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Thermodynamic trade-off relation for first passage time in resetting processes
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Resetting is a strategy for boosting the speed of a target-searching process. Since its introduction over a
decade ago, most studies have been carried out under the assumption that resetting takes place instantaneously.
However, due to its irreversible nature, resetting processes incur a thermodynamic cost, which becomes infinite
in the case of instantaneous resetting. Here, we take into consideration both the cost and the first passage time
(FPT) required for a resetting process, in which the reset or return to the initial location is implemented using a
trapping potential over a finite but random time period. An iterative generating function and a counting functional
method à la Feynman and Kac are employed to calculate the FPT and the average work for this process. From
these results, we obtain an explicit form of the time-cost trade-off relation, which provides the lower bound of
the mean FPT for a given work input when the trapping potential is linear. This trade-off relation clearly shows
that instantaneous resetting is achievable only when an infinite amount of work is provided. More surprisingly,
the trade-off relation derived from the linear potential seems to be valid for a wide range of trapping potentials.
In addition, we have also shown that the fixed-time or sharp resetting can further enhance the trade-off relation
compared to that of the stochastic resetting.

DOI: 10.1103/PhysRevE.108.044117

I. INTRODUCTION

Reset refers to a process that completely erases information
pertaining to the current state of a system and returns the
system to a predetermined setting. Due to the irreversible
nature of the erasure process, a certain thermodynamic cost is
required for physical implementation of the reset. According
to Landauer’s principle, the minimum cost for information
erasure is kBT ln 2 of dissipated heat to reset one bit of in-
formation [1,2], where kB is the Boltzmann constant and T
is the environmental temperature. This minimum bound is
attainable only in a quasistatic process, which takes an in-
finitely long time. To reduce the reset time, additional cost
should be incurred [3–9]. This indicates the existence of a
time-cost trade-off for the reset process, implying that less
energy consumption requires more time and vice versa; this
trade-off fundamentally constrains the performance of the re-
set process [10,11]. It will be demonstrated that the trade-off
relation prevents instantaneous reset (zero reset time) unless
an infinite amount of energy is provided, which is not feasible
in the real world. Consequently, study on the minimal time
of a process accompanied with resetting should take into ac-
count the thermodynamic trade-off relations which have been
a prominent topic in the field of stochastic thermodynamics
for the past decade [12–22].

Interestingly, it has recently been verified that resetting is
an important mechanism to boost the speed of target search-
ing using a random walker [23–36]. This target-searching
strategy, referred to as stochastic resetting, is crucial for
speeding up several biological processes such as kinetic
proofreading [37,38], the chaperone-assisted protein-folding

process [39–41], molecular transport [42], and chemical re-
action [43]. For example, protein-folding dynamics can be
viewed as a random walk construct, which starts from an
initial unfolded state and then searches for the target (na-
tive state) in a rugged free-energy landscape, as shown in
Fig. 1(a). During the process, proteins are sometimes trapped
in a local minima (misfolded state), which significantly pro-
longs the search time. The chaperone assists in restoring
misfolded proteins back to the initial unfolded state. Then,
the search begins again. This reset significantly reduces the
target-searching time. However, the ATP hydrolysis is neces-
sary for chaperone-assisted resetting of the misfolded protein.
This example clearly shows that the time for searching, ac-
companied by stochastic resetting, should be limited by the
thermodynamic cost.

Previous studies on stochastic resetting focused mostly on
the search time when the resetting occurs instantaneously with
limited interests to the understanding of stochastic thermody-
namics for such processes [44–46]. This leads us to believe
that perhaps a more proper question regarding stochastic re-
setting in reality would be “What is the minimum search time
for a given limited energetic cost?,” which is the main subject
of this study. To answer this, we go beyond the instantaneous
resetting and consider a realistic finite-time reset process that
is implemented by a trapping potential [47–54]. For such a
setup, we evaluate the total work for reset and the global
first passage time (FPT), which includes the time for reset.
Based on these results, we derive a time-cost trade-off relation
for stochastic resetting with finite time returns. Although this
trade-off relation is derived only for a linear potential case,
we numerically demonstrate its validity for a wide range of
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FIG. 1. Schematics of finite-time stochastic resetting processes.
(a) Chaperone-assisted protein folding dynamics, from an initial un-
folded state to a final native state, in a rugged free-energy landscape.
When the protein is trapped in a local minima (misfolded state), a
chaperone assists the protein to be reset to the initial unfolded state.
(b) Stochastic resetting run by a Brownian particle. At a random time
with a fixed rate, the position of the particle is reset by applying an
external potential centered around the reset position.

trapping potentials. In addition, we show that the trade-off
relation can be further enhanced when the resets occur after
fixed time intervals, and not at random time intervals.

II. SETUP

We consider a stochastic resetting process for a one-
dimensional Brownian particle in an overdamped envi-
ronment, as shown in Fig. 1(b). The particle undergoes
free-diffusion motion (with diffusion constant D) in the dif-
fusion phase starting from an initial position x0. At a random
time drawn from an exponential distribution fR(t ) = re−rt ,
where r is the rate, a potential U (x) is turned ON in order
to bring the particle to a predetermined reset position xR. The
potential is maintained ON until the particle reaches xR with a
different diffusion constant DR (the reset or return phase). As
soon as the particle reaches xR, the potential is turned OFF and
the particle resumes its free diffusion motion. This diffusion
and resetting process is repeated until the particle reaches or
finds the target position at xT during its diffusive phase [55].
We set xT to the origin without loss of generality. This process
corresponds to the A process in Fig. 2 and can be described
by the following Langevin equations:

ẋ =
{√

2Dη(t ), diffusion phase,

−∂xU (x) + √
2DRη(t ), reset phase,

(1)

where η(t ) is a Gaussian white noise with zero mean and unit
variance. The global FPT tG is given by tG = tD + tR (see the
A process in Fig. 2), where tD and tR are the time spent in
the diffusion and reset phases until the particle reaches the

