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We study the absorbing phase transitions in coupled directed percolation(DP) processes withN-species
particles in one dimension. The interspecies coupling is linear, bidirectional, and excitatory. We find that the
presence of a spontaneous annihilation processA→0 is essential in stabilizing the absorbing phase(vacuum).
In the coupled contact processes, the vacuum is stable and the system exhibits DP type transitions, regardless
of the coupling strength, for allN. However, in the coupled branching annihilation random walks with one
offspring (BAW), where particle annihilations occur only through binary diffusion processesA+A→0, the
vacuum becomes unstable with respect to an arbitrarily small branching rate in a sufficiently strong coupling
regime forNù3. TheN=2 BAW exhibits the DP type transition for any coupling strength, but the inclusion
of interspecies hard core(HC) interaction makes the vacuum unstable again and the system is always active in
a strong coupling regime. Critical behavior near the zero branching point is characterized by the mean-field
scaling exponents,b=n'=1/2 andni=1, regardless of the presence of HC interaction. We also discuss the
effects of the asymmetric coupling.
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INTRODUCTION

Nonequilibrium systems with absorbing(trapped) states
have been extensively studied in recent years because of
their wide applicability to various phenomena in natural sci-
ence as well as in social and economical science[1,2]. The
absorbing transition between an active phase into an absorb-
ing phase can be regarded as one of the simplest and natural
extensions of the well-established equilibrium phase transi-
tion to nonequilibrium systems.

Critical behaviors near an absorbing transition are catego-
rized into a few universality classes characterized by the
symmetry between absorbing states and/or the conservation
in dynamics[3–5]. The most prominent universality class is
the directed percolation(DP) class[6], which involves typi-
cally a single absorbing state without any conservation in
dynamics. Most of absorbing-type nonequilibrium models
belong to the DP class. Only a small number of models form
different classes, such as the directed Ising(DI) class involv-
ing two equivalent classes of absorbing states[3,4,7] and the
parity-conserving(PC) class with mod(2) conservation of the
total particle number[8]. These two classes coincide in one
dimension by identifying a domain wall in the DI-type mod-
els as a particle in the PC-type models. In higher dimensions,
both types of models are always active(no absorbing phase)
except at a trivial point(annihilation fixed point) and their
critical behavior is described by the mean field theory. None
of the models studied so far with higher symmetries than the
Ising symmetry(for example, Potts symmetry) stabilizes an
absorbing phase even in one dimension.

Recently, a variety of coupled systems have been investi-
gated extensively. Janssen[9] studied coupled DP processes
with bilinear and bidirectional interspecies couplings in the

framework of bosonic field theory, where no other critical
phenomena were found than the DP. Täuberet al. [10] stud-
ied linearly and unidirectionally coupled DP processes,
where a series of new multicritical phenomena was observed.
Coupled PC(DI) processes have been also studied[11],
where the absorbing phase become unstable with respect to
an arbitrarily small branching rate even in one dimension.
More interestingly, the critical behavior near the annihilation
fixed point depends on details of particle dynamics, such as
the presence of an interspecies hard core(HC) interaction
and the branching method[12,13].

Stochastic models for linearly and bidirectionally coupled
DP processes have been also studied through two-species
branching annihilating random walks with one offspring
sBAW1d in one dimension[14,15]. It was found that the HC
interaction is crucial in a strong coupling regime, where the
absorbing phase(vacuum) becomes unstable and the system
is always active except at the annihilation fixed point of zero
branching rate. Critical behavior near the annihilation fixed
point was conjectured via an analytic argument and con-
firmed by numerical simulations[14].

In this paper we studied theN-species BAW1 models and
also theN-species contact processes(CP) with and without
interspecies HC interaction. The single-species BAW1 and
CP both belong to the DP universality class, but perturbative
renormalization group(RG) calculations and numerial simu-
lations suggest that the dimensional threshold for the vacuum
stability is different for these two models[8,11]. For the
BAW1, the vacuum becomes unstable ford.dth=2, while
dth=` for the CP. The essential difference is the absence of
spontaneous annihilation processA→x in the BAW1, where
particle annihilations occur only in pairs through binary dif-
fusion processesA+A→x. The A→x process may be ef-
fectively generated by combinations of branching and hop-
ping processes. However, the generated processes are too
weak to stabilize the vacuum ford.2 [16].

