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Stability of vacuum in coupled directed percolation processes
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We study the absorbing phase transitions in coupled directed percol@M)nprocesses witiN-species
particles in one dimension. The interspecies coupling is linear, bidirectional, and excitatory. We find that the
presence of a spontaneous annihilation proéess0 is essential in stabilizing the absorbing phasscuun).

In the coupled contact processes, the vacuum is stable and the system exhibits DP type transitions, regardless
of the coupling strength, for al. However, in the coupled branching annihilation random walks with one
offspring (BAW), where particle annihilations occur only through binary diffusion processe&— 0, the

vacuum becomes unstable with respect to an arbitrarily small branching rate in a sufficiently strong coupling
regime forN=3. TheN=2 BAW exhibits the DP type transition for any coupling strength, but the inclusion

of interspecies hard co¢iC) interaction makes the vacuum unstable again and the system is always active in

a strong coupling regime. Critical behavior near the zero branching point is characterized by the mean-field
scaling exponents3=v, =1/2 andy =1, regardless of the presence of HC interaction. We also discuss the
effects of the asymmetric coupling.
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INTRODUCTION framework of bosonic field theory, where no other critical
phenomena were found than the DP. Taudteal. [10] stud-
Nonequilibrium systems with absorbingrapped states jed linearly and unidirectionally coupled DP processes,
have been extensively studied in recent years because @here a series of new multicritical phenomena was observed.
their wide applicability to various phenomena in natural sci-Coupled PC(DI) processes have been also studjéd],
ence as well as in social and economical scigiicg]. The  where the absorbing phase become unstable with respect to
absorbing transition between an active phase into an absorbn arbitrarily small branching rate even in one dimension.
ing phase can be regarded as one of the simplest and natuibre interestingly, the critical behavior near the annihilation
extensions of the well-established equilibrium phase transifixed point depends on details of particle dynamics, such as
tion to nonequilibrium systems. the presence of an interspecies hard o@i€) interaction
Critical behaviors near an absorbing transition are categoand the branching methdd2,13. o
rized into a few universality classes characterized by the Stochastic models for linearly and bidirectionally coupled
symmetry between absorbing states and/or the conservatidi® Processes have been also studied through two-species
in dynamics[3-5). The most prominent universality class is Pranching annihilating random walks with one offspring
the directed percolatio(DP) class[6], which involves typi- (BAW1) in one dimensiorj14,15. It was found that the HC

cally a single absorbing state without any conservation ifjnteraction is crucial in a strong coupling regime, where the

dynamics. Most of absorbing-type nonequilibrium models2PS0rbing phasgzacuum becomes unstable and the system
s always active except at the annihilation fixed point of zero

belong to the DP class. Only a small number of models forrrL ) s ‘ L ,
: : : ranching rate. Critical behavior near the annihilation fixed
different classes, such as the directed IgiDy class involv- point was conjectured via an analytic argument and con-

ing two equivalent classes of absorbing st484,7] and the firmed by numerical simulationgl4]
parity-conservingPC) class with mo{?) conservation of the In this paper we studied tHe-species BAW models and

qutal pqrticlg ”.‘émb?ff?]- Thzse WYO cla”s_seshcoé)nlcide in or&e also theN-species contact processgsP) with and without
imension by identifying a domain wall in the DI-type mod- interspecies HC interaction. The single-species BA&d

Els ﬁs a partifcle ir&t?e PC—t?/pe mode_ls. Inl?ighs'r dimﬁnsionscp both belong to the DP universality class, but perturbative
oth types of models are always actvid absorbing phase o, majization groupRG) calculations and numerial simu-

except at a t.r'v"'.il p0|n(z_inn|hllat|on fixed p_OIrjt and their lations suggest that the dimensional threshold for the vacuum
critical behavior is described by the mean field theory. Nonestability is different for these two model8,11]. For the
of the models studied so far with higher symmetries than thFBAwl the vacuum becomes unstable tb1>’dh—.2 while
. o ] th™ <>
Ising symmetry(for example, Pqtts symmet)rystabﬂmes an din=c° for the CP. The essential difference is the absence of
ab;orbln% phase _evten :cn oneldtljmenflon. h b . tspontaneous annihilation process> @ in the BAW,, where
ecently, a variety ol coupled Systems nave been inves If)article annihilations occur only in pairs through binary dif-
gated _e_xtenswely. Janssg stu_d|ed coupled DP processes f,qjqn processeA+A— @. The A— @ process may be ef-
with bilinear and bidirectional interspecies couplings in thefectively generated by combinations of branching and hop-
ping processes. However, the generated processes are too
weak to stabilize the vacuum far>2 [16].
*Also at School of Computational Sciences, KIAS, Seoul 130— In the coupled systems, one can expect a similar scenario,
722, Korea. Present address: Institut fur Festkorperforschungvhere the stability of the vacuum also depends crucially on
Forschungszentrum Jilich, D-52425 Jilich, Germany. the presence of the spontaneous annihilation process. Fur-
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thermore, adN increases, the vacuum becomes more unstable
in the N-BAW, because the annihilation process of only the
same species of particles is allowed. A sufficiently strong
interspecies coupling may wash away completely the absorb-
ing phase for large enough even in one dimension, even
without any HC interaction. In this paper, we address this
vacuum stability question in the strong coupling regime and
measure the threshold valuedfwith and without HC inter-
action.