FIG. 2. Stochastic resetting trajectories of A, B, and C processes.
The A process starts from x0 in the diffusion phase, and then, se-
quential reset (red-shaded region) and diffusion (unshaded region)
phases continue until the particle touches the target. The FPT for the
A process is given by tG = tD + tR. The B process starts from x1 in
the reset phase with the duration tR1, and then, sequential diffusion
and reset phases continue until the particle touches the target with
the duration t ′

G. The C process is obtained by eliminating all the reset
phases of the A process, and thus the FPT of the C process is simply
given by tD.

target, respectively. We note that tD corresponds to the FPT
when the reset is instantaneous (see the C process in Fig. 2).
Such a stochastic resetting process with stochastic returns
using an external trap was introduced in Refs. [53,54] where
various nonequilibrium properties such as the steady-state and
relaxation phenomena were studied. Evidently, our model (1)
is a generalization of those in Refs. [50,52], where only the
deterministic dynamics of the reset phase, i.e., DR = 0, was
considered.

III. FIRST PASSAGE TIME

Inspired by the Brownian functional method [56,57], we
introduce the iterative generating function method to evaluate
the nth moment of tG. First, the moment generating function
of tG for the A process (starting in the diffusion phase) can be
written as

QA(p|x0) =
∫ ∞

0
dtG e−ptG PA(tG|x0) ≡ 〈e−ptG〉, (2)

where PA(tG|x) is the probability density function of tG for the
A process with the initial position x.

Now we consider the B process as illustrated in Fig. 2 for
subsequent utilization in the calculation of Eq. (6); it starts
from x1 in the reset phase and terminates when the parti-
cle touches the target (origin) in the diffusion phase. The B
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process can be divided into two parts; the first reset phase
and the remaining part with durations tR1 and t ′

G, respectively.
Then, the moment generating function of the global FPT for
the B process, tR1 + t ′

G, can be written as

QB(p|x1) =
∫ ∞

0
dtR1

∫ ∞

0
dt ′

G e−p(tR1+t ′
G )PB(tR1, t ′

G|x1), (3)

where PB(tR1, t ′
G|x1) is the joint probability density function

of tR1 and t ′
G for the B process with the initial position

x1. As tR1 and t ′
G are independent variables, PB(tR1, t ′

G|x1) =
PR(tR1|x1)PA(t ′

G|xR), where PR(t |x) is the probability density
function for a single reset phase taking time t with the initial
position x. Consequently, QB(p|x1) can be expressed in a
product form as

QB(p|x1) = QR(p|x1)QA(p|xR), (4)

where QR(p|x1) is the momentum generating function of the
FPT for a single reset phase defined as

QR(p|x) =
∫ ∞

0
dt e−pt PR(t |x). (5)

See Appendix A for detailed calculation of QR(p|x).
Now we construct a differential equation for QA(p|x0) with

respect to x0. We divide the A process with the duration tG
into the initial infinitesimal part with the duration �t and
the remaining part with the duration tG − �t . During the first
infinitesimal diffusion process, the dynamics may be switched
into the reset phase with the probability r�t (reset rate r), and
then the remaining process becomes the B process starting
from x′

0 ≡ x(�t ) = x0 + √
2Dη(0)�t . Otherwise, the diffu-

sion phase continues with the probability 1 − r�t and then
the remaining one becomes the A process starting from x′

0.
Therefore, one can write QA(p|x0) in an iterative way as

QA(p|x0) = e−p�t 〈e−p(tG−�t )〉
= e−p�t 〈QA(p|x′

0)(1 − r�t ) + QB(p|x′
0)r�t〉.

(6)

Equation (6) is iterative in QA(p|x), since QB(p|x′
0) can be

replaced by QA(p|x) from Eq. (4). By expanding Eq. (6)
and keeping terms up to the order of �t , one can obtain the
following backward differential equation of QA(p|x0):[

D∂2
x0

− (p + r)
]
QA(p|x0) + rQR(p|x0)QA(p|xR) = 0. (7)

By solving Eq. (7), one can obtain QA(p|x0). Then, the mth
moment of tG can be calculated as〈

tm
G

〉 = (−1)m∂m
p QA(p|x0)|p→0. (8)

IV. WORK FOR RESET

Work fluctuations in resetting processes have been of top-
ical interest in recent times (see Refs. [58,59]). However, all
these works measure work due to the modulation of an exter-
nal control parameter. In contrast, in our setup, work is done
when the external potential is switched on at the beginning of
every reset phase and thus the Brownian particle gains energy
from the external potential. Since the potential has no time
dependence during the reset phase, there is no further work
done on the particle. Note that the potential energy gained by
the particle is completely dissipated as heat throughout the

reset phase. Suppose there is a single stochastic trajectory, as
shown in the A process of Fig. 2, where each reset phase starts
at time ti (i = 1, 2, . . .). The total work W for the trajectory
is calculated as the sum of the potential values evaluated at ti,
with the potential set to zero at the reset point. This summation
can be expressed more generally by the counting functional:

V [x(t )] =
∫ tG

0
Z[x(t )]dt, (9)

where Z[x(t )] = ∑
i δ(t − ti )w[x(t )] with a weight function

w[x(t )] evaluated at t . This functional yields the quantities
related to the number of resets during the whole process: For
instance, when w(x) = 1, V [x(t )] yields the total number of
resets during the process, and when w(x) = U (x), V [x(t )]
corresponds to the total work W .