In the coupled systems, one can expect a similar scenario,
where the stability of the vacuum also depends crucially on
the presence of the spontaneous annihilation process. Fur-
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thermore, asN increases, the vacuum becomes more unstable
in theN-BAW1, because the annihilation process of only the
same species of particles is allowed. A sufficiently strong
interspecies coupling may wash away completely the absorb-
ing phase for large enoughN even in one dimension, even
without any HC interaction. In this paper, we address this
vacuum stability question in the strong coupling regime and
measure the threshold value ofN with and without HC inter-
action.

The outline of this paper is as follows. In Sec. II the
N-species CP models are introduced. We find that, for anyN,
the vacuum is stable for a low branching rate and the DP-
type phase transition is observed regardless of the presence
of HC interaction. In Sec. III we study theN-species BAW1
models by numerical simulations. We find that forNù3, the
vacuum becomes unstable with respect to an arbitrarily small
branching rate in a sufficiently strong coupling regime. The
critical behavior near the zero branching point is explored in
terms of the scaling exponents. In a weak coupling regime,
the conventional DP transition into a stable vacuum is ob-
served. The interspecies HC interaction only shifts the DP
critical points and the threshold value of the interspecies cou-
pling for the complete disappearance of a stable vacuum. The
N=2 case is special. Without HC interaction, one can always
find the DP transition into a stable vacuum even at the full
coupling strength, such as in theN-species CP models. How-
ever, the inclusion of the HC interaction makes the vacuum
unstable again in a strong coupling regime. We also discuss
the effect of the directional asymmetry in the bidirectional
couplings on the phase diagram. Finally, we conclude in
Sec. IV.

II. COUPLED CONTACT PROCESSES

The N-species coupled contact process(N-CP) is defined
by the following evolution rules:(1) Each particle annihi-
lates spontaneously with probabilityp or (2) creates a par-
ticle of the same species with probabilityss1−pd or a par-
ticle of the different species with probabilitys8s1−pd / sN
−1d in its neighborhood(branching process) as

Ai → x with p,

Ai → Ai + Ai with ss1 − pd,

Ai → Ai + Aj with s8s1 − pd/sN − 1d, s1d

where s8=1−s, i Þ j , and i =1, . . . ,N. Any branching at-
tempt is rejected if it would result in a multiple occupation
by the same species particles at a site. With interspecies HC
interaction, a multiple occupation by different species par-
ticles is also forbidden. Each species is symmetrically
coupled with other species by the interspecies coupling
strengths8. For s8=0, all species are completely decoupled.

It is trivial to show that theN-CP models with HC inter-
action become identical to the single-species CP model. Each
site can be occupied by only one particle, regardless of its
species. Any configuration and any dynamic process in the
N-CP can be exactly mapped on its corresponding configu-

ration and dynamic process of the single-species CP by sim-
ply ignoring the particle species.

Without HC interaction, a multiple occupation by differ-
ent species particles is allowed. One can easily expect that
the active phase expands until the multiple occupation is
maximized. ForN=2, there exists a simple duality between
two speciesss↔s8d and the maximum point is located at
s=s8=1/2, seeFig. 1(a). For Nù3, the maximum point is
expected to be ats=1/N, where the branching symmetry is
perfect and the maximum mixing is expected, see Fig. 1(b).
From this reasoning, we expect that complete disappearance
of the vacuum does not occur at any coupling strengths for
any finite N. Of course, all absorbing critical phenomena
should belong to the DP class.

III. COUPLED BAW 1

The N-species coupled branching annihilating random
walks with one offspringsN-BAW1d, is defined by the fol-
lowing evolution rules:(1) Each particle hops to a nearest-
neighboring site with probabilityp or (2) creates a particle of
the same species with probabilityss1−pd or a particle of the
different species with probabilitys8s1−pd / sN−1d in its
neighborhood(branching process) as

Ai x ↔ xAi with p,

Ai → Ai + Ai with ss1 − pd,

Ai → Ai + Aj with s8s1 − pd/sN − 1d, s2d

FIG. 1. Thes-p phase diagram for theN-CP, (a) N=2 and(b)
N=3. Filled and open circles correspond to critical points with and
without HC interactions, respectively. Lines between data points are
guides to the eyes only.
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wheres8=1−s andi Þ j . If two identical particles happen to
be on the same site, both particles immediately annihilate
each othersAi +Ai → x d. With interspecies HC interaction,
any hopping or branching attempt is rejected if it would re-
sult in a multiple occupation of particles, regardless of their
species. The above model has a permutational symmetry be-
tween species. Later, we will also study an asymmetrically
coupled system which breaks the permutational symmetry.