The outline of this paper is as follows. In Sec. Il the
N-species CP models are introduced. We find that, forny
the vacuum is stable for a low branching rate and the DP-
type phase transition is observed regardless of the presence
of HC interaction. In Sec. Il we study th¥-species BAW
models by numerical simulations. We find that fo& 3, the
vacuum becomes unstable with respect to an arbitrarily small
branching rate in a sufficiently strong coupling regime. The
critical behavior near the zero branching point is explored in
terms of the scaling exponents. In a weak coupling regime,
the conventional DP transition into a stable vacuum is ob-
served. The interspecies HC interaction only shifts the DP
critical points and the threshold value of the interspecies cou-
pling for the complete disappearance of a stable vacuum. The
N=2 case is special. Without HC interaction, one can always
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find the DP transition into a stable vacuum even at the full

FIG. 1. Theo-p phase diagram for thE-CP, (@) N=2 and(b)

coupling strength, such as in thespecies CP models. How- =3, Filled and open circles correspond to critical points with and
ever, the inclusion of the HC interaction makes the vacuunyithout HC interactions, respectively. Lines between data points are
unstable again in a strong coupling regime. We also discusguides to the eyes only.

the effect of the directional asymmetry in the bidirectional
we conclude ination and dynamic process of the single-species CP by sim-

couplings on the phase diagram. Finally,
Sec. IV.

Il. COUPLED CONTACT PROCESSES

The N-species coupled contact procgBsCP) is defined
by the following evolution rules(1l) Each particle annihi-
lates spontaneously with probability or (2) creates a par-
ticle of the same species with probabiliti(1—p) or a par-
ticle of the different species with probability’(1-p)/(N
-1) in its neighborhoodbranching proce$sas

A — @ with p,
Ai—>Ai+Ai with O'(l_p),

AI—>AI+A] with O"(l_p)/(N_l), (l)

where ¢'=1-0, i#], andi=1,... N. Any branching at-

ply ignoring the particle species.

Without HC interaction, a multiple occupation by differ-
ent species particles is allowed. One can easily expect that
the active phase expands until the multiple occupation is
maximized. FoN=2, there exists a simple duality between
two specieS o+« ¢’) and the maximum point is located at
o=0'=1/2, seeFig. 1(a). For N= 3, the maximum point is
expected to be ak=1/N, where the branching symmetry is
perfect and the maximum mixing is expected, see Fg).1
From this reasoning, we expect that complete disappearance
of the vacuum does not occur at any coupling streragtbr
any finite N. Of course, all absorbing critical phenomena
should belong to the DP class.

Ill. COUPLED BAW

The N-species coupled branching annihilating random
walks with one offspringN-BAW,), is defined by the fol-

tempt is rejected if it would result in a multiple occupation lowing evolution rulesi(1) Each particle hops to a nearest-
by the same species particles at a site. With interspecies H@eighboring site with probabilitp or (2) creates a particle of
interaction, a multiple occupation by different species parthe same species with probabiliéy1-p) or a particle of the
ticles is also forbidden. Each species is symmetricallydifferent species with probabilityy’(1-p)/(N-1) in its
coupled with other species by the interspecies couplingreighborhoodbranching processas

strengtho’. For ¢’ =0, all species are completely decoupled.

