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Active motion can be beneficial for target search with resetting in a thermal environment
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Stochastic resetting has recently emerged as an efficient target-searching strategy in various physical and
biological systems. The efficiency of this strategy depends on the type of environmental noise, whether it is
thermal or telegraphic (active). While the impact of each noise type on a search process has been investigated
separately, their combined effects have not been explored. In this work, we explore the effects of stochastic
resetting on an active system, namely a self-propelled run-and-tumble particle immersed in a thermal bath. In
particular, we assume that the position of the particle is reset at a fixed rate with or without reversing the direction
of self-propelled velocity. Using standard renewal techniques, we compute the mean search time of this active
particle to a fixed target and investigate the interplay between active and thermal fluctuations. We find that the
active search can outperform the Brownian search when the magnitude and flipping rate of self-propelled velocity
are large and the strength of environmental noise is small. Notably, we find that the presence of thermal noise in
the environment helps reduce the mean first passage time of the run-and-tumble particle compared to the absence
of thermal noise. Finally, we observe that reversing the direction of self-propelled velocity while resetting can
also reduce the overall search time.
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I. INTRODUCTION

Target search is essential for the survival of biological
organisms. Notable examples include searching for energy
sources, food, shelter, and suitable mates. Searching processes
are also prevalent in cells. For instance, transcript factors
search for target sequences along DNA strands through a
process known as facilitated diffusion [1–3], which involves
one-dimensional diffusion and stochastic jumps to other lo-
cations. These searching processes are basically conducted
by agents that stochastically wander their environment until
they reach the target. Therefore, the searching time of the
processes depends on their strategies on how to wander around
for searching. The representative measure for this searching
time is the mean first passage time (FPT). Thus, one of the
primary concerns in studies related to the searching problem
is to find an optimal wandering strategy that minimizes the
mean FPT.

In the past decade, stochastic resetting has emerged as an
efficient searching strategy that reduces the mean FPT [4–14].
Stochastic resetting is a renewal process where a dynamic
system is interrupted at random times and reset to a prede-
termined configuration. Initially applied to a one-dimensional
freely diffusing Brownian particle searching for a specific
target, it has been demonstrated that stochastic resetting elim-
inates the possibility of the particle straying far from the
target, resulting in a finite mean FPT. In contrast, the mean
FPT for a free diffusing particle without resetting diverges.
Subsequently, researchers have extensively studied various

aspects of stochastic resetting, including properties of its
nonequilibrium steady state [4,15–17] methods to further
accelerate search processes [4,8,9] and the thermodynamic
prospect of the search process [18]. Moreover, several re-
cent studies have explored the practical implementation of
resetting by considering noninstantaneous resetting protocols
(see [18–26]). Beyond its applications in physics, stochas-
tic resetting also plays a crucial role in accelerating various
biological processes. Examples include kinetic proofread-
ing [27,28], protein-folding process [29–31], and chemical
reaction process [32,33]. See [6,34,35] for an extensive review
of the topic.

However, the impact of stochastic resetting on biolog-
ical organisms is unclear since their dynamics are often
more complex than simple diffusion. In fact, many biological
searching agents consume energy and exhibit self-propelled
motion, known as active particles. These active particles
operate in a nonequilibrium regime and therefore do not
follow the fluctuation-dissipation relation. Examples of ac-
tive particles include motile cells, motor proteins [36], and
artificial active Brownian particles such as self-propelled
colloids [37,38], nanorotors [39], and vibrated granular par-
ticles [40,41]. Various models have been proposed to describe
the motions of active particles, such as run-and-tumble par-
ticles (RTP) [42,43], active Ornstein-Uhlenbeck particles
(AOUP) [44], and active Brownian particles (ABP) [45].
These active motions give rise to unique thermodynamic
properties, which have never been observed in passive
systems [46–49].
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For examining the impact of active particles on the search
process, in this study, we focus on a target-searching pro-
cess by RTP particles under stochastic resetting dynamics.
Earlier research in this area has primarily concentrated on
the dynamics of RTP without considering the influence of
the environment [50] and the dynamics of nonthermal active
Brownian particles [51–53] . This RTP-only dynamics can
be modeled by substituting the thermal random noise with
telegraphic noise [54]. In reality, however, active particles
usually exist in environments that provide thermal noise and
influence their dynamics. Hence, it is important to study the
combined effects of the active motion and thermal noise to
gain a comprehensive understanding of search dynamics in
biological systems.

