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We investigate the scaling properties of the interface fluctuation width forQimeer and Q-particle-
correlated deposition-evaporation models. These models are constrained with a global conservation law that
the particle number at each height is conserved moQulm equilibrium, the stationary roughness is anoma-
lous but universal with the roughness exponenrt1/3, while the early time evolution shows nonuniversal
behavior with the growth exponert varying with models andQ. Nonequilibrium surfaces display diverse
growing and stationary behaviors. TRemer model shows a faceted structure, while @zparticle-correlated
model shows a macroscopically grooved structure.
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[. INTRODUCTION [5,6]. They also argued that the anomalous valuerefl/3
is universal in generalize®-mer-type equilibrium models
Since the dynamical scaling theory for kinetic surface(Q=2).
roughening[1] was suggested, numerous surface growth The Q-mer aspect requires that the number of particles at
models have been studig?l]. The interface fluctuation width each surface height level must be conserved moQuldhe
W developed during time, starting from the flat surface, dissociative nature translates it into a nonlocal global con-

follows the scaling ansatz straint. So 1D surfaces @-mer models correspond to time
trajectories of a random walker with a global constraint that
the walker should visit each sitdeight leve] Q multiple
W(L,t)zL“f( ) (1) times before it terminates. The dispersion@#isiting ran-
L 2w dom walkers(QVRW) is much more suppressed than the

normal ones and behaves asymptoticallyAag(t) ~t* for
Q=2 [6-8]. This leads to the conjecture that the roughness
whereL is linear size of the substrate. The scaling functionexponent isy= 1/3 for genera-mer-type equilibrium mod-
f(x)—const forx>1 and f(x)~x” (B=alzy) for x<1  els except for the monomer limi(=1/2 for Q=1).
[1,2] One-dimenSiondlD) models with conventional local However, the QVRW ensemble is not equiva]ent to the
growth dynamics display, with a few very specific exceptionsensemble generated by ti@mer dynamics. In fact, there
[2], the universal roughness exponent 1/2, as exemplified  exist infinitely many constants of motions in tkemer dy-
in the Kadar-Parisi-ZhangKPZ) universality clas§3] and  namics. For example, th@-mer dynamics conserves a local-
the Edwards-WilkinsofEW) class[4]. type quantity. Upon depositiofor evaporatioh of a Q-mer,
A 1D surface can be mapped on the time trajectory of ahe surface heights & consecutive columns change by one
particle in 1D by identifying the height(x) at each column  ynjt simultaneously. It leads to conservation lof 27/Q
x with the particle positionn(t) at time t=x. The step component of the Fourier transformed surface height, de-

heights are bounded and uncorrelated beyond a finite di?ined asﬁ(k)zz'-_lexr[—ikx]h(x). Surface configurations
tance in the substrate direction. This implies that the particle . h diff IX_ F(k= 2/ d ically di
performs a random walk without long-range diffusion angW!th different values o (k=27/Q) are dynamically dis-

long-range temporal correlations, which is the characteristiconnected by th€-mer dynamics. The phase space for the
of normal random walks. Therefore the interface width@YRW ensemble is divided into dynamically disconnected
scales with exponent=1/2, corresponding to the disper- Sectors, labeled by(k=27/Q). However, there is much
sion of normal random walksAn(t) ~tY2. more complex structure inside each sector. Each sector de-
Recently, Noh, Park, and den N[j§] introduced a disso- COmposes into infinitely many disconnected subsectors,
ciative dimer deposition-evaporation model with restrictedWhich can be characterized by a nonlocal construct, i.e., so
solid-on-solid (RSOS constraint. The surface grows and called irreducible string9]. Therefore, theQ-mer dynamics
erodes by the deposition and evaporation of dimers alignet$ strongly nonergodic and the scaling property may be sec-
with the surface. These dimers dissociate on the surface sudff dependent. In fact, the sector-dependent scaling behavior
that evaporating dimers do not necessarily consist of originalor similar dimer dynamics has been reported previously
partners. They found that the equilibrium surface is anomal10,11. _ _
lously rough with «=0.29(4) and conjectured the exact Starting from a flat surface of siZe as multiples ofQ,
value of «=1/3 by exploring a close relationship betweenone can explore only a subsectmull string with h(k
the dimer model and the even-visiting random walk model=27/Q)=0. Numerical results for dimer dynamid$]
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show strong finite-size corrections and the extrapolation tsurfaces turn out to be always faceted due to spontaneous
infinite-size limit overshoots significantly the expected valueformation of pinning valleys or pinning hill tog$]. In finite

