

0

dt

∫ τ

0

dt′ ⟨η(t′)δ(x− x(t))δ(y − x(t′))⟩ss

= lim
τ→∞

1

τ

∫ τ

0

dt

∫ t

0

dt′ ⟨η(t′)δ(x− x(t))δ(y − x(t′))⟩ss

= lim
τ→∞

2

τ

∫ τ

0

dt

∫ t

0

dt′ π(y)D(y)∇T

yP (x, t|y, t′)

= lim
τ→∞

2

τ

∫ τ

0

du

∫ τ−u

0

dt′ π(y)D(y)∇T

yP (x, u|y, 0)

= lim
τ→∞

2

∫ τ

0

du
(

1− u

τ

)

π(y)D(y)∇T

yP (x, u|y, 0)

= 2

∫ ∞

0

du π(y)D(y)∇T

yP (x, u|y, 0)

= 2π(y)D(y)∇T

yH(x|y)

(S28)

where the third equality uses causality, and the fourth equality uses

⟨η(t′)δ(x− x(t))δ(y − x(t′))⟩ss

= lim
∆t→0

1

∆t
⟨w(t′)δ(x− x(t))δ(y − x(t′))⟩ss

= lim
∆t→0

1

∆t

∫

dw wP (x, t|y + v(y)∆t+w, t′ +∆t)pG(w|y)π(y)

= lim
∆t→0

1

∆t

∫

dw wpG(w|y)π(y)[(v(y)∆t+w)T∇T

y +∆t∂t′ ]P (x, t|y, t′)

= 2π(y)D(y)∇T

yP (x, t|y, t′)

(S29)

with the Wiener increment w(t′) =
∫ t′+∆t

t′
η(s)ds and its conditional Gaussian distribution

pG(w|x).
Using the identities Eqs. (S19) and (S21) together with the definition R(x, z) = Iδ(x −

z) + Ĵx∇zH(x|z), we obtain

Cρ(x),ȷ(y) = Cρ(x),Ĵyρ(y)
+Cρ(x),ζ(y)

= Ĵy

∫

2π(z)[∇zH(y|z)]D(z)[∇T

zH(x|z)]dz + 2π(y)D(y)∇T

yH(x|y)

=

∫

2π(z)R(y, z)D(z)[∇T

zH(x|z)]dz ,

(S30)
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and

Cȷ(x),ȷT(y) = CĴxρ(x),Ĵ T
y
ρ(y) + CĴxρ(x),ζT(y) + Cζ(x),Ĵ T

y
ρ(y) + Cζ(x),ζT(y)

=

∫

2π(z)[Ĵx∇zH(x|z)]D(z)[Ĵy∇zH(y|z)]Tdz

+ 2π(y)[Ĵx∇yH(x|y)]D(y) + 2π(x)D(x)[Ĵy∇xH(y|x)]T

+ 2π(x)D(x)δ(x− y)

=

∫

2π(z)R(x, z)D(z)RT(y, z)dz .

(S31)

Similar to the case of the empirical density, the response function of the empirical current

can also be expressed in terms of R. By inverting Eq. (S16) to write R in terms of the response

function, we obtain that the scaled covariances involving empirical current also satisfy the

same FRR structure. This completes the proof that any observable that can be written as

a linear combination of ρ(x, τ) and ȷ(x, τ) obeys the FRR, just as in the one-dimensional

case.

II. DERIVATION OF THE MULTIDIMENSIONAL FLUCTUATION-RESPONSE

INEQUALITY

In this section, we derive the multidimensional fluctuation-response inequality (FRI) that

generalizes Eq. (14) of the main text. Unlike the derivation in the main text, we present

here a derivation from first principles, without invoking the Cramér–Rao bound explicitly.

This provides a complementary perspective, while remaining mathematically equivalent to

the approach used in the main text.