Here, we study the dynamics of an RTP that moves freely
in one-dimensional space and is reset to a predetermined
position at random times with a constant rate in the presence
of thermal noise. Employing generic renewal techniques, we
compute the moment-generating function of FPT, then evalu-
ate mean FPT and, finally, investigate the combined effect of
thermal noise and active motion on this target-search process.
The results clearly verify that active motion can reduce the
mean FPT compared to that of Brownian motion within a
certain range of parameters. More specifically, our compre-
hensive analysis reveals that an active particle can outperform
a passive Brownian particle when the magnitude and flipping
rate of the self-propelled speed are high and the strength
of thermal noise is low. Additionally, we demonstrate that
two other factors, the presence of a thermal environment and
reversing the direction of the self-propelled velocity during
resetting, are helpful in reducing the search time of the RTP.

The rest of this paper is organized as follows: In Sec. II,
we provide a detailed description of our system setup, in-
cluding the governing dynamics of the RTP and resetting
strategy used in the search process. Section III introduces
the moment-generating function used to calculate the mean
FPT. The results are presented in Sec. IV, which is divided
into three subsections: Section IV A demonstrates the effect of
active motion on mean FPT, Sec. IV B discusses the effects of
thermal noise and reversal of active-motion direction during
resetting on the mean FPT, and Sec. IV C presents comprehen-
sive analysis results on when an RTP outperforms a Brownian
particle as a search agent. Finally, we summarize our findings
in Sec. V.

II. MODEL

We consider an RTP that diffuses freely in one-dimensional
space. Run-and-tumble dynamics is modeled by an active
speed f that randomly reverses its direction at a flipping rate
rF. The particle is situated in a thermal environment charac-
terized by a diffusion constant D, which is connected to the
environmental temperature T by the relation D = γ −1kBT ,
where kB is the Boltzmann constant. Then, the motion of the
particle is described by the following Langevin equation

ẋ = σ (t ) f + ξ (t ), (1)

where ξ (t ) is a Gaussian white noise with zero mean and
〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′). Here, σ (t ) denotes the instanta-
neous direction of the active speed, which is given by a

telegraphic or dichotomous noise that alternates between two
values, +1 and −1, at a rate of rF. The particle begins from an
initial position x(0) = x0 with a specified direction σ (0) = σ0.
During its motion, the RTP’s position is instantaneously reset
to xR at random times with a resetting rate of rR. When the
particle’s position is reset, the direction of the active speed
may flip with a probability of η [50].

When the position x(t ) and the direction σ (t ) of the RTP’s
active speed at time t are given, their subsequent values after
an infinitesimal time interval �t are determined by one of the
following four cases: (i) the position is reset, and the direction
of active speed is reversed with probability q1 = rRη�t , (ii)
the position is reset, but the direction of active speed remains
unchanged with probability q2 = rR(1 − η)�t , (iii) the mo-
tion of the particle follows Eq. (1) without direction flipping
of active speed with probability q3 = (1 − rR�t )(1 − rF�t ),
and (iv) the motion of the particle follows Eq. (1) with di-
rection flipping of active speed with probability q4 = (1 −
rR�t )rF�t . In short,

x(t + �t ) =

⎧⎪⎪⎨
⎪⎪⎩

xR & σ (t ) f → −σ (t ) f , with prob. q1

xR & σ (t ) f → σ (t ) f , with prob. q2

x(t ) + σ (t ) f �t + dW , with prob. q3

x(t ) − σ (t ) f �t + dW , with prob. q4,
(2)

where dW = ∫ t+�t
t ξ (t ′)dt ′ is a Wiener process that repre-

sents a random variable drawn from a Gaussian distribution
with zero mean and variance 2D�t . The diffusion and re-
setting process continues until the particle reaches the target
position, which is set to the origin without loss of generality.
It is worth noting that previously introduced models can be
derived as specific cases of our model by taking proper limits.
For instance, when f → 0, our model reduces to the original
stochastic-resetting model [4]. In another limit D → 0, our
model simplifies to one with only telegraphic noise [50].

III. MOMENT GENERATING FUNCTIONS
OF FIRST PASSAGE TIME

FPT depends on RTP’s initial configuration, including its
starting position x0 and initial direction σ0. Therefore, we
define the conditional FPT tσ0

F , representing the first time
the particle reaches the target (the origin) starting from x0

with an initial direction σ0 = ±1. Following the Brownian
functional method [55–57], one can express the moment-
generating function of FPT, conditioned on the given initial
position x0 and initial direction σ0 as

Qσ0 (p|x0) =
∫ ∞

0
dtσ0

F e−pt
σ0
F Pσ0

(
tσ0
F

∣∣x0
) ≡ 〈

e−pt
σ0
F

〉
, (3)

where Pσ0 (tσ0
F |x0) is the probability density function of tσ0

F
for the process with x(0) = x0 and σ (0) = σ0. Then, the mth
moment of tσ0

F can be evaluated as〈(
tσ0
F

)m〉 = (−1)m∂m
p Qσ0 (p|x0)|p→0. (4)

