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The cluster mean-field approximations are performed, up to 13 cluster sizes, to study the critical behavior of
the driven pair contact process with diffusionsDPCPDd and its precedent, the PCPD in one dimension. Critical
points are estimated by extrapolating our data to the infinite cluster size limit, which are in good accordance
with recent simulation results. Within the cluster mean-field approximation scheme, the PCPD and the DPCPD
share the same mean-field critical behavior. The application of the coherent anomaly method, however, shows
that the two models develop different coherent anomalies, which lead to different true critical scaling. The
values of the critical exponents for the particle density, the pair density, the correlation length, and the
relaxation time are fairly well estimated for the DPCPD. These results support and complement our recent
simulation results for the DPCPD.
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The absorbing phase transitionsAPTd has been studied
extensively to understand many-body cooperative phenom-
ena in nonequilibrium systemsf1g. Up to now, two univer-
sality classes have been firmly established: directed percola-
tion sDPd and parity conservationsPCd universality classes
f2g. A few other candidates for different universality classes
have been reported in recent literatures. One is the DP sys-
tem coupled with a static conserved fieldf3g. Although the
reported values for the critical indices are rather scattered
f4–6g, it is widely believed that these systems form a univer-
sality class, different from the DP and the PC class. Another
candidate is the pair contact process with diffusionsPCPDd
that has as yet defied any consensus on the universality issue.
Various scenarios have been proposed, including a new
single universality classf7,8g, a marginally perturbed DP
process with continuously varying exponentsf9g, and a DP
process with a huge crossover timef10,11g, which are sum-
marized in a recent reviewf12g.

Recently, we studied the driven PCPDsDPCPDd which is
a variant of the PCPD by introducing biased diffusionf13g. It
is shown that the driving is relevant and the DPCPD exhibits
a “mean-field-like” critical behavior even in one dimension.
Since the DP class is insensitive to the driving, the DP sce-
nario with a huge crossover time should be eliminated. There
was a recent attempt to understand the PCPD using the
renormalization groupsRGd analysis on a single-species
Bosonic action derived from the microscopic master equa-
tion. However, it turned out to be improper to describe the
critical behavior of the PCPDf14g. In our previous work
f13g, we pointed out a possible reason for this failure and
suggested that the PCPD may be described properly by a
field theory with two independent fields. Still, the search for
the coarse-grained action adequate for the PCPD remains a
challenge.

Besides the RG technique on the proper actionf15g, there
are a few other efficient methods to investigate the absorbing
critical phenomena. Numerical simulations along with a
finite-size-scaling analysisf16g and direct integrations of
corresponding Langevin equationsf17g are two typical ex-

amples. Another frequently used method is the cluster mean-
field sCMFd approximationf18g followed by the coherent-
anomaly methodsCAMd analysis f19g. This method is
known to be effective to obtain a quantitative phase diagram
and sometimes even explore a true critical scaling behavior
f20g. However, the accurate measurement of critical indices
is only limited to rather simple DP systems. More complex
critical behaviors like in the PC and the PCPD classes could
not have been probed with a reasonable accuracy as yet by
the CAM analysisf21,22g.

In this paper, motivated by our recent results that the
DPCPD exhibits a distinct critical behavior from the PCPD
and also a mean-field-like behavior even in one dimension
f13g, we develop the CMF approximations for the DPCPD
and the PCPD, expecting that the CAM analysis would pro-
duce a reasonable estimate for the mean-field-like critical
indices of the DPCPD. Also, direct comparison of the CMF
data for two models may provide an independent support for
different scaling behaviors.

We set up dynamic CMF equations up ton=13 cluster
size. The steady-state solutions are obtained within machine
accuracy usingMATHEMATICA . Dynamic information is also
extracted from the smallest eigenvalue of the “linearized”
transition matrix. Subsequently, through the CAM analysis,
we estimate the values of the critical exponents for the par-
ticle density, the pair density, the correlation length, and the
relaxation time.