A. N=2

The two-species BAW1 model has been investigated pre-
viously for generals [14]. In this paper we present the nu-
merically improved phase diagram in Fig. 2(a) and briefly
summarize the results of[14] for comparison to those for
Nù3 and also for self-containedness. Without HC interac-
tion, the system always exhibits the DP-type absorbing tran-
sition for all s, including the case of the maximum coupling
strength (s8=1 or s=0). However, with HC interaction,
there exists a strong coupling regimess8.s8*d where the
vacuum becomes unstable with respect to an arbitrarily small
branching ratesp=1−d and completely disappears in the
phase diagram except at the annihilation fixed pointsp=1d.
The threshold value for the strong coupling regime is nu-
merically estimated ass8* .0.95. In the weak coupling re-

gime ss8,s8*d, we observe the conventional DP transition
into the vacuum.

It is not surprising to see that the active phase expands as
s8 increases, because a collision chance of the same species
particles decreases. However, the effect of HC interaction is
rather tricky. For smalls8, the system tends to form large
domains of the same species particles. The HC interaction
induces an effective diffusion bias directed to the domain
center, which accelerates the pair annihilation process.
Therefore the system becomes less active with HC interac-
tion. For larges8, the situation is reversed. The system pre-
fers locally heterogeneous configurations and the HC inter-
action reduces a chance of binary collision of the same
species particles. Thus, in this case, the system becomes
more active with HC interaction. This explains why two
critical lines with and without HC interaction should cross
each other as in Fig. 2.

Consider thes=0 line, where a particle cannot create a
particle of the same species. As a result, a single particle
cannot be annihilated by a single branching and diffusion
process:A→A+A→x. It needs at least three branching pro-
cesses such asA→AB→ABA→ABABor ABBA. One of the
four particle statessABABd can turn into vacuum via succes-
sive pair annihilations only if diffusion across a different
species particle is allowed(no HC interaction). Hence, the
vacuum can be stable in a low branching(high diffusion)
regime without HC interaction. However, in the presence of
HC interaction, the orderedAB pairs sABABd cannot be an-
nihilated by diffusions. Therefore, a single particle has a non-
zero probability to survive asymptotically and the vacuum is
unstable with respect to an arbitrarily small branching rate.

The critical behavior near the annihilation fixed point in
the strong coupling regime is characterized by a set of the
mean-field scaling exponents

b = 1/2, n' = 1/2, ni = 1, s3d

where the exponentsb, n', and ni characterize the scaling
behavior of the steady-state particle densityrs, the correla-
tion lengthj, and the relaxation timet, respectively.

The exponent ratios,b /n'=1 andz=ni /n'=2, originate
from the ordinary diffusion nature at the annihilation fixed
point in one dimension[12]. There is only one independent
exponentb, of which the value can be extracted by a simple
argument[14]. Consider a particleA created by a particleB.
This branching process increases the particle density with the
time scaletb,s1−pd−1. Near the annihilation fixed point of
the zero branching rate, the offspringA would be annihilated
by colliding with an independentA via diffusion. The time
scale for this process is governed by ordinary diffusion:td
,,2 where the mean distance between particles, is order of
the inverse of the particle densityr−1. Balancing these two
time scales, we can expect the steady-state particle density to
scale asrs,s1−pdb with b=1/2.

This argument is quite general, so it should apply to many
other models exhibiting a critical behavior near the annihila-
tion fixed point (zero branching point). Moreover, the HC
interaction does not matter in this argument. So, one can
expect that theN-species BAW1 should belong to the same

FIG. 2. Thes-p phase diagram of theN-BAW1, (a) N=2 and
(b) N=3. Filled and open circles correspond to critical points with
and without HC interactions, respectively. Lines between data
points are guides to the eyes only.
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classsb=1/2d for any Nù2, regardless of the presence of
HC interaction, which will be confirmed numerially in next
subsection. Moreover, theN-species BAW2 also belongs to
the same class when the HC interaction is present and the
branching method isstatic: Two offspring are divided by
their parent,xBx→ABA. It is clear that our argument ap-
plies to this model, due to the HC interaction. When the
branching method isdynamicor there is no HC interaction,
N-BAW2 belongs to different universality classes[12].

