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We study the scaling properties of self-flattening surfaces under global suppression on surface fluctuations.
Evolution of self-flattening surfaces is described by restricted solid-on-solid type monomer deposition-
evaporation model with reduced depositi@vaporation at the globally highesflowes) site. We find numeri-
cally that equilibrium surface fluctuations are anomalous with roughness expeseli8 and dynamic expo-
nent zy,=3/2 in one dimension1D) and =0 (log) andz,=5/2 in 2D. Stationary roughness can be
understood analytically by relating our model to the static self-attracting random walk model and the disso-
ciative dimer-type deposition-evaporation model. In case of nonequilibrium growing-eroding surfaces, self-
flattening dynamics turns out to be irrelevant and the normal Kardar-Parisi-Zhang universality is recovered in
all dimensions.
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Structural properties for fluctuating surfaces under therconstraint. Equilibrium surfaces at=q belong to the EW
mal noise have been studied extensiviEly. Equilibrium  class, while nonequilibrium growing-eroding surfacespat
surfaces with proper surface tension are always rough in ong q to the KPZ clas$1,5].
dimension(1D) and display a roughening transition in two  For self-flattening surfaces, we need a slight variation of
dimensiong2D) [2]. Higher dimensional surfaces are always the evolution rule to incorporate the global suppression: only
smooth. Surface roughness is well documented and classifisdhen depositionlevaporatioh is attempted at the globally
as the Edwards-WilkinsofEW) universality clasg3]. The  highest(lowes} site, the attempt is accepted with probability
EW class is generic and robust for equilibrium surfaces with @nd rejected with probability +u. At u=1, the ordinary
local surface tension. Only specific nonlinear contributionsRSOS model is recovered. The=0 case is trivial, because
in nonequilibrium growth processes may become relevani€ surface is confined within initial surface width.
and drive the system into other universality classes, e.g., the e perform numerical simulations, starting from a flat
Kardar-Parisi-ZhangKPZ) universality clas$4]. surface of linear sizé with penodm bgundary conditions.

In this paper, we introduce a new global mechanism to/Veé measure the surface fluctuation withhas
suppress surface fluctuations, besides ordinary local surface 1
tension. We call it aself-flatteningmechanism to reduce WAL= -5 > <
growing(eroding probability at the globally highegtowes) L™=
point on the surface. This global-type suppression makes the
surface less rough, which may bring forth new universalitywhere (- - -) represents the ensemble average with equal
classes for equilibrium and nonequilibirum surfaces. Inclu-weights. Therefore, our simulations pt=q correspond to
sion of suppression at all local extremal points leads to lesthe infinite temperature limit of equilibrium RSOS surfaces.
interesting layer-by-layer growth processes and the steadjhe surface width satisfies the dynamic scaling relation
state surfaces are always smooth with finite fluctuation
width. W(L,t)=L*f(t/L*W), 2

We describe surface configurations in terms of integer

height variablesf{h(F)} at siter on aD-dimensional hyper- vka)l(%rt(eﬂtf:]ej;a)llr;(g)rf)ljicltlc[)T(é)—>const forx>1 andf(x)
cubic lattice. They are subject to the restricted solid-on-solid First we \p’eport the nljmérical results for equilibrium
(RSOS constrainth(r +&)—h(r)=0,+1 with & a primi-  g;rfaces p=q). For 1D, we run simulations forlL
tive lattice vector in theith direction =1,... D). The =25  Jlaty=0.1. 0.3. 0.6. and 0.8. and average over
RSOS constraint effectively generates local surface tensiog; Ie,ast éOO independent ’sam,ples. In éarly time regime (
which prevents indefinite growth of surface fluctuations for <L), the surface width grows with tim&y~t#, and satu-
finite systems. , rates to a finite value which increases with siné,~L®.

Evolution rule for the ordinary RSOS-type monomer |, Fig. 1, we show the plot of IW versus Irt at u=0.6
deposmon:evaporatlon model is given as foIIO\ivs. F|r§t, S€%or various system sizes. The growth expongris estimated
lect a siter randomly. Next, deposit a particle(r)—h(r) by a simple straight line fitting of early time data for the
+1, with probabilityp or evaporate a particldy(r)—h(r) largest system sizé. =2'%. Our estimate isB=0.22(1)
—1, with probabilityq=1-p. Any deposition-evaporation =2/9. We also analyze the data at other values ahd find
attempt is rejected if it would result in violating the RSOS that 8 does not vary withu.