Now we derive the differential equation for Qσ0 (p|x0).
Consider a trajectory of RTP whose FPT is denoted by tσ0

F . We
divide the trajectory into an initial infinitesimal segment with
duration �t and the remaining part with duration tσ0

F − �t .
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During the initial infinitesimal segment, one of the four events
can occur with respective probabilities qi as presented in
Eq. (2). Then, the moment-generating function Qσ0 (p|x0) can
be written as

Qσ0 (p|x0) = e−p�t
〈
e−p(t

σ0
F −�t )

〉
= e−p�t 〈Q−σ0 (p|xR)q1 + Qσ0 (p|xR)q2〉

+ e−p�t 〈Qσ0 (p|x′
0)q3 + Q−σ0 (p|x′′

0 )q4〉, (5)

where x′
0 = x0 + σ0 f �t + dW and x′′

0 = x0 − σ0 f �t + dW .
By expanding Eq. (5) and keeping the terms up to the order of
�t , we obtain the following backward differential equation of
the moment-generating functions:

L(∂x0 )Q(p|x0) = −rRHQ(p|xR), (6)

where the moment-generating functions are expressed as the

vector Q(p|x) = (Q+(p|x), Q−(p|x))T with T denoting ma-
trix transpose. The matrix L(Ô) and H are given by

L(Ô) =
(
L+(Ô) rF

rF L−(Ô)

)
and H =

(
1 − η η

η 1 − η

)
,

(7)

respectively, where L±(Ô) ≡ DÔ2 ± f Ô − g and g ≡ p +
rR + rF. The detailed derivation of Eq. (6) from Eq. (5) is
presented in Appendix A. To solve Eq. (6), we need to
set appropriate boundary conditions for Qσ0 (p|x0). The first
condition is that when x0 → 0, the RTP reaches the target
instantly. This instantaneous target searching by the RTP in
the limit x0 → 0 is guaranteed by thermal noise, as it domi-
nates over the propulsion term during a microscopic time step.
This is in contrast to the nonthermal RTP where the direction
of the motion in the limit x0 → 0 decides the absorption
(see [43]). The second condition requires that the moment-
generating functions converge to a finite value as x0 → ±∞
due to instantaneous resetting. These boundary conditions can
be expressed as

Q±(p|x0 → 0) = 1, Q±(p|x0 → ±∞) < ∞. (8)

Note that Qσ0 (p|x0) is symmetric in x0 when x0 is set to xR. In
this case, it is sufficient to focus on the positive range of x0.

We solve the differential equation (6) analytically using
the boundary conditions (8). In particular, when the initial
position and the resetting position are the same, i.e., x0 = xR,
the solutions can be expressed in the following compact form:

Q(p|xR) = [
1 + rR(1 − TxR )L−1

0 H
]−1

TxR I, (9)

where 1 denotes the identity matrix, L0 = L(0), I = (1, 1)T,
and Tx = FExF−1. Here, the matrices F and Ex are defined
in Eq. (A14). The derivation of Eq. (9) can be found in
Appendix A.

IV. RESULTS

A. Unconditional mean first passage time

To evaluate the mean conditional FPT, we can use Eq. (4)
and the expressions of moment-generating functions from
Eq. (9) so that

〈t±
F 〉 = −∂pQ±(p|xR)|p→0. (10)

FIG. 1. Plot of mean FPT 〈tF〉 as a function of resetting rate rR

for different combinations of flipping rate rF and active speed f at
η = 0 and D = 1/2. Dots and solid curves represent simulation data
and analytic results, respectively.

In real experiments, the initial direction of active speed is
not fixed but is determined probabilistically. Let p± represent
the probabilities that the initial direction of active speed is
σ0 = ±1; then the unconditional mean FPT can be calculated
as

〈tF〉 = p+〈t+
F 〉 + p−〈t−

F 〉. (11)

If the active particle is unbiased, it is reasonable to set
p+ = p− = 1/2. This assumption is maintained throughout
the rest of this paper. Hereafter, the unconditional mean
FPT with p± = 1/2 will be referred to simply as mean
FPT.

The full analytical expression for mean FPT is too lengthy
to effectively handle and comprehend for physical insights.
Instead, we illustrate the behavior of the mean FPT through
various plots and discuss the impact of active motion on it.
Figure 1 shows the plot of 〈tF〉 versus rR for different combi-
nations of flipping rate rF and active speed f at D = 1/2. The
various dots represent simulation data averaged over 105 real-
izations of the explicit dynamics in Eq. (2) and the solid curves
indicate analytical results. For the simulation, �t in Eq. (2)
is set to be 10−5. The agreement between them validates our
analysis. For this plot, reversing the direction of active speed
during positional reset is not considered, i.e., η is set to zero.
The effect of a finite η will be discussed in Sec. IV B. The
value of xR is consistently set to 1 throughout this paper.