B. NÐ3

First, consider theN=3 case without HC interaction. To
map out the phase diagram, we perform the defect-type dy-
namic Monte Carlo simulations, starting with a single par-
ticle. We measure the survival probabilityPstd, the number
of particlesNstd, the mean distance of spreadingRstd. At
criticality, these quantities scale algebraically in the long
time limit asPstd, t−d, Nstd, th andRstd, t1/z [17].

By inspecting the curvature of effective exponents defined
as

− dstd = lnfPstd/Pst/mdg/ln m, s4d

with arbitrarym, and similarly forhstd and 1/zstd, we esti-
mate the values of the critical hopping probabilitypc and the
dynamic exponentsd, h, andz for various values ofs. The
s-p phase diagram is shown in Fig. 2(b). For smalls, the
absorbing phase(vacuum) completely disappears. This result
is rather unexpected because, forN=2, the vacuum is always
stable for a low branching rate without HC interaction. Be-
fore going into detailed discussion on this vacuum instability
without HC interaction, we present numerical results. The
threshold value of the vacuum instability is estimated as
s* .0.125 ss8* .0.875d. For s.s*, we observe that the
system undergoes an absorbing transition into vacuum. As
expected, we find the DP critical exponents along both paths
of constantp and constants lines.

To identify the scaling behavior near the annihilation
fixed point sp=1d for s,s*, we analyze the finite-size ef-
fects on the steady-state particle densityrs. Using the finite-
size scaling theory onrs [18]

rssD,Ld = L−b/n'FsDL1/n'd s5d

with D=pc−p and system sizeL, the value ofn' is deter-
mined by collapsing the data ofrs with b /n'=1. We mea-
surers in the steady state, averaged over 53103,53104

samples for several values ofD s5310−4,0.05d andL s25

,29d.
We estimaten'=0.50s4d at s=0. Figure 3(a) shows very

good data collapse ofrs with n'=0.50. These numerical
results confirm our previous argument for the universality
class near the annihilation fixed point.

To understand the vacuum instability for smalls for N
=3 without HC interaction, we again consider thes=0 line,
where a particle can create a particle of different species
only. As explained before, there needs to be a sequence of
branching processes for a single particle annihilation. For
N=2 without HC interaction, the process ofA→AB→ABA

→ABAB→AA→x is possible. In this case,AA or BB pairs
will quickly go away at a very high diffusion rate, so one
may consider onlyAB pairs, which cannot be annihilated by
themselves. The last two reaction events can be regarded as a
collision and annihilation event of twoAB pairs and the pre-
vious reaction events as a creation event of aAB pair out of
a parentAB pair. This process is exactly equivalent to the
N=1 BAW1 model by identifying anAB pair as a particle.
Therefore theN=2 case without HC interaction can have a
stable vacuum like in theN=1 model. TheN=3 case is
different. Three different pairssAB, BC, CAd are possible.
Any pair can branch any other pair, e.g.,AB→ACBA
→CB→CBBA→CA. So, theN=3 case cannot reduce to the
N=1 model, in contrast to theN=2 case. It seems that this
multispecies character is the crucial element for vacuum in-
stability in BAW-type binary diffusion-annihilation models.

Interspecies HC interaction should destabilize the vacuum
more easily. We expect that the threshold of vacuum insta-
bility should be lowered with HC interaction. In Fig. 2(b),
the phase diagram forN=3 with HC interaction is presented.
We estimates* .0.25. To estimaten' for s,s*, we also
try the data collapse ofrs. In Fig. 3(b), we present the data at
s=0.2 with the exponent values ofn'=0.50 andb /n'=1.
Our estimation isn'=0.50s2d. Again, we find that our simple
argument also applies to this case.

We also perform defect-type Monte Carlo simulations for
theN=4 case. We estimates* =0.22s2d without HC interac-
tion and s* =0.328s2d with HC interaction. The exponent
value is estimated asn'.0.52s2d at s=0.15 without HC
interaction andn'.0.52s2d at s=0.3 with HC interaction.

