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We present a realization of directed Isi(i@l) type dynamic absorbing state phase transitions in the context
of one-dimensional interfaces, such as the relaxation of a step on a vicinal surface. Under the restriction that
particle deposition and evaporation can only take place near existing kinks, the interface relaxes into one of
three steady states: rough, perfectly ordered(f#) without kinks, or disordered flaDOF) with randomly
placed kinks but in perfect up-down alternating order. A DI type dynamic preroughening transition takes place
between the OF and DOF phases. At this critical point the asymptotic time evolution is controlled not only by
the DI exponents but also by the initial condition. Information about the correlations in the initial state persists
and changes the critical exponeritS1063-651X99)06401-4

PACS numbgs): 64.60.Ht, 68.35-p, 82.65.Jv

[. INTRODUCTION color the domains at opposite sides of the walls alternatingly
with two colors. One of the two colors dies out in the ad-
Absorbing type dynamic phase transitions are the focus a$orbing state. This is reminiscent of the domain wall formu-
extensive researchl—-12. These transitions occur in dy- lation of the equilibrium Ising model, where the existence of
namic processes with trapped states. At the absorbing side bff0 coexisting phases is also obscured.
the phase transition, the system evolves into one specific One appealing scheme of classifying absorbing phase
microscopic state, a so-called absorbing state, out of which fransitions is by association with conventional equilibrium
cannot escape. At the active side of the phase transition, tH#hase transitions. For example, consider the one-dimensional
system manages to avoid such traps. An ensemble has a ing model with single spin-flip dynamics. In terms of do-
nite probability to stay alive. main walls this involves the following processes: spontane-
Two distinct types of absorbing phase transitions havedus creation of domain wall pairs-82A with probability
been identified in one dimension: the directed percolatiorPsp (the Boltzmann weight hopping of single domain walls
(DP) and directed IsingDl) universality class. DP type dy- with probability p,=1, and pair annihilation 2—0 with
namic critical behavior has been found in, e.g., Sghédfirst ~ probability p,=1. The stationary state of this model is the
model for contact processg®, 3], pair contact processé4], equilibrium state, which is obviously “disordered’active
and branching annihilating random wallAW's) with an  in one dimension. However, the model evolves always into
odd number of offspring5]. DI type dynamic critical behav- one of the two perfectly orderethbsorbing states if we
ior has been found in, e.g., probabilistic cellular automatadisallow the spontaneous creation of domain walg,=0,
[6], nonequilibrium kinetic Ising type mode]Z], interacting  because then the domain wall density can only decrease. The
monomer-dimer model8], and BAW models with an even DI transition comes into play when branching processes are
number of offspring[5,9]. These models describe a wide allowed,; i.e., the creation of domain wall pairs in the vicinity
range of phenomena, in particular, epidemic spreading andf existing domain wallsA— 3A. Branching can keep the
catalytic chemical reactions. system alive, while the two perfectly ordered Ising ground
In analogy with equilibrium phase transitions, it is be- states still remain absorbing states. The resulting model is
lieved that dynamic universality classes are determined binown as the BAW model with two offspring.
the degeneracy and symmetries of the absorbing states and The same line of reasoning associates a distinct absorbing
by the symmetry properties of interfacetomain wall$ be-  type dynamic universality class with each conventional equi-
tween them[10-12. DP type transitions involve typically librium universality class, like the familiag-state Potts and
only a single absorbing state or a set of absorbing states witfrstate clock universality classes. However, none of the
one of them dynamically more prominent in a coarse grainednodels studied thus far with higher symmetries than the
sense than the othef4,10,17. DI type transitions involve Ising model has an absorbing phase transition. Dynamic pro-
two equivalent adsorbing states or two equivalent classes afesses with more than two equivalent absorbing states (
absorbing statefl 3]. =3) appear to be always actiy&1,14. Cardy and Taber
Counting the number of absorbing states is not sufficientprovide a possible explanation for tHis5]. Additional sys-
The degeneracy of the absorbing states can be obscured tgmatic numerical studies are needed to settle this issue.
the formulation of the dynamic rule. For example, in BAW In this paper we introduce an application of absorbing
dynamics involving only one species of particles, thephase transitions to the dynamics of one-dimensional solid-
“empty” absorbing state seems not to be degenerate, but thgas interfaces. We find a one-dimensional dynamic pre-
transition belongs to the DI universality class if the dynamicsroughening(PR) transition from an ordered flaabsorbing
conserves the particle number moduld329]. In that case phase to a disordered flgctive phase. Consider the one-
particles can be reinterpreted as domain walls and we catimensional restricted solid-on-soli@SOS model descrip-
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tion of crystal surfaces. The height difference betweerbelow, this leads to a peculiar initial configuration depen-
nearest-neighboring columns of particles is 0ol, i.e., dence of the asymptotic decay of the step densitieskinks
only steps(kinks) with single atomic heights are allowed. A in the one-dimensional interface
conventional dynamic Monte Carlo type equilibration pro- In Sec. Il, we introduce our model in detail. It is instruc-
cess where single particles adsorb on or desorb from thve to interpret it not only as a model for surface relaxation,
surface with equal probability leads to a rough equilibriumbut also for surface catalysis. In its latter reincarnation, the
surface with Edwards-Wilkinso{EW) type [16] scaling  process is a two-species generalization of the BAW model
properties. In analogy with the above directed Ising modelwith two offspring. The up and down steflgnks) represent
discussion, we transform the perfectly ordered flat state intébwo species of particled andB.
an absorbing state by disallowing adsorption and desorption In Sec. Il we limit ourselves to configurations with per-
of particles at flat segments of the surfdspontaneous cre- fect ABABalternating order. These DOF-type configurations
ation of step pains The only processes allowed are: form a dynamical invariant subspace. The numerical results
hopping/pair annihilation of steps by adsorbing or desorbingyresented in Sec. Ill confirm that our PR transition belongs
a particle at step edges and branching of steps by adsorpti@g the DI universality class.
or desorption at the next-nearest-neighbor sites near existing |n Sec. IV, we discuss the crossover scaling properties of
steps. The branching processes fall into two classes: the ongge DI critical point into the rough phase. The rough phase
that preserve local flatness and those that create local rougRas conventional EW-type scaling properties. Recall that we
ness. We give them independent probabilities. disallow spontaneous adsorption and desorption from flat
This model describes the evolution of the one dimensionagyrface segments; surface roughness can only be created and
interface from any initial random rough configuration to maintained by branching. Apparently, this restriction does
three types of stationary states: a rough phase with dynamigot alter the scaling properties of the rough phase.
exponentz=2 (EW type), a perfectly ordered flatOF) ab- The DOF-type Ising degeneracy shows up in the evolu-
sorbing phase without steps, and an active disordered flajon of arbitrary initial states. The kink densities scale in time
(DOF) phase. DOF phases are well known in equilibriumin an unusual way, not only at the PR transition, but also
surfaces. They represent step liquids where the surface reverywhere in the OF and DOF phases. They depend
mains flat due to long-range step-up step-down alternatingtrongly on the initial conditions; whether the initial configu-
order but steps are placed randonily7,18. Our dynamic ration is flat or rough, and on the correlations in such initial
DOF stationary state has no defects, i.e., the up-down altefpugh states. Conventional wisdom tells us that the long time
nating order is perfect and the steps are placed randomly. scaling of dynamic processes depends only on the dynamic
Although the dynamic DOF phase is active, it has an abexponent and the stationary state exponents of a process. In
sorbing state type property. The OF absorbing state and theur case, critical exponents vary with the initial conditions.