It is trivial to show that theN-CP models with HC inter-
action become identical to the single-species CP model. Each
site can be occupied by only one particle, regardless of its
species. Any configuration and any dynamic process in the
N-CP can be exactly mapped on its corresponding configu-
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1.0 |o gime (¢’ <c'"), we observe the conventional DP transition
i \ (a) into the vacuum.
08 It is not surprising to see that the active phase expands as
9 o’ increases, because a collision chance of the same species
06 L \\ particles decreases. However, the effect of HC interaction is
o | e b rather tricky. For smallb’, the system tends to form large
04 L \\ domains of the same species particles. The HC interaction
| induces an effective diffusion bias directed to the domain
02 L center, which accelerates the pair annihilation process.
o - Therefore the system _beceme_s less active with HC interac-
oo b \O ‘e tion. For largeo’, the situation is reversed. The system pre-
ol T S T S S { fers locally heterogeneous configurations and the HC inter-
02 04 06 0.8 10 action reduces a chance of binary collision of the same
1.0 Fo species particles. Thus, in this case, the system becomes
| (b) more active with HC interaction. This explains why two
08 b critical lines with and without HC interaction should cross
| LN each other as in Fig. 2.
06 k \\ C_onsider theo=0 line, V\_/here a particle cannot create a
o | o particle of the same spemes._As a result,_ a single _part_lcle
04 b \o cannot be annihilated by a single branching and _dlﬁusmn
) \\. processA— A+A— @. It needs at least three branching pro-
0\ ~~e cesses such #&s— AB— ABA— ABABor ABBA One of the
02 - O four particle state$ABAB) can turn into vacuum via succes-
[ sive pair annihilations only if diffusion across a different
00F, v o9 species particle is allowetho HC interactiop Hence, the
02 04 0.6 038 1.0 vacuum can be stable in a low branchigtggh diffusion
regime without HC interaction. However, in the presence of
4 HC interaction, the orderedB pairs (ABAB cannot be an-

h hase di h _ q nihilated by diffusions. Therefore, a single particle has a non-
FIG. 2. Theo-p phase diagram of thd-BAW, () N=2 and 514 hrohability to survive asymptotically and the vacuum is
(b) N=3. Filled and open circles correspond to critical points with 2116 with respect to an arbitrarily small branching rate.
an_d without .HC interactions, respectively. Lines between data The critical behavior near the annihilation fixed point in
points are guides to the eyes only. the strong coupling regime is characterized by a set of the

o ) ) ) mean-field scaling exponents
whereg’ =1 -0 andi # j. If two identical particles happen to

be on the same site, both particles immediately annihilate B=1/2, v, =1/2, y=1 (3)
each otherA;+A,— @). With interspecies HC interaction,

any hopping or branching attempt is rejected if it would re-where the exponentg, v,, and v, characterize the scaling
sult in a multiple occupation of particles, regardless of theihehavior of the steady-state particle dengitythe correla-
species. The above model has a permutational symmetry bgon length¢, and the relaxation time, respectively.

tween species. Later, we will also study an asymmetrically The exponent ratios3/», =1 andz= ylv, =2, originate
coupled system which breaks the permutational symmetry. from the ordinary diffusion nature at the annihilation fixed
point in one dimensioifil2]. There is only one independent
exponents, of which the value can be extracted by a simple
argument14]. Consider a particlé created by a particlB.

The two-species BAWmodel has been investigated pre- This branching process increases the particle density with the
viously for generalo [14]. In this paper we present the nu- time scaler,~ (1-p)~*. Near the annihilation fixed point of
merically improved phase diagram in Fig@R and briefly  the zero branching rate, the offspriagnvould be annihilated
summarize the results dfl4] for comparison to those for by colliding with an independem via diffusion. The time
N=3 and also for self-containedness. Without HC interac-scale for this process is governed by ordinary diffusiap:
tion, the system always exhibits the DP-type absorbing tran~ ¢? where the mean distance between parti€lésorder of
sition for all o, including the case of the maximum coupling the inverse of the particle densipy’. Balancing these two
strength(¢’=1 or ¢=0). However, with HC interaction, time scales, we can expect the steady-state particle density to
there exists a strong coupling regine’ >¢'") where the scale aps~ (1-p)? with B=1/2.
vacuum becomes unstable with respect to an arbitrarily small This argument is quite general, so it should apply to many
branching rate(p=17) and completely disappears in the other models exhibiting a critical behavior near the annihila-
phase diagram except at the annihilation fixed pomt1). tion fixed point(zero branching point Moreover, the HC
The threshold value for the strong coupling regime is nu-nteraction does not matter in this argument. So, one can
merically estimated as’" =0.95. In the weak coupling re- expect that théN-species BAW should belong to the same

