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Fluctuations of self-flattening surfaces
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We study the scaling properties of self-flattening surfaces under global suppression on surface fluctuations.
Evolution of self-flattening surfaces is described by restricted solid-on-solid type monomer deposition-
evaporation model with reduced deposition~evaporation! at the globally highest~lowest! site. We find numeri-
cally that equilibrium surface fluctuations are anomalous with roughness exponenta.1/3 and dynamic expo-
nent zW.3/2 in one dimension~1D! and a50 (log) and zW.5/2 in 2D. Stationary roughness can be
understood analytically by relating our model to the static self-attracting random walk model and the disso-
ciative dimer-type deposition-evaporation model. In case of nonequilibrium growing-eroding surfaces, self-
flattening dynamics turns out to be irrelevant and the normal Kardar-Parisi-Zhang universality is recovered in
all dimensions.
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Structural properties for fluctuating surfaces under th
mal noise have been studied extensively@1#. Equilibrium
surfaces with proper surface tension are always rough in
dimension~1D! and display a roughening transition in tw
dimensions~2D! @2#. Higher dimensional surfaces are alwa
smooth. Surface roughness is well documented and class
as the Edwards-Wilkinson~EW! universality class@3#. The
EW class is generic and robust for equilibrium surfaces w
local surface tension. Only specific nonlinear contributio
in nonequilibrium growth processes may become relev
and drive the system into other universality classes, e.g.,
Kardar-Parisi-Zhang~KPZ! universality class@4#.

In this paper, we introduce a new global mechanism
suppress surface fluctuations, besides ordinary local sur
tension. We call it aself-flatteningmechanism to reduce
growing~eroding! probability at the globally highest~lowest!
point on the surface. This global-type suppression makes
surface less rough, which may bring forth new universa
classes for equilibrium and nonequilibirum surfaces. Inc
sion of suppression at all local extremal points leads to
interesting layer-by-layer growth processes and the ste
state surfaces are always smooth with finite fluctuat
width.

We describe surface configurations in terms of inte
height variables$h(rW)% at siterW on aD-dimensional hyper-
cubic lattice. They are subject to the restricted solid-on-so
~RSOS! constraint,h(rW1êi)2h(rW)50,61 with êi a primi-
tive lattice vector in thei th direction (i 51, . . . ,D). The
RSOS constraint effectively generates local surface ten
which prevents indefinite growth of surface fluctuations
finite systems.

Evolution rule for the ordinary RSOS-type monom
deposition-evaporation model is given as follows. First,
lect a siterW randomly. Next, deposit a particle,h(rW)→h(rW)
11, with probabilityp or evaporate a particle,h(rW)→h(rW)
21, with probabilityq512p. Any deposition-evaporation
attempt is rejected if it would result in violating the RSO
1063-651X/2002/66~4!/040602~4!/$20.00 66 0406
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constraint. Equilibrium surfaces atp5q belong to the EW
class, while nonequilibrium growing-eroding surfaces atp
Þq to the KPZ class@1,5#.

For self-flattening surfaces, we need a slight variation
the evolution rule to incorporate the global suppression: o
when deposition~evaporation! is attempted at the globally
highest~lowest! site, the attempt is accepted with probabili
u and rejected with probability 12u. At u51, the ordinary
RSOS model is recovered. Theu50 case is trivial, because
the surface is confined within initial surface width.

We perform numerical simulations, starting from a fl
surface of linear sizeL with periodic boundary conditions
We measure the surface fluctuation widthW as

W2~L,t !5
1

LD (
rW

K Fh~rW,t !2
1

LD (
rW

h~rW,t !G2L , ~1!

where ^•••& represents the ensemble average with eq
weights. Therefore, our simulations atp5q correspond to
the infinite temperature limit of equilibrium RSOS surface
The surface width satisfies the dynamic scaling relation

W~L,t !5La f ~ t/LzW!, ~2!

where the scaling functionf (x)→const forx@1 and f (x)
;xb (b5a/zW) for x!1 @1,6#.

First, we report the numerical results for equilibriu
surfaces (p5q). For 1D, we run simulations forL
525, . . . ,211 at u50.1, 0.3, 0.6, and 0.8, and average ov
at least 300 independent samples. In early time regimet
!LzW), the surface width grows with time,W;tb, and satu-
rates to a finite value which increases with size,Ws;La.