DOF active phase at the other side of the transition have ifve present an analytical scaling theory for this in Sec. V and
common that both “ground states” lack thermodynamic de-numerical results in Sec. VI.

fects (both are at their fixed point in the sense of renormal-
ization theory.

Equilibrium preroughening transitions belong to the II. MODEL
Ashkin-Teller universality clas§17,18. They involve two
coupled Ising type order parameters. They are nonzero at Consider a one-dimensional lattice. Each site is vacant or
opposite sides of the transition. A perfectly DOF initial con- occupied by at most oné or one B type particle. In the
figuration has a half-integer average surface height and  surface catalysis interpretatioA,and B represent two types
evolves at the OF side of the PR transition into a perfectlyof particles. In the surface formulation, they represent up and
flat ordered absorbing state withor n+1 integer surface down steps. Configurations evolve in time according to the
height. This OF-type twofold degeneracy is the conventionafollowing dynamic rule. First choose a site at random. If the
spontaneous symmetry breaking associated with DI typeite is empty, nothing happens. If the site is occupied, the
transitions. However, an Ising type degeneracy exists also garticle can hop to its nearest-neighbor sites with probability
the DOF side of the PR transition. An initial state with an p. If it lands on top of an existing particle of the opposite
integer average surface height evolves into a stationary kind, the AB pair annihilates immediately. The move is re-
DOF state with surface height+ 3 orn—%. We call thisthe  jected if the particle would land on top of a particle of the
DOF-type degeneracy. In analogy with equilibrium transi-same type.
tions one might expect therefore that the dynamic PR transi- Besides hopping, each particle can also branch into three
tion be described by two coupled DI transitions. This turnsparticles by the creation of aiB pair. Branching comes in
out not to be the case. two distinct flavors; the one that preserves |o&&8AB order