FIG. 3. Data collapse ofrsL
b/n' againstDL1/n' with b /n'=1

andn'=1/2 for system sizeL=25, . . . ,29 for N=3 (a) without HC
interaction ats=0 (b) with HC interaction ats=0.2.
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C. Asymmetric coupling

We study the effect of broken permutational symmetry on
the phase diagram. For convenience, we consider theN=3
case at s=0 ss8=1d without HC interaction only. The
branching process in Eq.(2) is modified as

A → A + B, B → B + A with s1 − qds1 − pd,

A → A + C, B → B + C with qs1 − pd,

C → C + A,C → C + B with s1 − pd/2, s6d

where 0øqø1.
At q=0, the speciesC is completely suppressed and the

model becomes identical to theN=2 symmetric one ats
=0. At q=1/2, all three species are equivalent and theN
=3 symmetric model is recovered. Our results on the sym-
metricN-BAW1 models in previous subsections indicate that
the vacuum is stable in high diffusion regime atq=0, but
becomes unstable completely atq=1/2. For q,1/2. the
speciesC is suppressed in comparison to the other two spe-
cies A and B. Therefore, the density of the third speciesC
should be proportional toq. Here, we try to locate the thresh-
old value ofq for the complete vacuum instability.

We perform the defect-type dynamic simulations for sev-
eral q valuess10−1,1.0d to locatepc. In Fig. 4 we present
simulation results forq=0.1 atp=0.999. Effective exponents
dstd, hstd and 1/zstd show upward curvatures, which imply
that the system is still active even atp=0.999. It suggests
that the criticality is located atp=1.000s1d and the vacuum
is completely unstable. For other nonzeroq values, we also
find the similar results to those forq=0.1. We conclude that,
for anyqÞ0, the system is always active and only critical at
pc=1.0. As discussed in the previous subsection, this result
again confirms that the multispecies character is relevant(not
the symmetry) to vacuum instability. We also check the
C-dominant regime forq.1/2 and find a similar result.

To identify the critical behavior, we estimate the exponent
n' by collapsing the particle density data withb /n'=1. Fig-
ure 5 shows the scaling plot forq=0.1 with n'=0.5. We
estimaten'=0.50s5d for q=0.1. For other nonzeroq values,
we also estimaten'.0.5. Although we do not consider the
incomplete coupling casessÞ0d, we expect a nonzero
threshold value ofs*, below which the system is always
active.

IV. CONCLUSION

In this paper we study the stability of vacuum in
N-coupled DP systems. The interspecies coupling is linear,
bidirectional, and excitatory. In the coupled contact pro-
cesses, the vacuum is always stable at a sufficiently low
branching rate for allN, regardless of the coupling strength
s8, and the system undergoes a DP type absorbing transition
into the vacuum. On the other hand, in the coupled BAW
with one offspring, the vacuum stability is quite fragile for
Nù2 in a strong coupling regime. The absence of a sponta-
neous annihilation processA→x is crucial for vacuum in-
stability.

We find that the vacuum is unstable with respect to an
arbitrarily small branching rate in a sufficiently strong cou-
pling regimess8.s8*d for Nù3. The multispecies character
is the key element responsible for this vacuum instability and
the asymmetry in the interspecies coupling is shown to be

FIG. 4. Plots of the effective exponents against 1/t at p
=0.999 for q=0.1. Upward curvature of each exponent indicates
that the system is still in the active phase atp=0.999.

FIG. 5. Data collapse ofrsL
b/n' againstDL1/n' with b /n'=1

andn'=1/2 for q=0.1. The steady state densityrs is measured for
various system sizeL s25,29d andD s5310−4,3310−2d.
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irrelevant. TheN=2 case is special. The vacuum is always
stable as in the coupled contact processes, but the HC inter-
action is relevant to vacuum instability in a strong coupling
regime. We show that theN=2 BAW1 model without HC
interaction can reduce to theN=1 model even at the full
coupling strength, which explains the specialty atN=2.

Critical behavior near the annihilation fixed point in a
strong coupling regime can be conjectured by a simple argu-
ment of balancing two time scales of branching and annihi-
lating random walks. Numerical investigations confirm our
conjecture ofb=1/2,n'=1/2, andni=1, which also applies
to N-BAW2 with static branching and HC interaction[12].
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