The black solid curve in Fig. 1 shows the mean FPT of
the stochastic-resetting search using a Brownian particle. This
original process is identical to our model with f = 0, resulting
in the mean FPT denoted by 〈t f =0

F 〉 [4]

〈
t f =0
F

〉 = 1

rR

(
exR

√
rR/D − 1

)
. (12)

Compared to the original dynamics, when rF = 1, mean FPT
is shorter than 〈t f =0

F 〉 and decreases as f increases. This
clearly demonstrates that active motion can reduce mean FPT
compared to that of a Brownian particle. However, active
motion is not always beneficial for enhancing search per-
formance. When rF = 0.1, mean FPT becomes longer than
〈t f =0

F 〉 and increases as f rises. Regardless of the magnitude
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FIG. 2. Plot of mean FPT as a function of active speed f for
different values of flipping rate rF at η = 0 and D = 1/2. For all
cases, the resetting rate is set to r∗

R, f =0, which minimizes mean FPT
of the original dynamics using a Brownian particle. Black solid
line denotes mean FPT of the dynamics with f = 0. Dashed curves
represent the asymptotic behaviors of 〈tF〉 calculated from Eq. (14).

of f and rF, mean FPT exhibits a nonmonotonic behavior
with respect to xR, implying that it is minimized at an optimal
resetting rate r∗

R. In particular, the optimal resetting rate for
the f = 0 case is denoted by r∗

R, f =0.
To better understand the effect of active motion on mean

FPT, we investigate the dependence of 〈tF〉 on active speed
and flipping rate at a fixed resetting rate. Figure 2 shows
the plot of 〈tF〉 versus f for different values of rF at η = 0
and D = 1/2. For all curves in this plot, we set the resetting
rate to rR = r∗

R, f =0 to demonstrate when 〈tF〉 is lower than
the minimum mean FPT achieved by a Brownian particle.
This minimum value, 〈t f =0

F 〉|rR=r∗
R, f =0

, is indicated by the black
line. As mentioned earlier, when the active speed approaches
zero, i.e., f → 0, our model simplifies to the original model
regardless of rF value. This is evident in Fig. 2, where all
curves converge to the black line for small f . In Appendix B,
we demonstrate that the leading term of mean FPT in the
small f expansion is independent of the flipping rate and is
expressed by

〈tF〉 = 〈
t f =0
F

〉 + O( f 2). (13)

In addition, we obtain the expression of mean FPT in the large
f limit as follows:

〈tF〉 =
√

1 + 2rF
rR

2(rF + ηrR)
+ xR

⎛
⎝1 +

√
1 + 2rF

rR

⎞
⎠ 1

f
+ O( f −2).

(14)

Details of the derivation are provided in Appendix B.
This asymptotic behavior of 〈tF〉 in the large f regime is
represented by the dashed curves in Fig. 2. The dashed
curves demonstrate that mean FPT saturates to a certain
value at large f . This saturation value, given by [2(rF +
ηrR)]−1√1 + 2rF/rR, is a monotonically decreasing function
of rF for a fixed rR, indicating a higher rF accelerates the
search process. For moderate values of f , mean FPT decreases
monotonically for high rF, while it exhibits nonmonotonic

behavior for low rF. Nonetheless, within this moderate range
of f , mean FPT tends to decrease monotonically as rF in-
creases. Overall, increasing rF highly seems to be a crucial
factor to reduce 〈tF〉 below 〈tF, f =0〉 across the entire range of
f .

This behavior of mean FPT can be understood in the fol-
lowing way. Active motion is characterized by two factors:
run and tumble. Here, run or ballistic motion is governed by
the parameter f , while tumble or stochasticity is controlled by
the parameter rF. For a searching process where xR = x0 > 0
and η = 0, we first consider the case of low rF. At f = 0,
mean conditional FPTs with different initial directions are
equal, i.e., 〈t+

F 〉 = 〈t−
F 〉. However, if we increase f from zero,

the particle exhibits near-ballistic motion due to a finite f
with infrequent flipping. As a result, 〈t+

F 〉 increases as the
particle continues to move away from the target, while 〈t−

F 〉
decreases as it approaches the target. In the large f regime,
it is straightforward to see that 〈t−

F 〉 → xR/ f . Moreover, 〈t+
F 〉

approaches 1/rF + xR/ f , where the first term, r−1
F , denotes

the duration before the initial +1 direction of active speed
flips into −1 direction, and the second term, xR/ f , represents
the time required to reach the target with −1 direction from
xR. Thus, the mean unconditional FPT 〈tF〉 = (〈t+

F 〉 + 〈t−
F 〉)/2

approaches 1/(2rF) + xR/ f , which is consistent with Eq. (14)
for rF 
 rR. Therefore, for the low value of rF, 〈tF〉 roughly
increases from the value of 〈t f =0

F 〉 to 1/(2rF) as shown in
Fig. 2.