of «=1/3[5], even though statistical errors are too large tosystems, the surface displays a repeated jerky motion in time,
conclude whether this overshooting is real. i.e., alternating series of locking in a facet shape and unlock-

This may be due to strong nonergodic behavior of thend (or evolving into another facet shape. Time scale of this

Q-mer dynamics. In Ref6], Noh et al. allow diffusion of a  jerky motion is dominated by the duration of a facet shape,
single particle on a terrace, which restores broken ergodicity/hich diverges exponentially with the system size. The glo-
partially. Jumps across steps are forbidden. A certain comb nal fac_et structure in the steady stfate assures that the inter-
nation of depositior(or evaporatiopand diffusion may be [ace widthWscales as the system sizg¢a=1). Along with

equivalent to a process of deposititor evaporatiop of Q the exponenual time scale, one can predllct hatint fo_r
particles not necessarily @ consecutive columns but ran- early time regime. These results are confirmed numerically.

~ In case of theQ-particle-correlated models, nonequilib-
domly placed on a terrace. It clearly does not conséxle  jm surfaces are not sharply faceted but display a global

=2m/Q) and opens some dynamic connection links betweelyrooved structure with considerable local fluctuations. This
sectors. Numerical results f@=2 still show strong finite- ~ syrface is similar to those found in the conserved RSOS
size corrections but the overshooting is weakened and theRSOS model[12]. The roughness exponent is found to be
estimated asymptotic value of=0.31(3) is a little bit «=1.00(5) for allQ=2. Early time growth behavior is gov-

closer to the conjectured value of 1/g]. erned by a power law with nonuniversal expongntarying
In this paper, we introduce a model that fully restores thewith Q and the magnitude of deposition-evaporation bias.
ergodicity. We allow depositiorfor evaporatioj of Q par- Outline of this paper is as follows. In Sec. Il, we introduce

ticles at randomly chose® columns with equal surface the Q-particle-correlated models as well as Qemer mod-
heights. These columns do not necessarily share the samaés. In Secs. lll and IV, we present numerical results for the
terrace. These processes still conserve the globaQuoa-  scaling properties of the equilibrium and nonequilibrium sur-
servation at each height level and open all possible dynamitaces, respectively. Similarities and differences between two
connections between sectors. We call this model agiodels are discussed. We conclude with a brief summary
Q-particle-correlated deposition-evaporation model. The enand discussion in Sec. V.

semble generated by this type of dynamics should be equiva-
lent to the QVRW ensemble. As we shall see later, we find

. . . . . I. MODELS
that the finite-size corrections f@ =2 are still considerable
but the overshooting is fairly reduced. Our estimatedas Consider the 1D surface configurations described by inte-
now «=0.333), which is fully consistent with the QVRW ger height variables h(x)=0,+1,£2,... with X
conjecture. =1,... L. They are subject to the RSOS constramm(tx)
We also investigated the scaling properties @mer —h(x+1)=0,£1, and periodic boundary conditionk(x