R 1 . P
h(r,t)—FZ h(r,t)} > )
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timates seem to be independent wofWe estimate thaw

2.0 u=06 =0.33(1)=1/3 for all u. We check the dynamic scaling re-

o L-2048 lation directly by plottingW/L* versust/L*W in the inset of

415k | 4 L=1024 Fig. 1. Our data collapse very well with=1/3 andzy,
: tj;‘sé =3/2 for all u, which are consistent with the above results.
- This set of scaling exponents form a new universality
1.0+ class, distinct from the EW and any previously known

E B=0.22 growth-type universality class. It implies that the self-
0.5 -1.0 flattening dynamics is a relevant perturbation to the EW
c - —-15 fixed point in 1D. Therefore, the continuum equation to de-
- 20 scribe self-flattening surfaces must contain a global-type
0.0 ?, ' nonlinear term. Further study in this direction is left for fu-
S 25 ture research.
'3-?1’2 RS In case of 2D EW surfaces, it is well known that the
-0.5¢ In(#L"?) surface width grows logarithmically with time and its satu-
b SEE— ' rated value also increases logarithmically with di2¢ Es-
0 2 4 6 8 10 12 pecially, the saturated widt¥V scales for large as
In ¢
2
FIG. 1. Plots of InW against Irt for 1D self-flattening equilib- Ws(L)= 27Kg InL, )

rium surfaces atu=0.6. The slope of the straight line ig

=0.211). Theinset shows the data collapse with=1/3 andzy,  whereK is the effective coupling constant of the Gaussian

=15 model where equilibrium surface models flow into by renor-
malization group transformatiori®,7]. The ordinary RSOS

In order to extract the stationary property, we averageémodel at the infinite temperatur@ur model atu=0) is
over data in the saturated regime>(L*w) for givenL t0  known to takeK s =K2=0.916(7,8].

effective exponents

aetf(L)=IN[Wg(mL)/Wg(L)]/Inm, (3 W2(L,t)=

27TKGIn[Lg(t/LZW)], (5)

o e e WIS e scling furctiog() —const o1 andy(
P P ~xYw for x<1. Then, in early time regimet&L?w), the

Fig. 2. Close tou=1, our data show large corrections to :
scaling as expected, due to the presence of the EW ﬁxe%urface width grows as

point («=1/2,8=1/4) atu=1. However, the asymptotic es-

1
2ty —
Wa(t) = 27TKGZWInt. (6)
v u=08
0481 | & . o6 The amplitude ratio in Eq€4) and(6) yields a value of the
® u=03 dynamic exponenty,. The EW surfaces takey=2 in all
" u=01 i T dimensions.
0.44 1 1 We run simulations o x L lattices withL =23, ..., 2’
f atu=0.1 and 0.5 and average over at least 300 independent
i 1 samples. In Fig. @), we plot W? against It at u=0.5. It
5 0.401 4 + shows a nice linear behavior in the early time regime. In Fig.
S 1 3(bh), we pIotW§ against I, which also shows a very nice
v + linear behavior. We measure its slope and find tKaf
0.36 “'I E ¢ =0.92(1) for allu, which is very close t&2 . In contrast to
T % E the 1D surfaces, the global suppression does not seem to
% [ [] E change the asymptotic behavior of the stationary surface
0.32 # roughness. As can be seen in Fig. 3, it seems to 8hifbnly
. . L . L by a constant.
0.00 0.01 0.02 0.03 We measure the amplitude ratio by comparing the two

1/L slopes in Figs. @) and 3b). We estimatez,,=2.5(1)=5/2
for all u, which is clearly distinct from the EW value of 2.
FIG. 2. Effective exponentsy.;; versus 1L for 1D self- We also check the dynamic scaling relation of ES) by
flattening equilibrium surfaces. All data for various valueswof ~plotting W2—W? versust/L? in Fig. 3@). Our data collapse
converge to 1/3 rather nicely in tHe—oo limit. reasonably well witle,,=5/2 for all u. Together with our 1D
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Global suppression for self-flattening dynamics is simply

L=128 Metropolis-type evolution algorithm with this partition func-

L =64 tion to reach the equilibrium. Depositigarosion at the glo-

2? t=?§ bally highest (lowes) site increases the energylike term

1.0 Lyroz - Nmax—hmin DY 0Ne unit apd these attempts are a_gcepted with

< -03 Boltzmann-type probabilitge #. Any other depositioriero-

04 sion) attempts are always accepted, because they do not in-

“_ 0.8t 05" crease the energylike term. Of course, all attempts resulting

=" T o 4 in violation of the RSOS constraint are rejected. By identi-

- fying u=e~#, our model for self-flattening surfaces is ex-

actly the same as the Metropolis evolution with the above
partition function.

Stationary property of this system can be understood ana-
lytically. In 1D, this system is equivalent to the so-called
static self-attracting (timid) random walK®]. The surface

O VO R R can be mapped to the time trajectory of a random walker by
0 2 4 6 8 10 identifying the heighh(x) at sitex with the walker position
In t afterx steps. The system sizebecomes the total number of
steps and the RSOS constraint limits one-step hopping dis-
tance to O or=1.

In 1D, the energylike term is simply the number of dis-
tinct sites visited by the random walker up ltosteps. Ran-
dom walk configurations with less visited sites are preferred.
Such a random walker tends to visit previously visited sites,
so the walk is self-attractive. Its typical displacements are
known rigorously to scale as¥(®*2) [9,10] under the as-
sumption that the visited sites form a compact cluster. In 1D,
the cluster is obviously compact, so the roughness exponent
in our model should bex=1/3 in 1D.