A.N=2
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class(B=1/2) for any N=2, regardless of the presence of 22 @ i " " >
HC interaction, which will be confirmed numerially in next 18 5 8 4
subsection. Moreover, thd-species BAW also belongs to 16128 2 .AO
the same class when the HC interaction is present and the 4 14} a
branching method istatic Two offspring are divided by 5_1 2l oo°
their parent@B® — ABA It is clear that our argument ap- & g
plies to this model, due to the HC interaction. When the o ! 3
branching method islynamicor there is no HC interaction, ) f
N-BAW, belongs to different universality classg<?]. 06 1 615!
04 [ 1
ol o moa™® (@ |
B.N=3 -2 -1 0 1 2 3 4
First, consider theN=3 case without HC interaction. To 2 N
map out the phase diagram, we perform the defect-type dy- 18 ¢
namic Monte Carlo simulations, starting with a single par- 1.6 o
ticle. We measure the survival probabiliB(t), the number S 14t . 4
of particlesN(t), the mean distance of spreadifft). At E_‘_:m 121 o0
criticality, these quantities scale algebraically in the long < 1 o
time limit asP(t) ~t™%, N(t) ~t7 and R(t) ~ tZ [17]. S os s
By inspecting the curvature of effective exponents defined = sl @d'
as 041 [ ] = ]
o8 (b)
= &(t) = In[P(t)/P(t/m)]/In m, (4) 02 . _ . . N
-1 0 1 2 3 4
with arbitrary m, and similarly for»(t) and 1/%(t), we esti- IogwAL”vJ-
mate the values of the critical hopping probabilityand the
dynamic exponents, », andz for various values ofr. The FIG. 3. Data collapse opL”"L againstALY": with B/v, =1

o-p phase diagram is shown in Fig(t®. For smallo, the  andv, =1/2 for system size.=2°, ..., 2 for N=3 (a) without HC
absorbing phasezacuum completely disappears. This result interaction ato=0 (b) with HC interaction air=0.2.

e e ABAB A~ 13 posi, I s Cas®A r B8
fore going into detailed digcussion on this vacuum instébilit will quickly go away at a very high diffusion rate, so one
Withogut I—?C interaction, we present numerical results Thymay consider onhAB pairs, Whl-Ch cannot be anninilated by

’ prese e _ - N%hemselves. The last two reaction events can be regarded as a
threshold valu*e of the vacuum instability is estimated as.qision and annihilation event of twAB pairs and the pre-

* ~ 1"~ . . . .
o*=0.125(0" =0.873. For 0> 0%, we observe that the \joys reaction events as a creation event éfBapair out of
system undergoes an absorbing transition into vacuum. Ag parentAB pair. This process is exactly equivalent to the
expected, we find the DP critical exponents along both pathgi=1 BAW; model by identifying anAB pair as a particle.
of constantp and constant- lines. _ Therefore theN=2 case without HC interaction can have a

To identify the scaling behavior near the annihilation stgple vacuum like in th&N=1 model. TheN=3 case is
fixed point(p=1) for o<o*, we analyze the finite-size ef- (jfferent. Three different pairéAB, BC, CA) are possible.
fects on the steady-state particle dengifyUsing the finite-  Any pair can branch any other pair, e.gAB—ACBA
size scaling theory ops [18] — CB— CBBA— CA. So, theN=3 case cannot reduce to the

p(A,L) = LAV E (ALY (5) N=1 model, in contrast to thel=2 case. It seems that this
multispecies character is the crucial element for vacuum in-
with A=p.—p and system siz&, the value ofv, is deter-  stability in BAW-type binary diffusion-annihilation models.
mined by collapsing the data @f with /v, =1. We mea- Interspecies HC interaction should destabilize the vacuum
surep in the steady state, averaged ovex 50°~5x 10*  more easily. We expect that the threshold of vacuum insta-
samples for several values af(5x104~0.05 andL (2° bility should be lowered with HC interaction. In Fig(t3,
~29). the phase diagram fod=3 with HC interaction is presented.

We estimatev, =0.504) at =0. Figure 3a) shows very We estimateo* =0.25. To es_timatezL for o<o*, we also
good data collapse ops with v, =0.50. These numerical try the data collapse gfs. In Fig. 3b), we present the data at
results confirm our previous argument for the universalityc=0.2 with the exponent values of, =0.50 andg/v, =1.

class near the annihilation fixed point. Our estimation iy, =0.502). Again, we find that our simple
To understand the vacuum instability for smallfor N argument also applies to this case. . .
=3 without HC interaction, we again consider &0 line, We also perform defect-type Monte Carlo simulations for

where a particle can create a particle of different specie$heN=4 case. We estimaie* =0.22(2) without HC interac-
only. As explained before, there needs to be a sequence tibn and o*=0.3282) with HC interaction. The exponent
branching processes for a single particle annihilation. Fowalue is estimated as, =0.522) at 0=0.15 without HC
N=2 without HC interaction, the process Af-~AB—ABA interaction andv, =0.522) at 0=0.3 with HC interaction.
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FIG. 5. Data collapse opL?"L againstALY": with g/v, =1
andv, =1/2 forg=0.1. The steady state densjyis measured for
various system sizk (2°~2°% andA (5Xx 104~3x1079).