Evaluating the general moments of V can be conveniently
carried out by considering the trajectory of the C process as
shown in Fig. 2, which is obtained by eliminating all reset
phases from the original trajectory of the A process. It is
important to note that the counting functional V yields the
same value for both trajectories. In fact, the trajectory of the C
process corresponds to that of instantaneous resetting. Thus,
Eq. (9) can be evaluated on the corresponding trajectory of
the C process with V [x(t )] = ∫ tD

0 Z[x(t )]dt . The generating
function for V is then given as

QC(p|x0) =
∫ ∞

0
dVe−pV PC(V |x0) ≡ 〈e−pV 〉, (10)

where PC(V |x0) is the probability density function of V for
the C process. By dividing V [x(t )] into the initial infinitesimal
part with the duration �t and the remaining part as V [x(t )] =
Z[x(0)]�t + ∫ tD

�t Z[x(t )]dt , one can rewrite Eq. (10) as

QC(p|x0) = 〈
e−pZ[x(0)]�t e−p

∫ tD
�t Z[x(t )]dt

〉
. (11)

During the initial infinitesimal process, resetting occurs with
the probability r�t . Then the next position x′

0 is reset to
xR and Z[x(0)]�t = w(x0). Otherwise, with the probability
1 − r�t , the diffusion phase continues, and thus, x′

0 = x0 +√
2Dη(0)�t and Z[x(0)]�t = 0. Similar to Eq. (6), Eq. (11)

can be written as

QC(p|x0) = (1 − r�t )〈QC(p|x0 +
√

2Dη(0)�t )〉
+ r�te−pw(x0 )QC(p|xR). (12)

By keeping terms up to the order of �t , we finally arrive at
the following backward differential equation of QC(p|x0):[

D∂2
x0

− r
]
QC(p|x0) + re−pw(x0 )QC(p|xR) = 0. (13)

The mth moment of V is then calculated as

〈V m〉 = (−1)m∂m
p QC(p|x0)|p→0. (14)

V. LINEAR POTENTIAL CASE

We analytically solve the backward differential equations,
Eqs. (7) and (13), for a linear potential in x as

U (x) = a|x − xR|n, (15)

with a > 0 and n = 1. This linear potential leads to
QR(p|x) = e−λ(p)|x−xR |, with λ(p) = (

√
a2 + 4pDR −
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a)/2DR. This QR(p|x) can be used to solve Eq. (7) explicitly
(see Appendix B). In particular, for x0 = xR, the solution of
Eq. (7) is rather simpler as

QA(p|xR) = e−μ(p)xR

fA(p, xR )
, (16)

where μ(p) = √
(p + r)/D and fA(p, xR ) = 1 + ν(p) −

ν(p)e−[λ(p)+μ(p)]xR − 2ν(p)λ(p)
μ(p) sinh[μ(p)xR]e−μ(p)xR , with

ν(p) = r/[Dλ2(p) − (p + r)]. The mean FPT is then
evaluated by utilizing Eq. (8). The result is

〈tG〉 = −∂pQA(p|xR)|p→0

= 〈tD〉 + 1

aα
[2 sinh(αxR) − αxR], (17)

where α = √
r/D and 〈tD〉 = (eαxR − 1)/r is the mean FPT

with the instantaneous resetting strategy [23]. The detailed
derivations for Eqs. (16) and (17) are provided in Appendix B.
The second term of the right-hand side in Eq. (17) represents
the (positive) extra time due to our finite-time reset strategy.
As a → ∞ (infinitely steep potential), this extra time van-
ishes, thus representing the limit of instantaneous resetting.

To evaluate the total work, we substitute w[x(t )] = a|x −
xR| into Eq. (13) and solve for QC(p|x0), with x0 = xR. We
find

QC(p|xR) = e−αxR

fC(p, xR )
, (18)

where fC(p, xR ) = 1 + γ (p) − γ (p)e−(pa+α)xR −
2pa
α

γ (p) sinh(αxR)e−αxR , with γ (p) = r/(Da2 p2 − r). The
mean total work is then calculated as

〈W 〉 = −∂pQC(p|xR)|p→0

= a

α
[2 sinh(αxR) − αxR]. (19)

Note that the work diverges in the a → ∞ limit (instantaneous
resetting), indicating an intrinsic trade-off between time and
cost. The detailed derivation for Eqs. (18) and (19) are pro-
vided in Appendix C. We now turn our attention to another
interesting limit r → 0 (thus, α → 0). Intuitively, one would
expect the average work to be zero in this limit since no work
is done without resetting. However, following Eq. (19), one
finds limr→0〈W 〉 = axR, which is a finite nonzero quantity
that depends on the potential strength. This implies that the
limit of the zero resetting rate is not equivalent to the bare
process where no reset takes place at all. Thus, there exists a
discontinuity in the average work at r = 0. This is attributed
to the fact that the average number of resets vanishes as αxR,
but the work per one reset diverges as a/α, since the particle
diffuses far away from the origin for a long duration before
reset occurs. For this reason, mean work remains to be finite
in the limit r → 0.

Figure 3(a) displays the plot for 〈tG〉 versus r for various
values of a, which indicates that simulation results agree well
with Eq. (17). Note that D = 0.5 is used for all numerical
calculations throughout this study. As shown in the figure,
〈tG〉 is a nonmonotonic function of r; thus, it is minimized at
some optimal rate r = r∗

G which is the solution of ∂r〈tG〉 =
0. As expected, 〈tG〉 approaches 〈tD〉 as a increases. It has
been demonstrated in the figure at the end of Appendix B,

FIG. 3. Analytic and numerical results for stochastic resetting
with finite-time reset. Plots for (a) 〈tG〉 and (b) 〈W 〉 as a function
of r for various values of a with the parameters x0 = xR = 5 and
D = DR = 0.5. The solid curves of plots (a) and (b) represent the
analytic results obtained from Eqs. (17) and (19), respectively. All
data points are obtained by averaging over 105 trajectories.

that r∗
G and 〈tG〉|r=r∗

G
saturate the optimal rate r∗

D (solution
of ∂r〈tD〉 = 0) and the corresponding mean FPT 〈tD〉|r=r∗

D
for

instantaneous resetting, respectively. Figure 3(b) displays the
plot of 〈W 〉 versus r. In contrast to 〈tG〉, 〈W 〉 is a monotoni-
cally increasing function of both r and a. Simulation data are
in excellent agreement with Eq. (19).