Now, we consider the case with high rF. In this case, active
motion is more stochastic rather than ballistic. This stochastic
tumbling of active speed effectively enhances the diffusivity
of the particle, enabling it to explore the search area more
rapidly. This effective diffusivity increases as f increases.
As a result, increasing f expedites the search process and
results in reducing FPT. This explains why we can achieve
a lower mean FPT value compared to 〈t f =0

F 〉|rR=r∗
R, f =0

at
high rF.

B. Effects of thermal noise and finite η

We also explore the effects of thermal noise and finite η

on mean FPT. For a low flipping rate of rF = 0.1, the results
are plotted in Fig. 3(a), which shows the mean FPT as a
function of rR for various D and η. In the figure, solid curves
represent 〈tF〉 with η = 0 for different D values. Among these,
the black solid curve indicates mean FPT for RTP without
thermal noise, i.e., the D = 0 case. The analytic expression
of mean FPT for RTP with D = 0, denoted by 〈tD=0

F 〉, is given
by [50]

〈
tD=0
F

〉 =
⎧⎨
⎩

− 1
2rFR + eχ

√
R(1+R)−R2+R

√
R(1+R)

2rFR[1+R−√
R(1+R)]

, η = 0

− 1
2rFR + eχ

√
R(1+R)

2rFR[1+R−√
R(1+R)]

, η = 1
2

, (15)

where R ≡ rR/(2rF) and χ ≡ 2rFxR/ f . Compared to 〈tD=0
F 〉,

mean FPT with a finite D is always lower and decreases as
D increases as the figure shows. Dashed curves in Fig. 3(a)
represent mean FPT with η = 1/2 for different D values. As
also seen from Eq. (15), 〈tD=0

F 〉 with η = 1/2 is lower than
that with η = 0. Moreover, increasing D from D = 0 further
reduces mean FPT. Similar to the case of a low flipping rate,
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FIG. 3. Effects of thermal noise and η on mean FPT of RTP. 〈tF〉 is plotted as a function of rR for different values of η and D. (a) and
(b) show plots with rF = 0.1 and rF = 1, respectively. For both plots, f = 1 is used. The solid curves represent results with η = 0, where
there is no flipping direction of active speed during reset. The dashed curves show results with η = 1/2, indicating that positional reset is
accompanied by flipping direction of active speed with a probability 1/2. Different colors represent different values of D, with black indicating
dynamics without thermal noise (i.e., D = 0).

for a high flipping rate rF = 1, 〈tF〉 decreases as D or η in-
creases, as shown in Fig. 3(b).

These results indicate that thermal noise and flipping of
active speed during reset expedite the searching process. We
can understand these behaviors as follows: First, increasing
D raises diffusivity, thus helping the particle explore the
searching area more rapidly. Consequently, this results in
a reduced mean FPT. This principle is also valid for the
original model using a Brownian particle, where mean FPT,
expressed as (12), decreases as D increases. Second, an in-
crease in η is effectively similar to raising rF, which also
aids in reducing mean FPT, as discussed in Sec. IV A. This
effect is evident from the asymptotic expression of mean FPT
in the large f regime in Eq. (14); the saturated mean FPT,
[2(rF + ηrR)]−1√1 + 2rF/rR, is a monotonically decreasing
function of η. Particularly, the impact of increasing η is more
pronounced for low rF, as seen in the expression and the plots
shown in Figs. 3(a) and 3(b).

C. Optimal resetting rate and beneficiality of active motion

In this section, we provide a comprehensive analysis of
when an RTP outperforms a Brownian particle as a search
agent. Suppose there exists a Brownian particle in a thermal
environment with a diffusion constant D and an RTP with
active speed f and flipping rate rF in the same thermal bath. If
the mean FPT of the RTP is lower than that of the Brownian
particle, one can say that using an RTP is more beneficial
for searching a target than a Brownian particle. For a given
particle, however, mean FPT varies depending on rR. Specif-
ically, mean FPT is a nonmonotonic (convex) function of the
resetting rate, and thus, it is minimized at an optimal value of
rR = r∗

R. The optimal resetting rate for RTP r∗
R is a function of

f , rF, and D, whereas the optimal resetting rate for a Brownian
particle r∗

R, f =0 depends solely on D. Therefore, it is reasonable
to compare the minimum mean FPTs evaluated at r∗