The model is defined on a one-dimensional lattice ofL
sites with periodic boundary conditions. At each site, there is
at most one particle and no multiple occupancy is allowed.
Hence the configuration is specified by the occupation num-
ber which is either 1 or 0 at every site. Each particle hops to
the rightsleftd with transition rateDR sDLd. The total number
of particles in the system varies by branching and annihilat-
ing events mediated by a particle pairs2A→3A and 2A
→0”d. The transition rate isp s1−pd for the annihilating
sbranchingd event with 0øpø1. These three dynamics can
be described by the master equation which takes the form
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]

]t
uP;tl = − ĤuP;tl, s1d

where uP; tl is the state vector at timet and the “Hamil-

tonian” is written asĤ=oi=1
L Ĥi with

Ĥi = DRsr̂iv̂i+1 − âiâi+1
† d + DLsv̂ir̂i+1 − âi

†âi+1d − psâiâi+1

− r̂ir̂i+1d −
1 − p

2
sâi−1

† + âi+2
† − v̂i−1 − v̂i+2dr̂ir̂i+1, s2d

where âisâi
†d is the annihilationscreationd operator of hard

core particles, satisfyinghâi ,âi
†j=1 and fâi ,âjg=fâi ,âj

†g=0
for i Þ j , r̂i = âi

†âi is the number operator, andv̂i =1−r̂i.
Three different cases arise depending on the values ofDR

and DL. The case ofDR=DL=0 represents the pair contact
processsPCPd which has infinitely many absorbing states
and is known to belong to the DP class at least for static
situationsf23g. Since the cluster approximations along with
the CAM analysis have been already performed for the PCP
by several authors previouslyf24g, we skip the analysis of
the PCP here. The PCPD corresponds toDR=DLÞ0 and the
DPCPD corresponds toDRÞDL. In what follows, we set
DR+DL=1 for convenience andDR is chosen to be 1/2s1d
for the PCPDsDPCPDd.

We consider ann-site probability functionPnsr ; td. It is
defined as the probability at timet to find ann-site cluster of
the configurational stater=sr1,r2, . . . ,rnd, where an occu-
pational stateri at sitei takes either 0 or 1. Tracing out Eq.
s1d over occupational states outside the clustershrij with i
ø0 or i ùn+1d, one may find a formal exact expression

dPnsr;td
dt

= F̃rsPn,Pn+1,Pn+2d, s3d

where the functionF̃r involves the sets ofn-, sn+1d-, and
sn+2d-site probability. Notice thatPn+1 andPn+2 terms show
up due to the boundary dynamics of then-site cluster.

As the infinite hierarchy appearing in Eq.s3d is the major
obstacle towards analytic treatment, we need an approxima-
tion scheme to truncate the hierarchy at finiten. In this paper,
we take the so-calledsn+1,nd approximationsf18g, where
Pn+2 and Pn+1 are expressed in terms of products ofPn’s.
Then, the rate equations for then-site cluster probability
function become

dPnsr;td
dt

= FrshPnjd, s4d

where Pn is now the approximatesmean-fieldd probability
function.

The stationary probability distribution functionPn
ssrd

can be obtained by solving the set of coupled equations
Fr=0. For given n, the number of equations and the
number of variables are both 2n, but not all are independent.
The translational invariance and the normalization condition
guarantee that allPnsrd with r1=0 can be expressed in a
linear combination ofPnsrd’s with r1=1. For example, in
case of n=4, one can easily show thatP4s0011d=
P3s011d−P4s1011d = P2s11d−P3s111d−P4s1011d = P3s110d

−P4s1011d=P4s1101d+P4s1100d−P4s1011d. The absorbing
svacuumd probability P4s0000d can be determined by the
normalization condition. Hence the DPCPD case has 2n−1

independent variables. In case of the PCPD, the left-right
symmetry further reduces the number of independent vari-
ables, for example,P4s1101d=P4s1011d and so on.

We use MATHEMATICA to find the stationary solutions
Pn

ssrd up to n=13 with machine accuracys10−20d for given
values of parameters,p andDR f25g. With Pn

s, we calculate
the particle densityrs and the pair densityrp in the steady
state as

rs = P1
ss1d = TrrPn

ssrddrk,1
,

rp = P2
ss11d = Trr Pn

ssrddrk,1
drk+1,1, s5d

wherek sandk+1d denotes an arbitrary site inside the cluster.
At a fixed value ofDR, the order parameters,rs and rp,
simultaneously vanish for largep spair annihilation rated and
the system exhibits an absorbing phase transition into
vacuum atp=pc

n.
Near the transition pointpc

n, the order parameters scale as

rs . Anspc
n − pdb1

MF
, rp . Bnspc

n − pdb2
MF

, s6d

where we find the mean-field values for the order parameter
exponents:b1

MF=1 and b2
MF=2. Figure 1 shows then=12

cluster approximation results for the DPCPD. We estimate
the critical pointpc

n and the critical amplitudesAn andBn by
fitting five data near the transitionsup−pc

nuø5310−6d, lin-
early forrs and quadratically forrp. Our results are tabulated
in Table I for the PCPD model and in Table II for the
DPCPD model. Notice that the relative errors forpc

n are ex-
tremely smalls,10−9d, but the amplitudesAn and Bn still
have a sizable relative errors,10−4d.