models andQ-particle correlated models fap=3 and 4. +L)=h(x).
Interestingly, the asymptotic scaling seems to set in much The growth rule for theQ-particle-correlated deposition-
earlier thanQ=2 models and the estimated valuesaofire  evaporation model is as follows. First, seleg@t columns
very close to 1/3 in both models. These results may suggesk; ,X,, . .. Xq} randomly. These columns do not have to be
that the phase space structures @+2 andQ=3 bear an adjacent. If the heightgh(x;)} of the selected columns are
intrinsic difference as in the monolayer version of @ener  all equal, i.e.h(x;)=---=h(Xg), then simultaneous depo-
models[9]. sition of Q particles,h(x;)—h(x;)+1 fori=1,...Q, is
Time-dependent behavior in an early time regime is muchattempted with probabilityp, or simultaneous evaporation,
more complex and sector dependent. Various interesting dyr(x;)—h(x;)—1 for i=1,...,Q, with probability q=1
namic properties have been reported by Grynberg in the-p. Any attempt is rejected if it would result in violating the
body-centered solid-on-solidgBCSOS version of Q-mer  RSOS constraint. If any selected column height differs from
models[11]. In this paper, we focus only on a subsediwill  the other selected one, no dynamics occurs and we select a
string containing a flat surface. Our numerical results shownew set ofQ columns randomly. Aftet. such selection pro-
that the scaling exponerng in Eq. (1) varies slightly but cesses, Monte Carlo tintes incremented by one unit.
definitely with Q in both Q-mer andQ-particle correlated The equal height conditionfi(x;)=---=h(xg), con-
models. Our estimated values gffor the Q-mer models are strains a set of selected columns and generates correlated
consistent with those for the BCSOS version, but differentgrowth. Without this condition, any set of randomly selected
from those for theQ-particle-correlated models. It may re- columns can evolve and the ordinary monomer-type RSOS
flect nonergodic nature of tH@-mer dynamics. In contrast to model is recovered. One can consider a more restrictive con-
the universal scaling property in the steady stateiversal  straint on selected columns. An interesting and limiting case
a), the dynamic properties characterized Byvary with  is to require the immediate adjacency of selected columns.
models andQ. This is the dissociativ®-mer deposition-evaporation model.
Excursion off equilibrium immediately changes the sur-In this Q-mer model, we attempt to sele€@ consecutive
face structure drasticallyp]. Without balance between depo- columns only. The other evolution rules are equivalent to the
sition and evaporation, the surface grows or erodes indefiQ-particle-correlated model. The generalization of both mod-
nitely with time. In theQ-mer models, these nonequilibrium els to higher dimensions should be straightforward and will
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be discussed elsewhefg3]. In this paper, we focus on 1D A - Tamer
cases only.
§041 * 5 04 s s
IIl. EQUILIBRIUM SURFACES sl et st B e
~71 o3 0.3
With balance between deposition and evaporation pro-
cessesfi=q), the detailed balance condition is satisfied. In 00 o002 004 008 0% 00z 0% 00
the stationary state, the Gibbs-type equilibrium surface isaﬁ
obtained. In this section, we investigate the scaling property %41
of the equilibrium surfaces for th@-mer andQ-particle-
correlated models and also their dynamic property approach + s
ing to equilibrium. We measure the interface fluctuation } _______________
width W as 03+
1 L 1 L 2 Dimer
WA(L,t)=— 2 h(x,t)— — 2 h(x,t) ) 0.00 0.02 0.04 0.06
L& L <=1 1/L

wherelL is the substrate size. We start with a flat surface of FIG. 1. Effective stationary roughness exponeats; versus
sizeL as a multiple ofQ, otherwise the surface is forcefully /L for the Q-mer deposition-evaporation modelspat 1/2 (equi-

pinned to the initial position. librium surfaces The horizontal broken lines represent;;= 1/3.
=0.323), 0.332), and 0.324) for Q=2, 3, and 4, respec-
A. Stationary state roughness tively. These results are fully consistent with the QVRW con-