02t

0.4 - . ‘ . We perform the defect-type dynamic simulations for sev-
2 " " ' ' eral q values(101~1.0) to locatep.. In Fig. 4 we present

181 ] simulation results fog=0.1 atp=0.999. Effective exponents

&(t), m(t) and 1/(t) show upward curvatures, which imply
that the system is still active even pt0.999. It suggests
that the criticality is located gv=1.00q1) and the vacuum
is completely unstable. For other nonzeywalues, we also
find the similar results to those fg=0.1. We conclude that,
. , . . for anyg# 0, the system is always active and only critical at
0 0.0002  0.0004 0.0006 0.0008  0.001 p.=1.0. As discussed in the previous subsection, this result
i again confirms that the multispecies character is relefranit

the symmetry to vacuum instability. We also check the
C-dominant regime fog>1/2 and find a similar result.

To identify the critical behavior, we estimate the exponent
v, by collapsing the particle density data wighv, =1. Fig-
_ _ ure 5 shows the scaling plot far=0.1 with v, =0.5. We

C. Asymmetric coupling estimater, =0.505) for q=0.1. For other nonzerq values,

We study the effect of broken permutational symmetry onwe also estimater, =0.5. Although we do not consider the
the phase diagram. For convenience, we consideNth8  incomplete coupling caséo#0), we expect a nonzero
case ato=0 (¢’'=1) without HC interaction only. The threshold value ofo*, below which the system is always
branching process in E@2) is modified as active.

1/z(t)

0.6

FIG. 4. Plots of the effective exponents against &t p
=0.999 forg=0.1. Upward curvature of each exponent indicates
that the system is still in the active phasepat0.999.

A—A+B,B—B+A with (1-qg)(1-p),
IV. CONCLUSION

A—A+C,B—-B+C with q(1-p), In this paper we study the stability of vacuum in
N-coupled DP systems. The interspecies coupling is linear,

C—-C+AC—C+B with (1-p)/2, (6)  bidirectional, and excitatory. In the coupled contact pro-
cesses, the vacuum is always stable at a sufficiently low

where O<q=<1. branching rate for alN, regardless of the coupling strength

At g=0, the specie€ is completely suppressed and the o', and the system undergoes a DP type absorbing transition
model becomes identical to th¢=2 symmetric one atr  into the vacuum. On the other hand, in the coupled BAW
=0. At q=1/2, all three species are equivalent and tde with one offspring, the vacuum stability is quite fragile for
=3 symmetric model is recovered. Our results on the symN=2 in a strong coupling regime. The absence of a sponta-
metricN-BAW, models in previous subsections indicate thatneous annihilation procegs— @ is crucial for vacuum in-
the vacuum is stable in high diffusion regime g0, but  stability.
becomes unstable completely @t-1/2. Forg<1/2. the We find that the vacuum is unstable with respect to an
speciesC is suppressed in comparison to the other two spearbitrarily small branching rate in a sufficiently strong cou-
cies A and B. Therefore, the density of the third speci@s pling regime(c’ > ¢'") for N=3. The multispecies character
should be proportional tq. Here, we try to locate the thresh- is the key element responsible for this vacuum instability and
old value ofq for the complete vacuum instability. the asymmetry in the interspecies coupling is shown to be
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irrelevant. TheN=2 case is special. The vacuum is always Critical behavior near the annihilation fixed point in a
stable as in the coupled contact processes, but the HC intestrong coupling regime can be conjectured by a simple argu-
action is relevant to vacuum instability in a strong couplingment of balancing two time scales of branching and annihi-

regime. We show that th&l=2 BAW,; model without HC

interaction can reduce to thid=1 model even at the full

coupling strength, which explains the specialtyNat 2.

lating random walks. Numerical investigations confirm our

conjecture of3=1/2,v, =1/2, andy=1, which also applies
to N-BAW,, with static branching and HC interacti¢th?2].
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