We note that the mean FPT, Eq. (17), is independent of DR.
In fact, Eq. (17) is exactly the expression for the mean FPT
as was obtained for the model with DR = 0 in Refs. [50,52].
This is because the return time due to dragging with a con-
stant velocity as was done in Refs. [50,52] is identical to the
return time due to stochastic return (only in the mean level).
However, the fluctuations in FPT and the role of higher-order
potentials should have different results compared to those with
the deterministic reset dynamics. This point is emphasized
in Fig. 4, which is the plot for the standard deviation of the
global FPT σ ≡

√
〈t2

G〉 − 〈tG〉2 as a function of r for various
DR. The curves in the plot are evaluated from Eq. (8). This plot
clearly demonstrates that the fluctuation of the FPT depends
on DR.

VI. TRADE-OFF RELATION

It is evident that instantaneous resetting is not possible
unless an infinite amount of work is provided. Thus, in order
to address the physically meaningful question “What is the
minimum FPT for a given cost?,” we reformulate the mean
FPT 〈tG〉 in terms of work 〈W 〉 instead of the potential strength
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FIG. 4. Standard deviation of the global FPT as a function of the
resetting rate r for different values of DR = 0 (brown dashed line),
DR = 10 (blue line), 50 (red line), and 100 (black line). (Inset) Mean
FPT for different values of DR which shows its invariance under DR

modulation unlike the standard deviation σ .

a, using Eqs. (17) and (19), as

〈tG〉 = 〈tD〉 + 1

α2〈W 〉 [2 sinh(αxR) − αxR]2. (20)

Equation (20) clearly shows the trade-off relation between the
mean FPT and average work: Large work leads to small time,
and vice versa. We introduce the notion of excess time 〈tex〉
as the mean FPT with reference to the minimal mean FPT for
instantaneous resetting, i.e.,

〈tex〉 ≡ 〈tG〉 − 〈tD〉|r=r∗
D
, (21)

where r = r∗
D is the optimal resetting rate at which the mean

FPT, with instantaneous resetting strategy, 〈tD〉 is minimum.
By solving ∂r〈tex〉 = 0 for fixed 〈W 〉, we determine the reset-
ting rate r = r∗

ex that minimizes 〈tex〉. The minimum excess
time 〈tex〉|r=r∗

ex
is plotted (with a black solid line) against 〈W 〉

FIG. 5. Trade-off relation between excess time and work, i.e.,
plot of 〈tex〉 as a function of 〈W 〉. The solid curve denotes the
minimum excess time 〈tex〉|r=r∗

ex for a given work, derived for n = 1.
Data points are obtained from the simulation with various potential
strengths a, reset rates r, and potential exponents n. Each point is
obtained by averaging over 105 trajectories.

FIG. 6. Trade-off relation between mean FPT and average work.
The solid curve denotes the minimum value of the global FPT
〈tG〉|r=r∗

ex for the Poissonian (stochastic) resetting protocol. Data
points are obtained by numerical calculation of the mean FPT and
〈W 〉 for the sharp resetting protocol for various τR’s.

in Fig. 5, which serves as the lower bound of 〈tex〉 for the n = 1
case.

To verify this, we first performed numerical simulations
to obtain 〈tex〉 and 〈W 〉 for the n = 1 case and constructed
a trade-off plot as shown in Fig. 5. Each point there for
a given resetting rate and a is denoted by an orange open
circle. More data points are obtained by varying a and r
in the ranges 0.2 � a � 3 and 0.005 � r � 0.1. See also
Appendix C where we have illustrated the case of n = 1 in de-
tail. As shown in the figure, all data points are above the lower
bound curve 〈tex〉|r=r∗

ex
. We repeated the same simulations for

different potentials by varying n, i.e., n = 0.25, 0.5, 0.75, 2,
3, and 4, keeping the same variation for a and r. The results
are also plotted in Fig. 5. Surprisingly, for any value of n,
all the data remain lower bounded by the minimum curve for
n = 1. This suggests that the minimum curve derived from the
linear potential could serve as the lower bound of a universal
time-cost trade-off relation for general finite-time stochastic
resetting processes. Further study is necessary for elucidating
the optimality of the bound.

Since our primary goal is to minimize the mean FPT for
given energy resources, it will be worthwhile to investigate
other resetting strategies. In Refs. [32,60], it was shown that
the sharp resetting strategy—where the resetting is conducted
stroboscopically i.e., after every fixed time interval τR—can
render the mean FPT globally optimized in the case of in-
stantaneous resetting. It is, thus, natural to investigate the
trade-off relation when sharp resetting is employed in the
case of finite-time return. We have calculated the mean FPT
and the average work for a Brownian particle undergoing a
finite-time resetting process using a sharp resetting protocol
(details provided in Appendix D). In Fig. 6, the FPT for the
sharp resetting protocol is plotted against the average work
done on the system for different τR’s. For comparison pur-
pose, we also draw the optimal bound curve 〈tG〉|r=r∗

ex
of the

stochastic (Poissonian) resetting protocol, which is essentially
the same curve presented in Fig. 5. It is important to note
that for some values of τR, the trade-off curve for the sharp
resetting protocol is well below the curve of 〈tG〉|r=r∗

ex
. This

implies that for fixed energy resources, the mean FPT can be
further lowered using a sharp resetting protocol.
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VII. CONCLUSION

In this study, we examined the thermodynamic cost and
the first-passage time (FPT) of the stochastic resetting pro-
cess, in which the reset is implemented using the trapping
potential given by Eq. (15). We find a time-cost trade-off
relation in stochastic resetting, where the minimum FPT can
be decreased with increased work, and vice versa. Our re-
sult clearly demonstrates that, while instantaneous resetting
is always faster in target-searching, it requires an infinite cost,
making it neither practical nor efficient from the viewpoint
of energetics. The trade-off relation we found appears to be
valid for a wide range of trapping potentials. Therefore, this
trade-off relation could be used as a standard reference for in-
vestigating various processes accompanied with a finite-time
stochastic resetting process, where the reset is not controllable
but occurs at random times such as in biological systems.
However, in the case where the reset is controllable such as
in some artificial systems, the trade-off minima curve can be
further lowered by using a different resetting strategy, namely,
the sharp resetting protocol. Our results could lead to the con-
struction of thermodynamically efficient searching strategies
with finite energy resources, which could be especially use-
ful in experimental studies of biophysical and single-particle
systems [37–41,61,62] pertaining to finite-time stochastic re-
setting.
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APPENDIX A: MOMENT GENERATING FUNCTION
OF FPT IN A SINGLE RESET PHASE