It is interesting to note that, fornø3, the diffusion bias
does not enter the CMF rate equations at all. The functional
form of FrshPnjd in Eq. s4d is identical for the PCPD and the

FIG. 1. Log-log plot ofrs vs pc
12−p obtained from the 12-cluster

CMF approximation for the DPCPD. The slope of the straight line
is 1. In the inset,rp’s are plotted againstpc

12−p. The slope of the
straight line is 2.
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DPCPD. The left-right symmetry amongPnsrd’s is automati-
cally enforced due to the translational invariance, regardless
of the details of the dynamics. For example,P3s110d
=P2s11d−P3s111d=P3s011d and so on. However, fornù4,
the translational invariance does not guarantee the left-right
symmetry, which may be broken by the dynamics with a
broken left-right symmetry.

In nonequilibrium systems, dynamic relaxation behavior
provides one of the key pieces of information on the system.
Off criticality, the order parameters are expected to approach
their stationary values exponentially with a characteristic re-
laxation timet. At criticality, t diverges and the order pa-
rameters decay algebraically. One may roughly estimatet by
numerically integrating the rate equationss4d and fitting
time-dependent data into an exponential form. However, this
method does not produce high-precision data. In this paper,
we propose a different method to calculatet with machine
accuracy in the CMF approximation scheme.

Since the stationary solutions of Eq.s4d were obtained
with machine accuracy, we can linearize Eq.s4d near the
stationary solutions very accurately. The linearized equation
takes the form

duPn;tl
dt

= − M uPn;tl, s7d

where uPn; tl is the sn-clusterd state vector with the compo-
nentsPnsr ; td andM is a square matrix. It is trivial to show
that the eigenvalues ofM are equal to the inverse of various
characteristic time scales of the dynamics. The most domi-
nant slow mode is determined by the smallest eigenvalueLs,
i.e., the relaxation timet=Ls

−1.
We analyze the linearized equation up ton=12. Near

criticality, we find

t−1 . Cnspc
n − pdni

MF
, s8d

where we find again the mean-field value for the relaxation
exponent,ni

MF=2. We estimate the critical pointspc
n indepen-

dently, which are found to be consistent with previous esti-
mates from the density data in Tables I and II, where we also
tabulate the estimated values for the amplitudeCn for both
the PCPD and the DPCPD.

Now, we employ the coherent-anomaly methodsCAMd
introduced by Suzuki and co-workersf19g and estimate the
values of the true critical exponents. Following the CAM
analysis, then dependence of the critical pointpc

n is pre-
dicted in the largen limit as

Dn
n' , n−1, s9d

whereDn=pc
n−pc is the distance ofpc

n from the true critical
point pc=limn→` pc

n andn' is the true correlation length ex-
ponent.

We estimatepc by applying the Bulirsch and Stoersor
BSTd algorithm f26g to the series ofhpc

nj and find thatpc

=0.134s2d for the PCPD andpc=0.154s3d for the DPCPD,
which are in good agreement with simulation results of 0.133
522s2d and 0.151 032s1d f13g. Alternatively, we estimatepc
andn' simultaneously using Eq.s9d. In Fig. 2, we plotDn vs
1/n in a log-log plot, varyingpc to find the best power-law
fit. For the PCPD, the choice ofpc=0.1335 yields the small-
est fitting error withn'=1.04, where the data fromn=8 to

TABLE I. Cluster approximation results for the PCPD model.
The errors are in the last digits.

n pc
n An Bn Cn

4 0.209 692 7263 4.473 51.855 17.59

5 0.194 357 9912 4.720 72.928 19.15

6 0.184 167 8676 4.859 93.789 19.93

7 0.177 119 7696 4.963 116.26 20.66

8 0.171 815 3824 5.039 139.91 21.22

9 0.167 700 6591 5.100 165.04 21.72

10 0.164 396 9333 5.151 191.63 22.17

11 0.161 685 1815 5.194 219.71 22.58

12 0.159 416 2244 5.232 249.28 22.96

13 0.157 488 7140 5.265 280.35

TABLE II. Cluster approximation results for the DPCPD model.
The errors are in the last digits.