For finite-size scaling analysis, we run Monte Carlo simu-/€Cture.
lations for system siz& =2" (n=4, ...,10) for Q=2 and
4, andL=2X3" (n=2,...,6) for Q=3. The interface
width is measured and averaged over at least 100 indepen- In this section, we investigate the early time behavior of
dent Monte Carlo runs for each system size. It grows in théhe interface width. We measure the interface width for sys-
early time regime and saturates to a finite value, which detem sizel = 10* for Q=2 and 4, and.=2x3° for Q=3 up
pends on sizé. We again average over data in the saturatedo t=10"~5x 10° and average over at least 100 independent
regime ¢>L“W) to estimate the stationary value of the samples. In the early time regime<L?w), it grows alge-
width, W(L,t=0). braically asw~t#, see Eq(1). To estimate the value ¢8,

As explained in Eq(1), W(L,t=x) scales as.“ in the  we introduce effective exponenik s as functions of,
largeL limit. For efficient data analysis, we introduce effec-
tive exponentsy.¢s as functions oL, Bugi()= In W(t) —In W(t/10) @

eff Int—In(t/10)
InW(2L,t=00)—InW(L,t=0) @

agfi(L)= In(2L)—InL : 3-particle 4-particle

B. Time-dependent behavior

The value ofa can be retrieved by taking the— o limit for o4 o

aeti(L). 05 8 %
Effective exponents for thed-mer model are plotted ﬁ_i —————— 1/3 %{»i ——————— 1/3

against 1/ in Fig. 1. For the dimer case, one can see usual 03 03

(1/L)-type finite-size corrections for small, but strong

crossover corrections nehr=28. The extrapolation ofrey . T 1L

to the infinite-size limit seems to overshoot significantly the &’

expected value ofr=1/3. However, the statistical errors are 041 % i é

too large to conclude that our numerical results exclude the
possibility of a=1/3. In fact, it is quite difficult to reduce
statistical errors considerably with moderate computing us-
age, becausé/is very small even for largke (lessthan4for @ ———————————————
L=219. We estimatex=0.29(4) for the dimer model. For
Q=3 and 4, we do not find strong crossover corrections and
our numerical data converge to=1/3 very nicely. We esti- : : :
mate «=0.32(4) for the trimer model and=0.33(3) for 0.00 002 o004 0.08
the 4-mer model. 1L

Data for theQ-particle-correlated models are shown in  F|G. 2. Effective stationary roughness exponeats; versus
Fig. 2. ForQ=2, we find again strong crossover corrections,1/L for the Q-particle-correlated deposition-evaporation models at
but the overshooting is fairly reduced. We estimate p=1/2. The horizontal broken lines represent=1/3.

2-particle
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sus timet for the Q-mer models ap=1/2. The
horizontal lines areB¢:=0.108, 0.100, and
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The value ofB can be retrieved from the long time limit for In contrast, our numerical results strongly support nonuniver-
Bets Within t<L?w, where finite-size effects are negligible. sal dynamic scaling depending @h As yet, we do not have
Effective exponents for theQ-mer model and the any reasonable explanation for this type of nonstandard scal-
Q-particle-correlated model are plotted agaihsh Figs. 3  ing behavior.
and 4, respectively. After initial transieni8es; become sta- It is not quite surprising that th®-mer andQ-particle-
bilized around an asymptotic value. We estimgtby aver-  correlated models display different dynamic scaling behav-
aging Be¢s in the stabilized regime. As seen in Fig. 3, the iors. TheQ-mer dynamics are not ergodic, in contrast to the
estimated values fog are 0.1081) for the dimer, 0.10Q1)  Q-particle-correlated dynamics. The nonergodicity slows
for the trimer, and 0.098) for the 4-mer model. Surpris- down the dynamics and the growth exponent should be
ingly, the value of8 decreases slightly but definitely wip. ~ smaller, which is consistent with our numerical finding.
Our finding is consistent with the result for the BCSOS-type It is interesting to see that initial transients for Qemer
Q-mer model[11]. and theQ-particle-correlated models are completely upside
The small variance oB cannot be ascribed to the noner- down. We can give a reasonable explanation for this. In case
godicity of the Q-mer dynamics. TheQ-particle correlated of the Q-mer equilibrium model, it is clear that the early time
models with the full ergodicity show even strong variance ofbehavior resembles the Edward-Wilkinson tyfmeonomer
B on Q. From Fig. 4, we estimat@=0.1941), 0.1402), mode), because the system does not feel Qrener aspect
0.0972) for Q=2, 3, and 4. Our results suggest tigaton- initially before pinning valleygor hilltops) start to form. So,
tinuously varies and approaches zero in the lapgémit. Bets should decrease fronBgy=0.25 to converge to the
The steady-state scaling is quite universal and does n@symptotic value. Th@-mer aspect should appear earlier for
depend onQ(=2). This universality has been well estab- larger Q with the same substrate size. We expect that the