We consider a Brownian particle moving in an external
potential U (x) that is centered around the resetting position
xR. The dynamics of the particle is described by the following
Langevin equation

ẋ = −∂xU (x) +
√

2DRη(t ), (A1)

where η(t ) is a Gaussian white noise with zero mean and unit
variance, and DR is the diffusion constant for the reset phase.
The particle starts at a position x1 and we want to find the
time when it reaches the position xR for the first time. This
is a typical reset phase scenario in a resetting dynamics with
finite reset time.

The moment generating function of the FPT tR to return to
the resetting position can be written as

QR(p|x1) =
∫ ∞

0
e−ptR PR(tR|x1)dtR = 〈e−ptR 〉, (A2)

where PR(tR|x1) is the probability density function of tR given
the particle starts the reset phase from the position x1. Now we
divide the FPT of the reset process tR into two parts: The initial
infinitesimal time �t and the remaining time tR − �t . The
position at time t = �t is given by x′

1 = x1 + [−∂xU (x) +√
2DRη(t )]�t . Therefore, the expression of QR(p|x1) can be

rewritten as

QR(p|x1) = 〈e−p�t QR(p|x′
1)〉

≈ (1 − p�t )〈QR(p|x1 − ∂x1U�t +
√

2DRη(0)�t )〉
≈ (1 − p�t )

〈
QR(p|x1) + ∂x1 QR(p|x1){−∂x1U

+
√

2DRη(0)}�t + 1
2∂2

x1
QR(p|x1){−∂x1U

+
√

2DRη(0)}2(�t )2〉
≈ QR(p|x1)−pQR(p|x1)�t−(

∂x1U
)
∂x1 QR(p|x1)�t

+ DR∂2
x1

QR(p|x1)�t .

Hence, the backward differential equation of the moment gen-
erating function for the reset phase can be written as

DR∂2
x1

QR(p|x1) − (∂x1U )∂x1 QR(p|x1) − pQR(p|x1) = 0.

(A3)

The boundary conditions for solving the above equation for
p > 0 are QR(p|x1 → xR) = 1 and QR(p|x1 → ±∞) = 0,
with QR(0|x1) = 1. Since we are interested in the derivative
of QR(p|x1) with respect to p at p = 0, it is not necessary
to consider the case for p < 0. We consider a linear trapping
potential U (x) = a|x1 − xR| (a > 0), yielding

−∂x1U = −a, x1 � xR,

= a, x1 < xR.

In the region x1 � xR, Eq. (A3) is written as

DR∂2
x1

QR(p|x1) − a∂x1 QR(p|x1) − pQR(p|x1) = 0. (A4)

The solution of the above equation is given by

QR(p|x1) = C1eλ+x1 + C2eλ−x1 , (A5)

where λ± = a±
√

a2+4pDR

2DR
. Using the boundary condition

QR(p|x1 → ∞) = 0 ⇒ C1 = 0 and using QR(p|x1 → xR) =
1 ⇒ C2 = e−λ−xR . Hence, for x1 � xR,

QR(p|x1) = exp

[
−

√
a2 + 4pDR − a

2DR
(x1 − xR)

]
. (A6)

In the region x1 < xR, Eq. (A3) is written as

DR∂2
x1

QR(p|x1) + a∂x1 QR(p|x1) − pQR(p|x1) = 0. (A7)

The solution of the above equation (A7) is given by

QR(p|x1) = C1eλ+x1 + C2eλ−x1 , (A8)

where λ± = −a±
√

a2+4pDR

2DR
. Using the boundary condi-

tion QR(p|x1 → −∞) = 0 ⇒ C2 = 0 and using QR(p|x1 →
xR) = 1 ⇒ C1 = e−λ+xR . Hence, for x1 < xR,

QR(p|x1) = exp

[
−

√
a2 + 4pDR − a

2DR
(xR − x1)

]
. (A9)
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Combining the two expressions in Eqs. (A6) and (A9), the
moment generating function is

QR(p|x1) = exp

[
−

√
a2 + 4pDR − a

2DR
|x1 − xR|

]
. (A10)

APPENDIX B: CALCULATION OF THE GLOBAL FPT

The backward differential equation of QA(p|x0) is given by

D∂2
x0

QA(p|x0) − (p + r)QA(p|x0)+rQA(p|xR)QR(p|x0) = 0.

(B1)

Using Eq. (A10), the above equation can be rewritten as

D∂2
x0

QA(p|x0) − (p + r)QA(p|x0)

+ r exp[−λ(p)|x0 − xR|]QA(p|xR) = 0, (B2)

where λ(p) =
√

a2+4pDR−a
2DR

. The above equation (B2) is
solved in two regions, namely, Region I: x0 > xR, and
Region II: x0 < xR. In Region I, Eq. (B2) can be
written as

D∂2
x0

QI
A(p|x0) − (p + r)QI

A(p|x0)

+ r exp[−λ(p)(x0 − xR)]QA(p|xR) = 0. (B3)

The solution of Eq. (B3) is

QI
A(p|x0) = C1eμ(p)x0 + C2e−μ(p)x0

− ν(p)QA(p|xR)e−λ(p)(x0−xR ), (B4)

where μ(p) = √
(p + r)/D and ν(p) = r/[Dλ2(p) − (p +

r)]. In Region II, Eq. (B2) can be written as

D∂2
x0

QII
A(p|x0) − (p + r)QII

A(p|x0)

+ r exp[−λ(p)(xR − x0)]QA(p|xR) = 0. (B5)

The solution of Eq. (B5) is

QII
A(p|x0) = C3eμ(p)x0 + C4e−μ(p)x0

− ν(p)QA(p|xR)e−λ(p)(xR−x0 ). (B6)

The constants in the above expressions (B4) and (B6) for
QI

A(p|x0) and QII
A(p|x0) are determined by the following four

boundary conditions: (i) QI
A(p|x0 → ∞) = 0, (ii) QII

A(p|x0 →
0) = 1, (iii) QI

A(p|x0 → x+
R ) = QII

A(p|x0 → x−
R ) = QA(p|xR),

and (iv) ∂x0 QI
A(p|x0)|x0→x+

R
= ∂x0 QII

A(p|x0)|x0→x−
R

.