The path probability of observing a stochastic trajectory Γτ generated by the Langevin

equation (S1) is given by P [Γτ ] = N p0(x(0))e
−A[Γτ ], where p0(x) is the initial probability

distribution, N is a normalization constant, and

A[Γτ ] =
1

4

∫ τ

0

dt [ẋ(t)− v(x(t))]TD−1[ẋ(t)− v(x(t))] (S32)

is the Onsager-Machlup action. Taking the functional derivative of lnP [Γτ ] with respect to

Fi(z, s) yields

δ lnP [Γτ ]

δFi(z, s)
=

〈
δA[Γτ ]

δFi(z, s)

〉

− δA[Γτ ]

δFi(z, s)
, (S33)
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where we used the identity δ lnN /δFi(x, s) = ⟨δA[Γτ ]/δFi(x, s)⟩. The functional derivative
of A[Γτ ] is given by

δA[Γτ ]

δFi(z, s)
= −1

2

∫ τ

0

dt [ẋ(t)− v(x(t))]TD−1(x(t))
δv(x(t))

δFi(z, s)

= − ẋi(s)− vi(x(s))

2Ti(x(s))
δ(z − x(s))

= −
∑

j

Bij(z)√
2Ti(z)

ξj(s)δ(z − x(s)) ,

(S34)

where the property DT(x) = D(x) = M(x)T(x) has been used in the first equality and

ẋ(t) − v(x(t)) is related to the noise ξ(t) via the Langevin equation (S1) in the second

equality. Since ⟨ξj(t)⟩ = 0, we obtain

Zi(z, s) ≡
δ lnP [Γτ ]

δFi(z, s)
= − δA[Γτ ]

δFi(z, s)
=

∑

j

Bij(z)√
2Ti(z)

ξj(s)δ(z − x(s)) . (S35)

The first moment of Zi(z, t) vanishes since ⟨ξj(t)⟩ = 0, while the second moment is given by

⟨Zi(z, s)Zj(z
′, s′)⟩ =

∑

k,l

Bik(z)Bjl(z
′)

2Ti(z)Tj(z′)
⟨ξk(s)ξl(s′)δ(z − x(s))δ(z′ − x(s′))⟩

=
∑

k,l

Bik(z)Bjl(z
′)

2Ti(z)Tj(z′)
p(z, s)δklδ(z − z′)δ(s− s′)

=
Dij(z)

2Ti(z)Tj(z)
p(z, s)δ(z − z′)δ(s− s′) ,

(S36)

where p(z, s) = ⟨δ(z − x(s))⟩ is the probability density at time s evolved from the initial

distribution p0(x).

To derive the FRI, we use the fact that the following inequality holds for an arbitrary

trajectory-dependent observable Θ(τ) = Θ[Γτ ] and a trajectory-independent vector G(z, s):

〈(

Θ(τ)− ⟨Θ(τ)⟩ −
∫ τ

0

ds

∫

dz ZT(z, s)G(z, s)

)2
〉

≥ 0 . (S37)

Noting that

〈
Θ(τ)ZT(z, s)G(z, s)

〉
=

∫

DΓτ P [Γτ ]Θ[Γτ ]

[
δ lnP [Γτ ]

δF (z, s)

]T

G(z, s)

=

[
δ

δF (z, s)

∫

DΓτ P [Γτ ]Θ[Γτ ]

]T

G(z, s)

=

[
δ⟨Θ(τ)⟩
δF (z, s)

]T

G(z, s) .

(S38)
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and 〈(∫ τ

0

ds

∫

dz ZT(z, s)G(z, s)

)2
〉

=

∫ τ

0

ds

∫

dz

N∑

i,j=1

Dij(z)

2Ti(z)Tj(z)
p(z, s)Gi(z, s)Gj(z, s)

=
1

2

∫ τ

0

ds

∫

dz p(z, s)GT(z, s)T−1(z)D(z)T−1(z)G(z, s) ,

(S39)

we have the bound on the variance of Θ(τ) as

Var(Θ(τ))

≥ 2

∫ τ

0

ds

∫

dz

[
δ⟨Θ(τ)⟩
δF (z, s)

− 1

4
p(z, s)T−1(z)D(z)T−1(z)G(z, s)

]T

G(z, s) .
(S40)