R for RTP
and r∗

R, f =0 for Brownian particle, to quantitatively assess the
outperformance of RTP. In this context, as a measure for
discerning the degree of benefit of using an active particle for
searching a target, we introduce the concept of beneficiality of

active motion B = B(D, f , rF) as a logarithmic ratio between
the minimum mean FPTs of an RTP 〈tF〉|rR=r∗

R
and a Brownian

particle 〈t f =0
F 〉|rR=r∗

R, f =0
:

B = log

⎡
⎣ 〈tF〉|rR=r∗

R〈
t f =0
F

〉|rR=r∗
R, f =0

⎤
⎦. (16)

Therefore, when B > 0, active motion provides no benefit for
searching compared to a Brownian particle. Conversely, when
B < 0, an active particle outperforms a Brownian particle.

To evaluate B, we begin by estimating the optimal resetting
rate r∗

R numerically from data of 〈tF〉 as a function of rR for a
wide range of combinations of D, f , and rF. Figures 4(a)–4(c)
present two-dimensional contour plots showing how r∗

R varies
with D and f for three different values of rF: 0.1, 0.5, and 1.
These plots also include isolines where r∗

R(D, f , rF) remains
constant. Overall, the tendency is for r∗

R to increase as either
D or f increases.

Using this estimated r∗
R, we evaluate B. Figures 4(d)–4(f)

show contour plots of B versus D and f for different values
of rF. The black dashed lines represent isolines where B = 0.
These isolines divide the D- f space into two regions: (i) the
B > 0 region, where the active motion provides no benefit,
and (ii) the B < 0 region, where active particle outperforms a
Brownian particle.

From these observations, we can deduce the overall ten-
dencies of B as follows. First, the region with B < 0 expands
as rF increases, suggesting that higher rF is advantageous for
enhancing search performance. Second, active motion loses
its benefit as D increases. This results from the fact that the de-
crease in 〈t f =0

F 〉|rR=r∗
R, f =0

caused by increasing D outweighs the
decrease in 〈tF〉|rR=r∗

R
. This highlights the importance of envi-

ronment; active motion is most beneficial in low-temperature
environments. Third, increasing f usually aids in reducing
mean FPT, except in cases with high D and low rF. In sum-
mary, high rF and large f in an environment with low D are
the best conditions for achieving maximum benefit from an
RTP.
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FIG. 4. Panels (a), (b), and (c) depict the contour plots of the optimal resetting rate r∗
R as a function of diffusion coefficient D and active

speed f for three different values of flipping rate rF = 0.1, 0.5, and 1, respectively. Panels (d), (e), and (f) are the contour plots of beneficiality
B as a function of D and f for three different values of flipping rate rF = 0.1, 0.5, and 1, respectively. Black dashed lines denote isolines
where B = 0.

V. CONCLUSION

We have investigated the target-search problem using an
active particle governed by run-and-tumble dynamics in the
presence of thermal noise under the instantaneous stochas-
tic resetting mechanism. Our model is a generalization of
two previously studied stochastic resetting models: (i) simple
diffusive search in a thermal bath [4] and (ii) simple run-and-
tumble search in a nonthermal environment [50]. Most of the
earlier results can be retrieved from ours when appropriate
limits are taken. From our model, we find that active motion
significantly modifies the search dynamics either in reduc-
ing or prolonging the mean FPT. To understand the overall
combined influence of active motion and thermal noise on
mean FPT, we have introduced the function beneficiality as
a measure for discerning the degree of benefit of using an
active particle for searching a target. Extensive calculations
verify that large f , high rF, and low D are the best choices
for an active particle to outperform a Brownian particle as
a search agent. We also demonstrate that the thermal envi-
ronment plays a significant role in reducing mean FPT. In
addition to active motion and thermal noise, the search process
by an RTP can also be made more effective by reversing the
direction of the active speed during position resetting.

It is worth noting that our model enables the conducting
of target-searching experiments using RTP in a thermal en-
vironment. Previous studies solely considered RTP without

thermal noise [50], making it experimentally difficult to pre-
pare such conditions because thermal noise is indispensable in
mesoscopic systems. Moreover, in the real world, especially
in biological systems, search processes can take place in more
complex environments. Therefore, it is crucial to investigate
the combined effect of active motion and environmental influ-
ences on searching dynamics (see Ref. [53]). In this regard,
our approach and the proposed measure of beneficiality will
be a good starting point and basis for future research in this
direction.
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APPENDIX A: DERIVATION AND SOLUTION OF EQ. (6)

In this section, we first derive Eq. (6) by expanding the
terms in Eq. (5) up to the order of �t :