In 2D, the self-flattening surfaces are completely different
from the self-attracting walks. The former deals with the
membrane fluctuations, while the latter with the polymer
S A 05 fluctuations. In order to understand the scaling behavior of
0.4 v v u=01 the self-flattening surfaces, we investigate the intricate rela-
tion between our model and the dissociative dimer
: : ' - deposition-evaporation model in equilibriurd,11].

2 3 4 S In the dimer model, we deposit or evaporate particles only
In L in a dimer form aligned along the surface. There is a global
evennesgonservation law that the number of particles at

FIG. 3. (@ Plots of W? against It at u=0.5 for 2D self- each height level must be conserved modul§12]. This
flattening equilibrium surfaces. The slope of the straight line yieldsleads to a Boltzmann-type factor in the partition function as
the value oK gz,=2.3(1). Theinset shows the data collapse with
Ks=0.92 andzy,=5/2. (b) Plots of W2 against IrL atu=1 (ordi- 1
nary RSO$ u=0.5, andu=0.1. The slopes of three straight lines 7= 2 H =(1+2z%), (8)
yield the same value dfg=0.92(1)y=K2. RSOS conf h

(a) u=0.5
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results, we conclude that the self-flattening surfaces display @nere the product is over all possible height levels apis
new type of scaling behavior and form a novel universalityhe number of particles at height leviel The dimer model

class. N , o _ corresponds to theg=—1 case where only configurations
The partition function for equilibrium self-flattening sur- obeying the evenness conservation k@l v, are evejsur-
faces can be written as vive in the partition function. Az=1, the model reduces to
the ordinary monomer model.
7= E e Bhmax i) 7) The self-flattening surfaces correspond to #€0 limit.
RSOS conf Each term inside the product picks up a factorsoff vy,

#0, otherwise a factor of unity. The number of height levels
where the summation is over all height configurations satiswith nonzerov, (at least one particlas hya,—hmin. There-
fying the RSOS condition3 is a temperaturelike parameter, fore, thez=0 case is equivalent to the self-flattening sur-
and hpax (hmin) 1S the globally maximum(minimum) height  faces atB=In2. In fact, the Q-mer generalization corre-
for a given configuration. sponds to thgg=In Q case[11,12.
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From the Gaussian-model-type renormalization group ar- 25F

gument, one can show that the 2D surface roughness is al- : “15(13)

ways logarithmic in the dimer model for 1<z<1 [see Eq. 20t | o Z; N Ezo;

(4)] and its amplitude remains unchand@&ll Our numerical L | & x-050D)

results for allu are consistent with this. The dimer charac- 1.5¢ a=0.50

teristics show up only in the form of corrections to scaling. I

Recently, it is suggested that the corrections to scaling should 1.0+

scale as In(I.), which is confirmed for the dimer model at g’”
z=—1[8]. We find no evidence of this type of corrections to c 05t
scaling in our model£=0) and the leading corrections are - A
constants. The origin of this discrepancy betweenzhd® 0.0
andz= —1 case is not fully understood as yet. I
Next, we consider the nonequilibrium growing-eroding -0.5
surfaces p+q). We run simulations forL=2%, ... 2! Rl 0 1 2 3 4 5
for 1D andL=23, ...,2 for 2D atp=1 with u=0.5 and Qo
u=1 (ordinary RSO% In Fig. 4, we plot IlW, against IrL_ ) 2 3 4 5 6 7
and, in the inset, [NV against Irt for the largest system size
in 1D and 2D, respectively. We do not find any noticeable In L
change ofW ascribed to the global suppression. We estimate g 4. plots of Inw, against IrL in 1D and 2D nonequilibrium
thata=0.50(1) and3=0.32(1) for 1D andv=0.40(1) and  growing surfaces ap=1. There is no noticeable difference W
B=0.24(1) for 2D, which are consistent with the results forbetween theu=1 (ordinary RSO$ and u=0.5 (self-flattening
the ordinary RSOS mod¢b]. We conclude that the global case. In the inset, we plot early time behaviokéfor system sizes

suppression is irrelevant to the nonequilibrium growing-L=2'" (1D) andL=2" (2D). Straight line fits yieldo=0.50(1),
eroding surfaces. B=0.32(1) for 1D andx=0.4Q(1), 8=0.24(1) for 2D.

In summary, we ;tudied the scaling _p.roperties of the S‘.alf'dynamics is strong enough to dominate over the EW type
flattening surfaces in 1D and 2D. Equilibrium surfaces disyqcq1 gyrface tension term, but weaker than the KPZ type
play dynamic scaling behavior distinct from the EW class,gniinear term. It would be very interesting to find a

and form a new universality class. We show_ that Stationa%ontinuum-type equation to govern the self-flattening dy-
roughness can be understood through mapping our model {§3mics.
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