By choosing the vector G(z, s) as

G(z, s) =
2

p(z, s)
T(z)D−1(z)T(z)

δ⟨Θ(τ)⟩
δF (z, s)

, (S41)

we arrive at the multidimensional FRI:

Var(Θ(τ)) ≥ 2

∫ τ

0

ds

∫

dz
1

p(z, s)

[
δ⟨Θ(τ)⟩
δF (z, s)

]T

T(z)D−1(z)T(z)
δ⟨Θ(τ)⟩
δF (z, s)

. (S42)

To connect the response to force perturbations with those to other types of perturbations

that include a time-local aspect, i.e., ϕ(x) 7→ ϕ(x)+εδ(x−z)δ(t−s), we reiterate the same

linear-response analysis as in the previous section. One readily finds

δ⟨ρ(x, τ)⟩
δϕ(z, s)

=
1

τ

∫ τ

0

δp(x, t)

δϕ(z, s)
dt = Ñϕ(z, s)∇

T

z H̃s(x|z) , (S43)

and
δ⟨ȷ(x, τ)⟩
δϕ(z, s)

=
1

τ

∫ τ

0

δj(x, t)

δϕ(z, s)
dt = R̃s(x, z)Ñϕ(z, s) (S44)

where Nϕ(z), H(x|z), and R(x, z) of Eqs. (S12) and (S16) are replaced with Ñϕ(z, s) =

K̂ϕ
zp(z, s),

H̃s(x|z) =
1

τ

∫ τ

s

P (x, t|z, s)dt , (S45)

and R̃s(x, z) = τ−1h(τ − s)Iδ(x − z) + Ĵx∇zH̃s(x|z), respectively. The function h(t)

is the Heaviside step function. Therefore, the combination [Ñϕ(z, s)]
−1δ⟨Θ(τ)⟩/δϕ(z, s) is

independent of the choice of ϕ ∈ {M,F ,T} as in the time-independent case for a steady-

state initial condition. Since ÑF (z, s) = MT(z)p(z, s) = T−1(z)D(z)p(z, s),

[Ñϕ(z, s)]
−1 δ⟨Θ(τ)⟩
δϕ(z, s)

=
1

p(z, s)
D

−1(z)T(z)
δ⟨Θ(τ)⟩
δF (z, s)

. (S46)
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for ϕ ∈ {M,F ,T}. Plugging this identity into (S42), we have

Var(Θ(τ)) ≥ 2

∫ τ

0

ds

∫

dz p(z, s)

[
δ⟨Θ(τ)⟩
δϕ(z, s)

]T

[ÑT

ϕ(z, s)]
−1
D(z)[Ñϕ(z, s)]

−1 δ⟨Θ(τ)⟩
δϕ(z, s)

,

(S47)

which extends the applicability of the FRI in Eq. (14) of the main text to multidimensional

systems.

III. DERIVATION OF THE TUR FROM THE R-TUR

In this section, we show that the response thermodynamic uncertainty relation (R-TUR)

[Eq. (18) of the main text] can be used to directly derive the conventional thermodynamic

uncertainty relation (TUR).

We first derive the response uncertainty relation for multidimensional overdamped

Langevin systems. For an arbitrary field ψ(z, s) with the same dimension as ϕ(z, s)

and a matrix A(z, s), the following Cauchy-Schwarz inequality holds:

[∫ τ

0

ds

∫

dz ψT(z, s)
δ⟨Θ(τ)⟩
δϕ(z, s)

]2

≤
[∫ τ

0

ds

∫

dz ψT(z, s)A−1(z, s)ψ(z, s)

]

×
[
∫ τ

0

ds

∫

dz

[
δ⟨Θ(τ)⟩
δϕ(z, s)

]T

A(z, s)
δ⟨Θ(τ)⟩
δϕ(z, s)

]

,

(S48)

assuming that A(z, s) is symmetric positive definite. The left-hand side corresponds to

the response to the global perturbation ϕ(x, t) 7→ ϕ(x, t) + εψ(x, t), which we denote by