Qσ0 (p|x0) = e−p�t
〈
e−p(t

σ0
F −�t )〉

� (1 − p�t )〈Q−σ0 (p|xR)q1 + Qσ0 (p|xR)q2〉
+ (1 − p�t )〈Qσ0 (p|x′

0)q3 + Q−σ0 (p|x′′
0 )q4〉,

� rR�t[ηQ−σ0 (p|xR) + (1 − η)Qσ0 (p|xR)]

+ (1 − p�t )〈Qσ0 (p|x′
0)q3 + Q−σ0 (p|x′′

0 )q4〉.
(A1)

Now the third term in the last equation of Eq. (A1) can be
expanded in the following way:

(1 − p�t )〈Qσ0 (p|x′
0)q3〉

= (1 − p�t )(1 − rR�t )(1 − rF�t )〈Qσ0 (p|x′
0)〉,

� (1 − g�t )
[
Qσ0 (p|x0) + σ0 f �t∂x0 Qσ0 (p|x0)

+ 1
2 〈dW 2〉∂2

x0
Qσ0 (p|x0)

]
,

� Qσ0 (p|x0) + �t
[
D∂2

x0
Qσ0 (p|x0) + σ0 f ∂x0 Qσ0 (p|x0)

− gQσ0 (p|x0)
]
, (A2)

where g ≡ p + rR + rF and the identity 〈dW 2〉 = 2D�t as
�t → 0 is used. The fourth term in the last equation of
Eq. (A1) can be expanded and written up to the order of �t as

(1 − p�t )〈Q−σ0 (p|x′′
0 )q4〉

= (1− p�t )(1− rR�t )rF�t〈Q−σ0 (p|x0− σ0 f �t + dW )〉,
� rF�tQ−σ0 (p|x0). (A3)

By plugging the expanded third and fourth terms into Eq. (A1)
and rearranging it, we obtain

Lσ0 Qσ0 (p|x0) + rFQ−σ0 (p|x0)

= rR[ηQ−σ0 (p|xR) + (1 − η)Qσ0 (p|xR)], (A4)

where L±(Ô) ≡ DÔ2 ± f Ô − g. Rearranging Eq. (A4) into
matrix form leads to Eq. (6).

Next, we provide a brief outline of the method, which was
also used elsewhere [33], to derive a solution of Eq. (6). by
dividing Q(p|x0) into the homogeneous and inhomogeneous
parts as

Q(p|x0) = Qh(p|x0) + Qinh(p|xR). (A5)

Then, the inhomogeneous part satisfies the following
equation:

L0Qinh(p|xR) = −HR ⇒ Qinh(p|xR) = −L−1
0 HR, (A6)

where L0 ≡ L(0) and R ≡ rRQ(p|xR). The trial solution for
the homogeneous part Qh(p|x0) = C�(p)emx0 , where C is a
constant independent of p and x0, satisfies

L(∂x0 )C�(p)emx0 = L(m)C�(p)emx0 = 0. (A7)

Nonzero solutions of Eq. (A7) requires det[L(m)] = 0 which
is expressed as

(Dm2 − g)2 − f 2m2 − r2
F = 0. (A8)

The four solutions of Eq. (A8) are

m1,± = ±

√
2
 + 2

√

2 − 4D2

(
g2 − r2

F

)
2D

,

m2,± = ±

√
2
 − 2

√

2 − 4D2

(
g2 − r2

F

)
2D

, (A9)

where 
 ≡ 2gD + f 2. Note that all mi,± (i = 1, 2) are real
numbers. First, m1,± are real because


2 − 4D2
(
g2 − r2

F

) = f 4 + 4gD f 2 + 4D2r2
F > 0.

m2,± are also real numbers because


2 −
√


2 − 4D2
(
g2 − r2

F

)2

= 4D2
(
g2 − r2

F

)
> 0, (A10)

where g = p + rR + rF with p, rR, rF > 0. The corresponding
eigenvectors are given by

L(m)�(p) = 0 ⇒ �i,±(p) =
(

Fi,± − f mi,±
Fi,± + f mi,±

)
, (A11)

where Fi,± ≡ Dm2
i,± − g − rF. Hence, the general homoge-

neous solution is expressed as

Qh(p|x0) =
2∑

i=1

[Ci,+�i,+(p)emi,+x0 + Ci,−�i,−(p)emi,−x0 ].