Boundary condition (i) suggests C1 = 0. Using boundary
condition (ii), we have

C3 + C4 − ν(p)e−λ(p)xR QA(p|xR) = 1. (B7)

Using boundary condition (iii), we get

C2e−μ(p)xR − ν(p)QA(p|xR) = C3eμ(p)xR + C4e−μ(p)xR − ν(p)QA(p|xR)

⇒ C2 = C3e2μ(p)xR + C4. (B8)

Using Boundary condition (iv), we have

−μ(p)C2e−μ(p)xR + ν(p)λ(p)QA(p|xR) = μ(p)C3eμ(p)x0 − μ(p)C4e−μ(p)x0 − ν(p)λ(p)QA(p|xR),

C2e−μ(p)xR + C3eμ(p)x0 − C4e−μ(p)x0 = 2ν(p)λ(p)

μ(p)
QA(p|xR),

[C3e2μ(p)xR + C4]e−μ(p)xR + C3eμ(p)x0 − C4e−μ(p)x0 = 2ν(p)λ(p)

μ(p)
QA(p|xR),

2C3eμ(p)xR = 2ν(p)λ(p)

μ(p)
QA(p|xR),

⇒ C3 = ν(p)λ(p)

μ(p)
QA(p|xR)e−μ(p)xR . (B9)

The expression of C4 can be calculated by plugging Eq. (B9) into Eq. (B7),

C4 = 1 + ν(p)e−λ(p)xR QA(p|xR) − ν(p)λ(p)

μ(p)
QA(p|xR)e−μ(p)xR . (B10)

Using the expressions of C3 and C4 in Eq. (B8), we have

C2 =
[
ν(p)λ(p)

μ(p)
QA(p|xR)e−μ(p)xR

]
e2μ(p)xR + 1 + ν(p)e−λ(p)xR QA(p|xR) − ν(p)λ(p)

μ(p)
QA(p|xR)e−μ(p)xR

= 1 + ν(p)e−λ(p)xR QA(p|xR) + ν(p)λ(p)

μ(p)
QA(p|xR)[eμ(p)xR − e−μ(p)xR ]

= 1 + ν(p)e−λ(p)xR QA(p|xR) + 2ν(p)λ(p)

μ(p)
QA(p|xR) sinh[μ(p)xR]. (B11)
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Hence the expression of the moment generating function in Region I is

QI
A(p|x0) = e−μ(p)x0 + ν(p)e−λ(p)xR e−μ(p)x0 QA(p|xR)

+ 2ν(p)λ(p)

μ(p)
QA(p|xR) sinh[μ(p)xR]e−μ(p)x0 − ν(p)QA(p|xR)e−λ(p)(x0−xR ). (B12)

The expression of QA(p|xR) can be calculated by replacing x0 with xR in Eq. (B12) as

QA(p|xR) = e−μ(p)xR +
[
ν(p)e−[λ(p)+μ(p)]xR + 2ν(p)λ(p)

μ(p)
sinh[μ(p)xR]e−μ(p)xR − ν(p)

]
QA(p|xR)

⇒ QA(p|xR) = e−μ(p)xR

1 + ν(p) − ν(p)e−[λ(p)+μ(p)]xR − 2ν(p)λ(p)
μ(p) sinh[μ(p)xR]e−μ(p)xR

= e−μ(p)xR

fA(p, xR )
. (B13)

Considering the Brownian particle to be reset to its initial position, i.e., x0 = xR, the FPT to reach the global target at the origin
is

〈tG〉 = −∂pQA(p|xR)|p→0 = −
[

− xR
e−μ(p)xR

fA(p, xR )
∂pμ(p) − e−μ(p)xR

f 2(p|xR)
∂p fA(p, xR )

]∣∣∣∣
p→0

= [
xRQA(p|xR)∂pμ(p) + eμ(p)xR Q2

A(p|xR)∂p fA(p, xR )
]∣∣

p→0

= xRQA(0|xR)∂pμ(p)|p→0 + eμ(0)xR Q2
A(0|xR)∂p fA(p, xR )|p→0. (B14)

In addition, we have

μ(p) =
√

(p + r)/D; μ(0) =
√

r/D = α; ∂pμ(p) = 1√
D

1

2
√

p + r
; ∂pμ(p)|p→0 = 1

2
√

rD
= 1

2Dα
,

λ(p) =
√

a2 + 4pDR − a

2DR
; λ(0) = 0; ∂pλ(p) = 1√

a2 + 4pDR

; ∂pλ(p)|p→0 = 1

a
,

ν(p) = r

Dλ2(p) − (p + r)
; ν(0) = r

Dλ2(0) − r
= −1; ∂pν(p) = − r[2Dλ(p)∂pλ(p) − 1]

[Dλ2(p) − (p + r)]2
;

∂pν(p)|p→0 = − r[2Dλ(0)∂pλ(p)|p→0 − 1]

[Dλ2(0) − r]2
= 1

r
. (B15)

The above expressions yield

∂p fA(p, xR )|p→0 = ∂pν(p)|p→0 − ∂pν(p)|p→0e−[λ(0)+μ(0)]xR − ν(0)xRe−[λ(0)+μ(0)]xR [∂pλ(p)|p→0 + ∂pμ(p)|p→0]

− 2ν(0)