n pc
n An Bn Cn

4 0.216 140 3513 4.254 44.37 16.69

5 0.202 800 9465 4.356 56.08 17.31

6 0.194 381 7410 4.405 66.48 17.55

7 0.188 503 1907 4.423 76.39 17.74

8 0.184 102 4774 4.424 85.76 17.83

9 0.180 689 8311 4.420 94.89 17.90

10 0.177 954 3360 4.410 103.7 17.94

11 0.175 711 7674 4.397 112.3 17.97

12 0.173 837 8803 4.383 120.8 17.99

13 0.172 247 8976 4.368 128.9

FIG. 2. Log-log plots ofDn vs 1/n for the PCPD and the
DPCPD. In this figure, the value ofpc for the PCPDsDPCPDd is set
to be 0.1335s0.153d.
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13 are used. For the DPCPD, the best choice ispc=0.153
with n'=1.01. The relative error forpc is ,2%, and the
error for n' is ,10%. The best simulation result ofn'

=1.09s2d for the PCPD is within the errors, but the accurate
measurement seems to be out of reach with data up ton
=13. Our estimate ofn'=1.01 for the DPCPD is in very
good agreement with the expected mean-field valuen'

MF=1.
The amplitudesAn andBn are expected to scale as

An , Dn
−sb1

MF−b1d, Bn , Dn
−sb2

MF−b2d, s10d

whereb1 andb2 are the true critical exponents for the order
parameters. In Fig. 3, the log-log plots ofAn andBn vs Dn for
the PCPD are presented. Here we usepc=0.133 522sthe best
estimate from Monte Carlo simulationsd f13g. The CAM
analysis leads tob1<0.92 andb2<0.49f27g, both of which
are far from the simulation results ofb1<b2<0.36s2d f8,9g.
In particular, there is a huge discrepancy between the esti-
mated values ofb1 and b2 by the CAM analysis, which
warns us that the CAM estimates for the order parameter
exponents should be interpreted with great caution. This
huge discrepancy also implies that the cluster sizes up ton
=13 are still too small for the PCPD to reach the asymptotic
regime where the system is dominated by long spatial corre-
lations, induced by the long-term memory mediated by soli-
tary particlesf9g.

On the other hand, the CAM analysis for the DPCPD
looks consistent with the simulation results. In Fig. 4, we use
pc=0.151 032f13g. First, An seems not diverging asDn→0
and reaching a nonzero constant, which impliesb1=b1

MF=1.
Second,Bn behaves very differently fromAn and diverges
with the exponent,0.92, which implies thatb2=b2

MF

−0.92<1.08. Numerical simulation resultsf13g are in com-
plete agreement with our CAM results. One should notice
thatb2 does not assume the MF value, but seems to be equal
to b1 except a probable multiplicative logarithmic correction
as found in the exponentb /ni by numerical simulationsf13g.

This mean-field-like behavior is expected for the two-
dimensional PCPDf28g, of which the upper critical dimen-
sion is believed to be 2. Our CAM results independently
support the conclusion drawn from our numerical simula-
tions resultsf13g that the DPCPD critical behavior is distinct
from the PCPD behavior and the upper critical dimension for
the DPCPD is 1 rather than 2.

Finally, we estimateni from the relation

Cn , Dn
−sni

MF−nid, s11d

whereni is the true critical exponent for the relaxation time.
In Fig. 5, the log-log plots ofCn vs Dn are shown. We esti-
mate that ni <1.8 for the PCPD andni <1.98 for the
DPCPD. Rather surprisingly, the PCPD result is consistent
with the simulation result ofni=1.85s10d f8,9g. For the
DPCPD, the value ofni is quite close to the mean-field value
of ni

MF=2, consistent with the simulation results.
In summary, we estimated the critical exponents for the

PCPD and the DPCPD, using CMF approximations along
with the CAM analysis. For the PCPD, the values of the

FIG. 3. The CAM analysis for the order parameters for the
PCPD model. The slope of the straight line is −1.51, which leads to
b2<0.49. In the inset, the slope of the straight line is −0.084, which
leads tob1<0.92.

FIG. 4. The CAM analysis for the order parameters for the
DPCPD model. The slope of the straight line is −0.92, which leads
to b2<1.08. In the inset,An vs Dn is drawn without a log scaleAn

remains nearly constant which impliesb1<b1
MF=1.

FIG. 5. The CAM analysis for the relaxation time for the PCPD
and the DPCPD. The slope of the straight line for the PCPD
sDPCPd is −0.2 s−0.02d which leads toni=1.8 s1.98d.
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order parameter exponents are poorly estimated, while the
estimates for the correlation and the relaxation exponents are
consistent with simulation results within error bars. In con-

trast, the CAM estimates for the DPCPD are in excellent
accord with simulation results, supporting our conjecture that
the upper critical dimension of the DPCPD is 1.
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