(A12)

The boundary condition Q±(p|x0 → ∞) < ∞ ensures Ci,+ =
0 for i = 1, 2 as mi,+ > 0. As a result, the expression of the
homogeneous part of the moment-generating function can be
rewritten as

Qh(p|x0) = FEx0 C, (A13)

where F, Ex, and C are defined as follows:

F ≡
(

F1,− − f m1,− F2,− − f m2,−
F1,− + f m1,− F2,− + f m2,−

)
,

Ex ≡
(

em1,−x 0
0 em2,−x

)
, C ≡

(
C1,−
C2,−

)
. (A14)

Therefore, the solution of the moment-generating function is

Q(p|x0) = FEx0 C + Qinh(p|xR). (A15)

Using the boundary condition Q±(p|x0 → 0) = 1, we have

C = F−1(I − Qinh ), (A16)

where I = (1, 1)T. Hence, Eq. (A15) is rewritten as

Q(p|x0) = Tx0 I + (1 − Tx0 )Qinh, (A17)

where Tx = FExF−1. Plugging Q(p|xR) = R/rR and
Qinh(p|xR) = −L−1

0 HR in Eq. (A6) into Eq. (A17), we

054124-7



PAL, PARK, PAL, PARK, AND LEE PHYSICAL REVIEW E 110, 054124 (2024)

have

R =
[

1

rR
1 + (1 − TxR )L−1

0 H
]−1

TxR I. (A18)

Then, the inhomogeneous part of the moment generating func-
tion is

Qinh(p|xR) = −L−1
0 H

[
1

rR
1 + (1 − TxR )L−1

0 H
]−1

TxR I.

(A19)

By substituting this Qinh(p|xR) expression into Eq. (A17), we
finally arrive at

Q(p|x0) = Tx0 I − Kx0

[
1

rR
1 + KxR

]−1

TxR I, (A20)

where Kx ≡ (1 − Tx )L−1
0 H. For simplicity, if we choose x0 =

xR, the moment generating function simplifies as

Q(p|xR) = rRR = [
1 + rR(1 − TxR )L−1

0 H
]−1

TxR I. (A21)

APPENDIX B: DERIVATION OF APPROXIMATE
EXPRESSIONS OF MEAN FPT

Although the complete expression of mean FPT can be
achieved from Eq. (10), it is too lengthy to handle and interpret
for physical insights. Therefore, in this section, we present
mean FPT in two limiting cases: small and large f . First, in
the limit of small f , mi,− simplifies as

m1,− = −
√

g + rF

D
+ O( f 2), m2,− = −

√
g − rF

D
+ O( f 2).

(B1)

Furthermore, F and ExR in the small f limit are given by

F =
⎛
⎝ f

√
g+rF

D −2rF + f
√

g−rF

D

− f
√

g+rF

D −2rF − f
√

g−rF

D

⎞
⎠ + O( f 2),

ExR =
⎛
⎝e−

√
g+rF

D xR 0

0 e−
√

g−rF
D xR

⎞
⎠ + O( f 2). (B2)

Then, from Eqs. (10) and (A21), the conditional mean FPT for
small f becomes

〈t±
F 〉 = 1

rR

(
exR

√
rR
D − 1

) ± A f + O( f 2), (B3)

where A is defined as

A ≡
(
exR

√
2rF+rR

D − exR

√
rR
D
)
(2rF + rR)

2rF
√

DrR
(
2rFexR

√
2rF+rR

D + rR
) . (B4)

Hence, in the limit of small f , the unconditional mean FPT
approaches that of a freely diffusing Brownian particle as
expected:

〈tF〉 = 1

2
(〈t+

F 〉 + 〈t−
F 〉) = 1

rR

(
exR

√
rR
D − 1

) + O( f 2). (B5)

Next, in the limit of large f (or equivalently small f −1), mi,−
reduces to

m1,− = − f

D
− g

f
+ O( f −2),

m2,− = −
√

g2 − r2
F

f
+ O( f −2). (B6)

In addition, F and ExR in the large f limit are expressed as

F =
⎛
⎝2g − rF + 2

D f 2 −g − rF +
√

g2 − r2
F

−rF −g − rF −
√

g2 − r2
F

⎞
⎠ + O( f −2),

ExR =
⎛
⎝0 0

0 1 − xR

√
g2−r2

F

f

⎞
⎠ + O( f −2). (B7)

Thus, the conditional mean FPT in this limit is given by

〈t+
F 〉 =

√
1 + 2rF

rR

rF + ηrR
+ xR

⎛
⎝1 +

√
1 + 2rF

rR

⎞
⎠ 1

f
+ O( f −2),

〈t−
F 〉 = xR

⎛
⎝1 +

√
1 + 2rF

rR

⎞
⎠ 1

f
+ O( f −2). (B8)

Finally, we arrive at the expression of the unconditional mean
FPT for large f as

〈tF〉 = 1

2
(〈t+

F 〉 + 〈t−
F 〉)

=
√

1 + 2rF
rR

2(rF + ηrR)
+ xR

⎛
⎝1 +

√
1 + 2rF

rR

⎞
⎠ 1

f
+ O( f −2).

(B9)
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