The dynamic PR transition belongs to tfsingle) DI uni-  and the one that breaks it. Order preserving branct@i®B)
versality class. The two types of spontaneous symmetrgreates local DOF step-up step-down order in the surface.
breaking are not on an equal footing. A perfect DOF initial Order breaking branchingOBB) creates local roughness
state can decay into the OF state, but a perfect OF state {see Fig. 1L These branching processes occur with probabil-
frozen forever(even at the DOF side of the PR transifion ity g andr, respectively. Branching could lead into double
The DOF-type degeneracy does not create additional Dbccupancy of a siteAB pairs at the same site annihilate
critical fluctuations, but it still affects the scaling behavior. immediately. The branching event is rejected if it would re-
Configurations with perfect DOF order form an invariant sult in two particles of the same type at any site. We require
subspacdwhich includes the OF ordered statés shown that the chosen particle must attempt to hop or branch. This
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mirror symmetry.

S - - _ branching is dominant, the active phase lacks step up-down
implies thatp+q+r=1.q=a/p andr=r/p are our choices  ajternating order and is therefore probably rough.

for independent parameters. In the presence of OBB-type branching>0), the sta-

We need to distinguish also between so-called dynami%onar surface state turmns out to be alwavs ro Ei
and static branching. The two new particlasandB, created y y Ugte Fig.

by each branching process may be placed in two different)- Along th9?~: 0 line, the surface is flat; in the OF absorb-
ways. The center of mass is stationdsyatic branchingor  ing phase forgq<<q. and the DOF active phase for>q..
moves(dynamic branching[19]. In the latter the new par- Spontaneous order is difficult to maintain in one dimension.

ticles are placed both to the left or both to the right of therpis explains why the DOF phase is limited to the:0
parent particle with equal probability. In the interface répre-g hspace. It would have been nice, but a surprise if the OF

sentation of the model, dynamic branching corresponds toh ded into>0. Equilibri heni h
single particle adsorption/desorption. Static branching reprep ase extended into>0. Equilibrium roughening phase

sents two-particle eventsee Fig. 1 So dynamic branching transitions can.be viewed qswlo_limits pf the g-state clock

is more natural. These details do not affect the universality offodel. Absorbing phase transitions wijk=3 are unknown
the phase transition. But they can change dramatically th@nd may not exist at all as mentioned in Sef21].

location of the critical point19]. It is well known that in the The transition pointq, in Fig. 2 represents a one-
BAW model with two offspring the stationary state is always dimensional dynamic analogue of equilibrium preroughening
absorbing. Static branching does not create enough activityansitions. The disordered flat phase is actaestep liquid

to destabilize the absorbing phd2€]. We applied both type phasg, but maintains perfect step-up step-down alternating
of branching in our simulations. The universal scaling prop-order. A and B type particles move around like in a liquid,
erties do not change. Here only our results for dynamigyyt remain perfectlyABAB ordered. The distances between
branching are presented. . neighboringA and B particles are randomly distributed.

Each particle conflgur_atlon of t_he su_rface catalysis model T4 determine the scaling properties of this transiti8ac.
maps onto a surface height conflguratlpn of the RSOS typﬂl) we measure the steparticle) densityp(t) as a function
surface growth model_. Th_é‘ and B particles represent up of time t, which is the sum of the two single particle densi-
and down steps of unit height. The above dynamic rules fo{ies, pa(t)+ pa(t). The difference between thenmpa(t)

the A and B type particles translate into placement or re- > . )
moval of a sizgle Fs)urface atom near existl?ng Stéfig. 1). —pg(t), describes the global tilt of the surface and is pre-