lished through a mapping to tt@-visiting random walk$6]. initial transients survive for a shorter period for larg@r
which can be seen in Fig. 3.

In case of theQ-particle-correlated model, it is very dif-

0.20 4 2-particle ficult to grow the surface at the beginning. &S particles
0.16 ] deposit on randomly place@ sites, it is difficult to form
016 o1 aggregated islands on which one can deposit more particles
0.16 - 014 it 012 to grow the surface. So in the very early time regime, the
ora 0124 010 W surface would grow in a layer-by-layer fashion. S8g; will
s 010/ 0.08 start from zero and increase to the asymptotic value. Here,
2 o1z |Z ool < o.0s the initial transients last longer for larg€r values. The re-
0.06] 0.08 jection rate for theQ particle depositiorfor evaporationpon
A I oo the randomly selected sites increases exponentially @ith
0.08 a0z 3PATtICle oo PETCle In fact, the initial transient behavior is so huge @r4 that
t Too0000 0 t we use a rather small substrate size 10° in Fig. 4.
n0e (I) ' 20(I)00 ' 40(;00 ' 60(;00 ' 80(I)00 ' 100I000
¢ IV. NONEQUILIBRIUM SURFACES
FIG. 4. Effective growing exponeni8; versus timet for the Without balance between deposition and evaporatjon (

Q-particle-correlated models at=1/2. The horizontal lines are #0), the surface may growp(>1/2) or erode p<1/2) in-
Bers=0.194, 0.140, and 0.097 f@=2, 3, and 4, respectively. We definitely with time, if one starts with a flat surface of size

take a rather small substrate size=10° for Q=4, due to huge as a multiple ofQ. Due to the time reversal symmetry, the
initial transient behavior. growing surface at deposition probabilityshould be iden-
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Dimer
4-mer ;:1'1 1 E .
= s & 3
0.9 1.0 -—éL————___-
1.4 § -
3 07 ' . 08 :

3 0.00 0.02 0.04 0.06 000 001 002 003 004

Trimer 1L . 1/L
1.2 4
(1, 2.5, 5, 25, 35, 50, 100) x 104

P=01 1.o._}_§__§_ ______________

Dimer ‘
FIG. 6. Effective stationary roughness exponeats; versus
1/L for the Q-mer models ap=0.6. The horizontal broken lines
representugsi=1.
Trimer only in pairs, and only if their valley bottoms are at the same

height. Therefore, the only way to remove pinning valleys
(25, 5, 25, 50, 150, 250, 500) x 107 and grow the _sur_face is the evaporation of the entire hill
X between two pinning valleys.

288 In finite systems, the surface moves like shock waves. The
FIG. 5. Time evolutions of surfaces for dimer growth model atinitially flat surface evolves into a faceted shape with only
p=0.6 andp=0.1 in a typical simulation sample. The numbers in two remaining pinning valleys. The vaIIeyS are Sharp and the

the bottom of figures denote Monte Carlo times when each surfachilltops are rounded with a typical sizg. Approaching the

configuration is taken. Typical surface configuration with maximumequilibrium point, &, diverges and the facets disappear. The
interface width are drawn in the right f@=2, 3, and 4. annihilation time of this last pair scales exponentially with
system size. After its annihilation, the surface grows into