In Fig. 1, we show the plot of lnW versus lnt at u50.6
for various system sizes. The growth exponentb is estimated
by a simple straight line fitting of early time data for th
largest system sizeL5211. Our estimate isb50.22(1)
.2/9. We also analyze the data at other values ofu and find
that b does not vary withu.
©2002 The American Physical Society02-1
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In order to extract the stationary property, we avera
over data in the saturated regime (t@LzW) for given L to
estimateWs(L). For efficient estimation ofa, we introduce
effective exponents

ae f f~L !5 ln@Ws~mL!/Ws~L !#/ ln m, ~3!

wherem is an arbitrary constant~here, we setm52).
Effective exponents at various values ofu are plotted in

Fig. 2. Close tou51, our data show large corrections
scaling as expected, due to the presence of the EW fi
point (a51/2,b51/4) atu51. However, the asymptotic es

FIG. 1. Plots of lnW against lnt for 1D self-flattening equilib-
rium surfaces atu50.6. The slope of the straight line isb
50.22(1). Theinset shows the data collapse witha51/3 andzW

51.5.

FIG. 2. Effective exponentsae f f versus 1/L for 1D self-
flattening equilibrium surfaces. All data for various values ofu
converge to 1/3 rather nicely in theL→` limit.
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timates seem to be independent ofu. We estimate thata
50.33(1).1/3 for all u. We check the dynamic scaling re
lation directly by plottingW/La versust/LzW in the inset of
Fig. 1. Our data collapse very well witha51/3 and zW
53/2 for all u, which are consistent with the above result

This set of scaling exponents form a new universa
class, distinct from the EW and any previously know
growth-type universality class. It implies that the se
flattening dynamics is a relevant perturbation to the E
fixed point in 1D. Therefore, the continuum equation to d
scribe self-flattening surfaces must contain a global-ty
nonlinear term. Further study in this direction is left for fu
ture research.

In case of 2D EW surfaces, it is well known that th
surface width grows logarithmically with time and its sat
rated value also increases logarithmically with size@2#. Es-
pecially, the saturated widthWs scales for largeL as

Ws
2~L !.

1

2pKG
ln L, ~4!

whereKG is the effective coupling constant of the Gaussi
model where equilibrium surface models flow into by reno
malization group transformations@2,7#. The ordinary RSOS
model at the infinite temperature~our model atu50) is
known to takeKG5KG

0 .0.916@7,8#.
Assume the dynamic scaling relation similar to Eq.~2! as

W2~L,t !5
1

2pKG
ln@Lg~ t/LzW!#, ~5!

where the scaling functiong(x)→const forx@1 andg(x)
;x1/zW for x!1. Then, in early time regime (t!LzW), the
surface width grows as

W2~ t !.
1

2pKGzW
ln t. ~6!

The amplitude ratio in Eqs.~4! and~6! yields a value of the
dynamic exponentzW . The EW surfaces takezW52 in all
dimensions.

We run simulations onL3L lattices withL523, . . . ,27

at u50.1 and 0.5 and average over at least 300 indepen
samples. In Fig. 3~a!, we plot W2 against lnt at u50.5. It
shows a nice linear behavior in the early time regime. In F
3~b!, we plotWs

2 against lnL, which also shows a very nice
linear behavior. We measure its slope and find thatKG

.0.92(1) for allu, which is very close toKG
0 . In contrast to

the 1D surfaces, the global suppression does not seem
change the asymptotic behavior of the stationary surf
roughness. As can be seen in Fig. 3, it seems to shiftWs only
by a constant.

We measure the amplitude ratio by comparing the t
slopes in Figs. 3~a! and 3~b!. We estimatezW52.5(1).5/2
for all u, which is clearly distinct from the EW value of 2
We also check the dynamic scaling relation of Eq.~5! by
plotting W22Ws

2 versust/LzW in Fig. 3~a!. Our data collapse
reasonably well withzW55/2 for all u. Together with our 1D
2-2
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results, we conclude that the self-flattening surfaces displ
new type of scaling behavior and form a novel universa
class.

The partition function for equilibrium self-flattening su
faces can be written as

Z5 (
RSOS conf

e2b(hmax2hmin), ~7!

where the summation is over all height configurations sa
fying the RSOS condition,b is a temperaturelike paramete
and hmax (hmin) is the globally maximum~minimum! height
for a given configuration.

FIG. 3. ~a! Plots of W2 against lnt at u50.5 for 2D self-
flattening equilibrium surfaces. The slope of the straight line yie
the value ofKGzW52.3(1). Theinset shows the data collapse wi
KG50.92 andzW55/2. ~b! Plots ofWs

2 against lnL at u51 ~ordi-
nary RSOS!, u50.5, andu50.1. The slopes of three straight line
yield the same value ofKG50.92(1).KG

0 .
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Global suppression for self-flattening dynamics is simp
Metropolis-type evolution algorithm with this partition func
tion to reach the equilibrium. Deposition~erosion! at the glo-
bally highest ~lowest! site increases the energylike ter
hmax2hmin by one unit and these attempts are accepted w
Boltzmann-type probabilitye2b. Any other deposition~ero-
sion! attempts are always accepted, because they do no
crease the energylike term. Of course, all attempts resul
in violation of the RSOS constraint are rejected. By iden
fying u5e2b, our model for self-flattening surfaces is e
actly the same as the Metropolis evolution with the abo
partition function.