μ(0)
sinh[μ(0)xR]e−μ(0)xR∂pλ(p)|p→0

= 1

r
− 1

r
e−αxR + (−1)xRe−αxR

[
1

a
+ 1

2
√

rD

]
− 2(−1)

α
sinh[αxR]e−αxR

1

a

= 1

r
(1 − e−αxR ) − xRe−αxR

[
1

a
+ 1

2Dα

]
+ 2

aα
sinh[αxR]e−αxR ,

QA(0|xR) = e−μ(0)xR

f (0, xR )
= e−αxR

1 + ν(0) − ν(0)e−[λ(0)+μ(0)]xR − 2ν(0)λ(0)
μ(0) sinh[μ(0)xR]e−μ(0)xR

= e−αxR

1 + (−1) − (−1)e−αxR
= 1. (B16)

Therefore, the expression of the global mean FPT is

〈tG〉 = xR

2Dα
+ eαxR

[
1

r
(1 − e−αxR ) − xRe−αxR

(
1

a
+ 1

2Dα

)
+ 2

aα
sinh(αxR)e−αxR

]

= xR

2Dα
+ 1

r
(eαxR − 1) − xR

a
− xR

2Dα
+ 1

aα
sinh(αxR)

= 〈tD〉 + 1

aα
[2 sinh(αxR) − αxR], (B17)

where 〈tD〉 = (eαxR − 1)/r is the mean FPT to reach the global target at the origin with instantaneous resetting.
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FIG. 7. Analytical plots for linear trapping potential showing the convergence of the results of finite-time stochastic resetting to those of
the instantaneous resetting process at large values of strength of the potential a. (a) Plot of the optimal resetting rate r∗

G as a function of the
potential strength. (b) Plot of the mean FPT at the optimal resetting rate r = r∗

G as a function of the potential strength. In both plots the black
dashed line represents the results of the instantaneous resetting.

The global mean FPT has a minima with respect to the
resetting rate (see Fig. 3). The optimal resetting rate and
the corresponding minimum mean FPT is plotted against the
potential strength in Fig. 7 along with their limiting values.

APPENDIX C: CALCULATION OF WORK

The backward differential equation of QC(p|x0) is given by

D∂2
x0

QC(p|x0) − rQC(p|x0) + re−pw(x0 )QC(p|xR) = 0. (C1)

To calculate work during the whole process, we replace the
weight function w[x(t )] with the trapping potential U (x).
Hence, for the linear potential, w[x(t )] = U (x) = a|x − xR|
with a > 0. In this case Eq. (C1) becomes

D∂2
x0

QC(p|x0) − rQC(p|x0) + re−pa|x0−xR |QC(p|xR) = 0.

(C2)

Equation (C2) is solved in two regions, namely, Region I:
x0 > xR, and Region II: x0 < xR. In Region I, Eq. (C2) can
be written as

D∂2
x0

QI
C(p|x0) − rQI

C(p|x0) + re−pa(x0−xR )QC(p|xR) = 0.

(C3)

The solution of Eq. (C3) is

QI
C(p|x0) = C1eαx0 + C2e−αx0 − γ (p)e−pa(x0−xR )QC(p|xR),

(C4)

where γ (p) = r/(Dp2a2 − 2r). In Region II, Eq. (C2) can be
rewritten as

D∂2
x0

QII
C(p|x0) − rQII

C(p|x0) + re−pa(xR−x0 )QC(p|xR) = 0.

(C5)

The solution of the above equation (C5) is

QII
C(p|x0) = C3eαx0 + C4e−αx0 − γ (p)e−pa(xR−x0 )QC(p|xR).

(C6)

Boundary conditions are as follows: (i) QI
C(p|x0 →

∞) = 0, (ii) QII
C(p|x0 → 0) = 1, (iii) QI

C(p|x0 → x+
R ) =

QII
C(p|x0 → x−

R ) = QC(p|xR), and (iv) ∂x0 QI
C(p|x0)|x0→x+

R
=

∂x0 QII
C(p|x0)|x0→x−

R
.

Boundary condition (i) suggests C1 = 0. Using boundary
condition (ii), we have

C3 + C4 = 1 + γ (p)e−paxR QC(p|xR). (C7)

Using boundary condition (iii), we get

C2e−αxR − γ (p)QC(p|xR) = C3eαxR + C4e−αxR − γ (p)QC(p|xR)

⇒ C2 = C3e2αxR + C4. (C8)

Using boundary condition (iv), we obtain

−αC2e−αxR + paγ (p)QC(p|xR) = αC3eαxR − αC4e−αxR − paγ (p)QC(p|xR),

α[C2e−αxR + C3eαxR − C4e−αxR ] = 2paγ (p)QC(p|xR),

C3eαxR + C4e−αxR + C3eαxR − C4e−αxR = 2pa

α
γ (p)QC(p|xR)

⇒ C3 = pa

α
γ (p)QC(p|xR)e−αxR . (C9)

Using the expression in Eq. (C8), and substituting x0 with xR in the expression of QI(p|x0), one arrives at the following expression
of QC(p|xR):

QC(p|xR) = e−αxR

1 + γ (p) − γ (p)e−(pa+α)xR − 2pa
α

γ (p) sinh(αxR)e−αxR
= e−αxR

fC(p, xR )
. (C10)
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Considering the Brownian particle to be reset to its initial position, the average work done until the Brownian particle reaches
the target for the first time is

〈W 〉 = −∂pQC(p|xR)|p→0 = e−αxR

f 2
C (p, xR )

∂p fC(p, xR )|p→0

= eαxR Q2
C(0|xR)∂p fC(p, xR )|p→0. (C11)