tical to the inverted eroding surface at-p. In the monomer  another faceted shape very fast and the whole evolution re-

version Q=1), it is well known that the unbalancep( peats itself. Details of this motion have been reported in Ref.
#(0) becomes a relevant perturbation to the EW fixed poinfg

and drives the system into the KPZ universality class. In this "g, generalQ-mer models, there exisQ—1 different

section, we investigate the scaling property of the nonequig;qs of pinning valleys witt empty blocked sites at the

librium growing (or eroding surfaces folQ=2. valle _ _ o
L y bottom 6=1,2,...Q—1). Two pinning valleys
The nonequilibrium surfaces for tig-mer model and the with n andm empty blocked sites merge into a pinning val-
Q-particle-correlated model show completely distinct characs . . . .
e : . 4 ley with n+m empty blocked sites. Whamt+m is a multiple
teristics in both dynamic evolution and stationary morphol- £ 0. th I be filled d th f
ogy. The former always facet, while the latter form global0 Q. the valley can be filled up an € surface can grow.

grooved structures. For clarity, we discuss these two model'éven though the_: surface_ evolution de_tal_ls are d|ffer_ent for
separately in this section. eachQ, the basic evolution characteristics are equivalent,

i.e., a repeated jerky motion of locking into a facet shape and
sudden evolving into another facet shape. The time scale of
this jerky motion is dominated by an exponentially long du-
The nonequilibrium surfaces of ti@mer model display ration of a facet shape. If one starts with a flat surface of size
sharply faceted structures. Figure 5 shows the time evolutioh that is not a multiple ofQ, at least one pinning valley
of surfaces for the dimer model pt=0.6 and 0.1 in a typical always survives and the surface is pinned to the initial posi-
simulation sample. In the growing surfaces, the faceting igion.
caused by the spontaneous formation of pinning valleys. For The interface widthw of the faceted surface in Fig. 5
the dimer model, any flat segment with odd size acts as thehould be proportional to the substrate diz& herefore, the
nucleus of a pinning valley. Such valleys cannot be filled upstationary roughness exponent is trivially=1. Effective
by deposition of dimers, one empty blocked site always reexponentsxq¢s for the Q-mer model are plotted against.1/
mains at the valley bottom. Pinning valleys can annihilatein Fig. 6. As expectedy.¢; converge to 1 for alQ. For small

P=0.6 Dimer

T T T
0.00 0.01 0.02 0.03
1/L

.

(=]

A. Q-mer model
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N

‘ 4-particle|

—Dimer
JE— - Trimer

............... 4-mer

FIG. 7. Interface widthV against logqt for the Q-mer models at (2, 5,10, 50, 100, 200, 500) x 104
p=0.6 int<L?®. Assuming thatW~ (log,qt)X, we plot effective
exponentsyq¢; Versust in the inset.y. s converge rather slowly but
nicely to 1.

sizes, finite-size effects are present due to finite duration time
of the facet shape.
The early time growing behavior also can be predicted
from annealing dynamics of pinning valleys. Starting from a < /m\\,,/

flat surface, the surface grows fast at the beginning and man:

2 F - o 50000 100000 m 3-particle
|4
20 25 30 35 40 45 50 5.5 M
pinning valleys appear. The presence of pinning valleys

log,, t
slows down the growth and the surface may grow only when

two pinning valleys merge together by annealing out the hill

between them. As seen in Fig. 5, only a small region on the \'V\\.\,_/N\ 3-particle
hilltops can be active by depositiofor evaporatioh pro- S —— T
cesses. Near the valley, the ramps are inactive due to th
RSOS constraint. So, the annealing time of the hill should
scale exponentially with the lateral size of the hill. After this
time scale, the surface advances fast locally up to the order FIG. 8. Time evolutions of surfaces for the two-particle-
of the hill height. In the faceted structure, the hill height correlated model ap=0.6 andp=0.1 in a typical simulation
should be proportional to the hill size. From this point of sample. Typical surface configuration with maximum interface
view, one can conclude that the local surface fluctuatiorwidth are drawn in the right foQ=2, 3, and 4.