Stationary property of this system can be understood a
lytically. In 1D, this system is equivalent to the so-calle
static self-attracting (timid) random walks@9#. The surface
can be mapped to the time trajectory of a random walker
identifying the heighth(x) at sitex with the walker position
afterx steps. The system sizeL becomes the total number o
steps and the RSOS constraint limits one-step hopping
tance to 0 or61.

In 1D, the energylike term is simply the number of di
tinct sites visited by the random walker up toL steps. Ran-
dom walk configurations with less visited sites are preferr
Such a random walker tends to visit previously visited sit
so the walk is self-attractive. Its typical displacements
known rigorously to scale asL1/(D12) @9,10# under the as-
sumption that the visited sites form a compact cluster. In 1
the cluster is obviously compact, so the roughness expo
in our model should bea51/3 in 1D.

In 2D, the self-flattening surfaces are completely differe
from the self-attracting walks. The former deals with t
membrane fluctuations, while the latter with the polym
fluctuations. In order to understand the scaling behavior
the self-flattening surfaces, we investigate the intricate re
tion between our model and the dissociative dim
deposition-evaporation model in equilibrium@8,11#.

In the dimer model, we deposit or evaporate particles o
in a dimer form aligned along the surface. There is a glo
evennessconservation law that the number of particles
each height level must be conserved modulo 2@11#. This
leads to a Boltzmann-type factor in the partition function

Z5 (
RSOS conf

)
h

1

2
~11zvh!, ~8!

where the product is over all possible height levels andvh is
the number of particles at height levelh. The dimer model
corresponds to thez521 case where only configuration
obeying the evenness conservation law~all vh are even! sur-
vive in the partition function. Atz51, the model reduces to
the ordinary monomer model.

The self-flattening surfaces correspond to thez50 limit.
Each term inside the product picks up a factor of1

2 if vh
Þ0, otherwise a factor of unity. The number of height leve
with nonzerovh ~at least one particle! is hmax2hmin . There-
fore, thez50 case is equivalent to the self-flattening su
faces atb5 ln 2. In fact, theQ-mer generalization corre
sponds to theb5 ln Q case@11,12#.
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From the Gaussian-model-type renormalization group
gument, one can show that the 2D surface roughness i
ways logarithmic in the dimer model for21<z,1 @see Eq.
~4!# and its amplitude remains unchanged@8#. Our numerical
results for allu are consistent with this. The dimer chara
teristics show up only in the form of corrections to scalin
Recently, it is suggested that the corrections to scaling sh
scale as ln(lnL), which is confirmed for the dimer model a
z521 @8#. We find no evidence of this type of corrections
scaling in our model (z50) and the leading corrections a
constants. The origin of this discrepancy between thez50
andz521 case is not fully understood as yet.

Next, we consider the nonequilibrium growing-erodin
surfaces (pÞq). We run simulations forL525, . . . ,211

for 1D andL523, . . . ,27 for 2D at p51 with u50.5 and
u51 ~ordinary RSOS!. In Fig. 4, we plot lnWs against lnL
and, in the inset, lnW against lnt for the largest system siz
in 1D and 2D, respectively. We do not find any noticea
change ofW ascribed to the global suppression. We estim
thata.0.50(1) andb.0.32(1) for 1D anda.0.40(1) and
b.0.24(1) for 2D, which are consistent with the results
the ordinary RSOS model@5#. We conclude that the globa
suppression is irrelevant to the nonequilibrium growin
eroding surfaces.

In summary, we studied the scaling properties of the s
flattening surfaces in 1D and 2D. Equilibrium surfaces d
play dynamic scaling behavior distinct from the EW cla
and form a new universality class. We show that station
roughness can be understood through mapping our mod
self-attracting random walks in 1D and dissociative-dim
type deposition-evaporation model in 2D. In higher dime
sions, the surfaces are always smooth. In contrast, none
librium self-flattening surfaces belong to the ordinary KP
universality class. This implies that the self-flatteni
e
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dynamics is strong enough to dominate over the EW ty
local surface tension term, but weaker than the KPZ ty
nonlinear term. It would be very interesting to find
continuum-type equation to govern the self-flattening d
namics.
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FIG. 4. Plots of lnWs against lnL in 1D and 2D nonequilibrium
growing surfaces atp51. There is no noticeable difference inW
between theu51 ~ordinary RSOS! and u50.5 ~self-flattening!
case. In the inset, we plot early time behavior ofW for system sizes
L5211 ~1D! and L527 ~2D!. Straight line fits yielda50.50(1),
b50.32(1) for 1D anda50.40(1), b50.24(1) for 2D.
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