Now, we have

fC(p, xR ) = 1 + γ (p) − γ (p)e−(pa+α)xR − 2pa

α
γ (p) sinh(αxR)e−αxR ,

∂p fC(p, xR ) = ∂pγ (p) − ∂pγ (p)e−(pa+α)xR + axRγ (p)e−(pa+α)xR − 2a

α
γ (p) sinh(αxR)e−αxR

− 2pa

α
∂pγ (p) sinh(αxR)e−αxR ,

∂p fC(p, xR )|p→0 = ∂pγ (p)|p→0 − ∂pγ (p)|p→0e−αxR + axRγ (0)e−αxR − 2a

α
γ (0) sinh(αxR)e−αxR ,

γ (p) = r

Da2 p2 − r
⇒ γ (0) = −1, ∂pγ (p) = − 2Dr pa2

(Da2 p2 − r)2
⇒ ∂pγ (p)|p→0 = 0,

∴ ∂p fC(p, xR )|p→0 = −axRe−αxR + 2a

α
sinh(αxR)e−αxR . (C12)

Hence, the final expression of the average work is

〈W 〉 = eαxR Q2(0|xR)

[
−axRe−αxR + 2a

α
sinh(αxR)e−αxR

]

= a

α
[2 sinh(αxR) − αxR]. (C13)

APPENDIX D: TRADE-OFF RELATION
FOR LINEAR POTENTIAL

Here we discuss the trade-off plot for the linear trapping
potential in detail. In Fig. 8, we have plotted 〈tex〉|r=r∗

ex
(the

solid curve) along with seven different sets of simulation
(shown by the data points) of 〈tex〉 and the average work 〈W 〉
in the joint phase space. Each set corresponds to a particular
value of the potential strength a as shown in the figure. To ob-

FIG. 8. Trade-off relation between excess time and work, i.e.,
plot of 〈tex〉 as a function of 〈W 〉 for the n = 1 case. The solid curve
denotes the minimum excess time 〈tex〉|r=r∗

ex for a given work, derived
for n = 1. Data points are obtained from the simulation with various
potential strengths a and reset rates r.

tain each of these sets we have varied the resetting rate in the
range {0.005, 0.1} and computed 〈tex〉 and 〈W 〉, respectively,
from Eqs. (19) and (21). As expected, all the data points stay
above the lower bound depicted by the solid line. Only when
the resetting rate becomes the optimal one r∗

ex in each case
does the data fall onto the black solid line. We have performed
similar simulations for other potentials and constructed an
extended trade-off plot in Fig. 5.

APPENDIX E: CALCULATION OF MEAN FPT
AND AVERAGE WORK FOR THE SHARP RESETTING

PROTOCOL

Consider a Brownian particle freely diffusing in one-
dimensional space. The particle can reach the target at a
random time, say T , starting from an initial position x0. How-
ever, resetting can occur before the particle finds the target,
resulting in resetting time R < T . In this case, the particle
undergoes a return phase to the initial coordinate assisted by
an external potential U (x). Note that both T and R can be
sampled from arbitrary distribution. Let x be the position of
the particle when the reset phase starts and τ (x) be the mean
time required to reach the resetting position xR for the first
time during the return phase. The mean global FPT to reach
the target located at the origin then follows from [52]

〈tG〉 = 〈min(T, R)〉
P(T < R)

+
∫ ∞

0 dt fR(t )
∫

dxτ (x)G0(x, t |x0, 0)

P(T < R)
,

(E1)
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FIG. 9. Numerical results for the sharp resetting protocol. Plots
for (a) 〈tG〉 and (b) 〈W 〉 as a function of τR for various values of a
with the parameters x0 = xR = 5 and D = DR = 0.5.

where fR(t ) is the probability density function of the reset-
ting time. For example, in the case of stochastic resetting,
fR(t ) = re−rt , and for sharp resetting, fR(t ) = δ(t − τR). The
propagator G0(x, t |x0, 0) in Eq. (E1) is the conditional proba-
bility density to find the particle at position x at time t given
that it started at x0 at time t = 0, but in the presence of the
target [63]

G0(x, t |x0, 0) = 1√
4πDt

[e− (x−x0 )2

4Dt − e− (x+x0 )2

4Dt ]. (E2)

Finally, for a simple Brownian particle, the mean reaching
time τ (x) under the linear potential U (x) = a|x − xR| is given
by

τ (x) = −∂pQR(p|x)|p→0 = |x|
a

. (E3)

Plugging all these expressions together into Eq. (E1) does not
yield a closed expression; hence, we evaluate 〈tG〉 numerically.
The result is plotted in Fig. 9(a).

Similar to the mean first passage time, one can construct a
renewal equation for the work by noting that it depends only
on the number of times the particle undergoes a reset phase.
Following the method presented in Ref. [52], one can then
write a renewal equation for the work as

W = 0 if T < R,

= U (x) + W ′ if R � T, (E4)

where W ′ is an independent and identically distributed copy
of W which again has the possibilities to accumulate zero or a
finite quantity. The above expression (E4) can be rewritten as

W = I (R � T )[U (x) + W ′], (E5)

where I (R � T ) is an indicator function which takes value 1
if R � T with probability P(R � T ) and is zero otherwise.
Taking expectations on the both sides of Eq. (E5), we have

〈W 〉 = 〈I (R � T )[U (x) + W ′]〉
= 〈I (R � T )U (x)〉 + P(R � T )〈W ′〉, (E6)

where in the last equality we have considered the fact that
W ′ is independent of W and 〈I (R � T )〉 = P(R � T ). Finally,
〈W 〉 = 〈W ′〉, since W ′ is an independent and identically dis-
tributed copy of W . Therefore, a simple rearrangement leads
to

〈W 〉 = 〈I (R � T )U (x)〉
P(T < R)

, (E7)

which can be computed as shown in Ref. [52]. Following this,
one finds

〈W 〉 =
∫ ∞

0 dt fR(t )
∫

dxU (x)G0(x, t |x0, 0)

P(T < R)
. (E8)

For sharp resetting, we have calculated Eq. (E8) numerically.
The result is plotted in Fig. 9(b). Since τR represents the time
for the diffusion phase, higher values of τR imply lower num-
bers of the reset phase and, hence, lower average work. We
finally make a note that Eq. (E8) is a very general expression
that holds for arbitrary resetting time density, potential, and
underlying search processes (and not limited to diffusion).
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