should grow logarithmically with time. As any other time . . .
scale is present, we expect that~Int in the early time valley bottoms are rather localized and their ramps are quite
regime[5,11] ' steep without much activity. However, they are not ex-

tremely localized or sharp as in the faceted structure of the
Q-mer model. The valley bottoms do not last long exponen-
tially with system size, but only algebraically. Therefore,
there is no well-defined repeated motion of the growing sur-
face. A few macroscopic valleys merge and split stochasti-
cally in the steady-state regime.

In Fig. 9, we plota,¢s against 1L for Q=2, 3, and 4. We
estimate thatv=1.00(5) for allQ. In contrast to the Q-mer

Surface morphology for th@-particle-correlated model is model, the early time growth behavior for tl@particle-
very surprising. Figure 8 shows the time evolution of sur-correlated model is governed by a power law with the expo-
faces forQ=2 at p=0.6 and 0.1 in a typical simulation nent B varying with Q and p. We plot B.; againstt at p
sample. In contrast to th@-mer model, the surfaces are not =0.6 in Fig. 10. Our estimates at=0.6 are3=0.46(q 1),
faceted but show a global grooved structure with considerd.3251), and 0.2142) for Q=2, 3, and 4. The value o8
able local fluctuations. increases with increasing (or deposition(or evaporatioh

Starting from a flat surface, small scale hills and valleysbiag. The power-law-type growth is consistent with our
start to form and merge into a few macroscopic hills andgroove formation picture. The ramps near the valley are still
valleys. These macroscopic hiller valleys contain consid- active, so the annealing time of the hill between two valleys
erable roughness in microscopic scale. Especially the hilltopdoes not scale exponentially but algebraically.
of the growing surface are broad and rough with high activ- A similar grooved structure could be found in the so-
ity of deposition(or evaporatioh processes. In contrast, the called CRSOS mod¢tL2] and other models with the rough-

P=0.1

(5, 10, 25, 50,100, 250, 300) x 10°
X 255

In Fig. 7, we plotW against Irt. For all Q, it shows a nice
linear behavior. For clarity, we assume th&t- (Int)¥ and
plot effective exponenty.ss, defined similarly in Eq(4),
versust in the inset. They converge rather slowly but nicely
to 1. We estimate thgg=1.1(1).

B. Q-particle-correlated model
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15 with a Q-visiting global constraint.
1.4 | 3-particle 4-particle When deposition and evaporation are balanced, one can
12 1 3 obtain Gibbs-type equilibrium surfaces in the stationary
141 12 . s state. Then, the dispersion of ti@visiting random walks
8’51.0 | E— aw_ﬁ_i___{ ______ (QVRW) can translate into the stationary roughness of equi-
' librium surfaces. However, th®-mer dynamics is not er-
131 os godic and cannot generate all possible QVRW configura-
06 ' s . . . tions. This nonergodicity may generate huge corrections to
;} 's 0.00 0-02”L 004 006 o000 001 1 /0L02 0.03 scaling and hinder the numerical analysis for the stationary

roughness. Especially for the dimer model, we found a sig-

nificant overshooting of the roughness exponentn the

1 finite-size-scaling analysis. In this paper, we introduce the
Q-particle-correlated model that fully restores the ergodicity.

{ E Our numerical study showed that the overshooting is fairly

10 __L__ _____________ reduced and our estimate far is fully consistent with the
QVRW result.

E We also studied the time-dependent behavior in the early

time regime. Interestingly, the growth expone@t varies

with models and) (see Table)l, in contrast to the robustness

of a. Therefore, these models correspond to a series of new

FIG. 9. Effective stationary roughness exponeats; versus  universality classes.