δϕ⟨Θ(τ)⟩. Choosing A(z, s) = 2p(z, s)[ÑT

ϕ(z, s)]
−1D(z)[Ñϕ(z, s)]

−1, so that the second term

on the right-hand side coincides with that of Eq. (S47), we obtain

[δϕ⟨Θ(τ)⟩]2
Var[Θ(τ)]

≤
∫ τ

0

ds

∫

dz
1

2p(z, s)
ψT(z, s)Ñϕ(z, s)D

−1(z)ÑT

ϕ(z, s)ψ(z, s)

≤ ψ2
max

2

∫ τ

0

ds

∫

dz
1

p(z, s)

∑

i,j

∣
∣
∣[Ñϕ(z, s)D

−1(z)ÑT

ϕ(z, s)]ij

∣
∣
∣ ,

(S49)

where ψmax ≡ supi,z,s |ψi(z, s)|. In particular, when M(z) = diag{µ1, · · · , µN}, the kinetic

perturbation µi(x, t) 7→ µi(x, t)[1 + εψi(x, t)] [1, 2] leads to the R-TUR,

[δlnµ⟨Θ(τ)⟩]2
Var[Θ(τ)]

≤ ψ2
max

2

∫ τ

0

ds

∫

dz
N∑

m=1

[jm(z, s)]
2

µm(z)Tm(z)p(z, s)
=
ψ2
max

2
Στ , (S50)

where Στ =
∫ τ

0
ds

∫
dz

∑N

m=1[jm(z, s)]
2/[µm(z)Tm(z)p(z, s)] is the total entropy produced

up to time τ [3].
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For current-like observables of the form J(τ) =
∫
gT(x)ȷ(x, τ)dx, choosing a uniform

kinetic perturbation ψi(x, t) = ψ ∀(i,x, t) recovers the conventional TUR. From Eq. (S44),

the response to the uniform perturbation is computed as

δlnµ⟨J(τ)⟩ = ψ

∫ τ

0

ds

∫

dz

N∑

m=1

δ

δ lnµm(z, s)

∫

dx gT(x)⟨ȷ(x, τ)⟩

= ψ

∫ τ

0

ds

∫

dx

∫

dz gT(x)R̃s(x, z)j(z, s)

=
ψ

τ

∫ τ

0

ds

∫

dz gT(z)j(z, s)

+
ψ

τ

∫ τ

0

ds

∫ τ

s

dt

∫

dz

∫

dx gT(x)[Ĵx∇zP (x, t|z, s)]j(z, s)

= ψ⟨J(τ)⟩+ ψ

τ

∫ τ

0

ds

∫

dx gT(x)Ĵx[p(x, τ)− p(x, s)]

= ψ⟨J(τ)⟩+ ψ

τ

∫ τ

0

ds

∫

dx gT(x)[j(x, τ)− j(x, s)]

= ψ(1 + τ∂τ )⟨J(τ)⟩ ,

(S51)

where the following chain of identities has been used in the fourth equality:

∫ τ

0

ds

∫ τ

s

dt

∫

dz jT(z, s)∇T

zP (x, t|z, s)

= −
∫ τ

0

ds

∫ τ

s

dt

∫

dz P (x, t|z, s)∇zj(z, s)

=

∫ τ

0

ds

∫ τ

s

dt

∫

dz P (x, t|z, s)∂sp(z, s)

= −
∫ τ

0

ds

∫ τ

s

dt

∫

dz p(z, s)∂sP (x, t|z, s)

=

∫ τ

0

ds

∫ τ

s

dt

∫

dz p(z, s)∂tP (x, t|z, s)

=

∫ τ

0

ds [p(x, τ)− p(x, s)] .

(S52)

Plugging δlnµ⟨J(τ)⟩ = ψ(1 + τ∂τ )⟨J(τ)⟩ and ψmax = ψ into Eq. (S50), we thus recover the

conventional TUR [4]
[(1 + τ∂τ )⟨J(τ)⟩]2

Var[J(τ)]
≤ Στ

2
. (S53)
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