1/L for the Q-particle-correlated models at=0.6. The horizontal When the evolution dynamics is biased, the surface can

broken lines represent.¢;=1. grow or erode indefinitely with time. As the detailed balance

is violated, the steady-state surface configurations do not

ness exponent=1 [2]. It may be quite interesting to inves- form a Gibbs-type ensemble. We numerically investigated
tigate similarities and differences among these models with€ scaling properties of these nonequilibrium surfaces. The
grooved structures. For example, the grooved structure in thg-mer models display shock-wavelike evolutions and finally
CRSOS model displays a sharp peak and a rounded valleﬁﬁ?rm a macroscopic facet, while th@-particle-correlated
which is just the reverse of that in our model. Moreover, theModels follow an ordinary power-law-type growth and form
physical origin for the occurrence of macroscopic grooves i Macroscopic grooved structure. As in the equilibrium

not well explored. More detailed investigation is left for a €@Ses, the steady-state roughness does not depe@d it
future study. the growth exponent for th&-particle-correlated models

varies withQ and the depositiofor evaporation bigs These
values are listed in Table I.

Finally, it may be interesting to notice that the exponent
We investigated the scaling properties of the interfacevalues for the equilibriun@Q-models are very close to those
fluctuation width for theQ-mer and Q-particle-correlated for the conserved KPZ universality class with conservative

deposition-evaporation models. Both models are constrainedoise (@=1/3, 8=1/11) [14-16. And the morphology of
with a global conservation law that the particle number isthe nonequilibriumQ-particle-correlated models resembles
conserved modul® at each height level. A 1D surface of that of the CRSOS model described by the conserved KPZ
these models can be mapped on a random walk trajectomquation with nonconservative noigE2,17. Right now, we

P=0.6 2particle

0.9 T T
0.00 0.01 0.02 0.03

1/L

V. SUMMARY AND DISCUSSION

0.52
0.38 0.32
0.51 4 0.36 0.304
0.34 0.284
0.50 0.32 0.26
. £
< < i i
0.49 0.30+ 0.24+ FIG. .10. Effective growing exponentBqss
s o8 022 versus time for the Q-particle-correlated models
L) ' . 'v‘“‘v"‘v4 r‘-ntr_-l at p=0.6. The horizontal lines arB.s;=0.460,
0.48 4 _rparticle] 5 : ——partee 0.325, and 0.214 fo =2, 3, and 4, respectively.
2x10” 4x10" 0 2%x10° 4X10° 6X10
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0.47
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TABLE |. Roughness exponent and growth exponeng for the Q-mer and Q-particle-correlated
(Q-PC) models. For nonequilibriur®-PC models 8 also varies withp.

Model a B
Q=2 Q=3 Q=4 Q=2 Q=3 Q=4
Equilibrium Q-mer 0.294) 0.324) 0.333) 0.1081) 0.10Q1) 0.0983)

(p=q) Q-PC 0.323) 0.332) 0.324) 0.1941) 0.14Q2) 0.0972)
Nonequilibrium Q-mer 1.005) (faced 0 [Int]
(p=0.6) Q-PC 1.0@5) (groove 0.46Q1) 0.3251) 0.2142)

have no physically relevant explanations for these coincisurprising and call for a reasonable intuitive explanation.
dences. However, we are currently examining the possibilityGeneralization to higher dimensions is under current inves-
of putting theQ-mer andQ-particle-correlated dynamics into tigation.
a cast of continuum-type Langevin equations.

In summary, we found a series of universality classes_ in ACKNOWLEDGMENTS
deposition-evaporation models with a global conservation
law. Even though the stationary roughness in equilibrium can We thank Jae Dong Noh for useful discussions. This re-
be explained in terms of QVRW models, the growth diversitysearch was supported in part by Grant No. R01-2001-000-
is not fully understood. The scaling properties for growing00025-0(Y.K.) and by Grant No. 2000-2-11200-00213.P)
(or eroding surfaces for th&-particle-correlated models are from the Basic Research Program of KOSEF.
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