Adsorptions and desorptions have equal probability. The sugerved by the dynamic rule. The step densityn the sta-
face does not advance nor retreat on average. Flat segmefi§121y staté vanishes in the absorbing phase and remains
of the surface are inactive, which makes the perfectly orf1onzero in the two activeough and DOFphases.
dered flat state an absorbing state. We monitor also the density oAB pairs of particles,
The structure of the phase diagram is shown in Fig. 2. Th@as(t). TheA andB particles in eactAB pair do not have to
numerical details will be presented in Secs. Ill and IV. Herebe immediately adjacent to each other. They can be separated
we want to point out the general features. by a stretch of empty space of arbitrary length. Similarly,
OPB-type branching preserves the average surface heightaa(t) andpgg(t) are the densities AA andBB pairs. It is
while OBB-type branching creates local roughness. Thigasy to show thatpa(t) = paa(t) + 3pas(t) and pg(t)
suggests two distinct types of active phases. In the region of pgg(t) + 3 pas(t). paa(t) — ps(t) is preserved by the dy-
the phase diagram where OPB-type branching is dominantiamics and equal to zero for nontilted surface configurations.
the steps prefer up-down alternating order. The surface likegaa distinguishes between the DOF and the rough active
to remain flat on average with randomly placed steps. This iphases. In the DOF stationary state, the system is active with
a one-dimensional dynamical version of the DOF phaseerfectAB alternating order, i.ep#0 andpaa=0. In the
known from two-dimensional equilibrium crystal surfacesrough stationary state, th&B alternating order is broken,
[17,18. In the region of the phase diagram where OBB-typei.e., p#0 andpas#0.
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I1l. DIRECTED ISING DYNAMIC 0.05 L e e  RALLL
PREROUGHENING TRANSITION

In this section we present numerical evidence for the DI
nature of the dynamic preroughening transition. Consider the  _
r=0 line of the phase diagrar(Fig. 2 where OBB-type = 0r
branching is excluded. Here, the configurations with perfect
ABAB alternating DOF-type order form a dynamically in-
variant subspace.

In this subspace our model is almost identical to the BAW 005 Lot e e
model with two offspring and dynamic branchind.9]. 104 1073 10”2 107 10°
There, each site may be empty or occupied by a patrticle of a 1/¢
single species. Those particles can hop to a nearest-neighbor ) —
site with probabilityp or create two offspring on the nearest-
and next-nearest-neighbor sites to the left or to the right with 026 k ]
probabilityg=1—p (dynamic branching Two particles an-
nihilate immediately when they happen to land on the same 2
site. This BAW model exhibits an absorbing phase transition = 028 F T
at p=0.51057), which belongs to the DI universality class
[19]. 03 | .

There is an exact two-on-one mapping between the con-
figurations in our model and those in the above BAW model. 032 b v
Simply label the particles in the latter &sandB (or B and 10" 10° 107 10" 10°
A) alternatingly. The dynamic processes for the two models 1/¢
are virtually the same, except for one detail. In the BAW . )
model, withoutA and B labels, particles can always annihi-  FIG. 3. Semilog plots of the effective exponenfsand & vs 1t

late when they land on the same site. In our model ghly for several values ofj close to criticality. The data at our best

andB pairs can annihilate, antlA andBB pairs repel each estimate for the critical poin. are highlighted as thick lines.

other. Hopping events are not affected by this, but OPB-type

branching processes are. Consider a configuration with aan empty lattice. Obviously, this initial configuration belongs

isolatedAB nearest pair, like 008B000, where 0 represents to the DOF-type invariant subspace. Time increments by one

a vacant site. Suppose that thgarticle is chosen to branch unit afterL single site update@ne Monte Carlo stepwith L

a pair ofBA particles to the right. In our model, this attempt the lattice size. We measure the survival probabifitft)

is rejected because it would result in tviBoparticles on a  (the probability that the system is still active at tijeand

single site. In the BAW model this attempt is accepted, andhe number of kinkgparticleg N(t) averaged over & 10°

results in the annihilation of two particles. This difference independent runs up to 5000 time steps.

between the two models does not affect the mod 2 conserva- At criticality the long time limits of these two quantities

tion of the total particle number. So we expect a DI-typeare governed by power laws with critical exponeéitand 7

absorbing phase transition along the 0 line, but the OF as P(t)~t~° and N(t)~t” [3]. Precise estimates for the

phase must be more stable. critical point and the critical exponents are obtained from a
The mapping between configurations of the BAW modelfinite time analysis of

and our model is lost outside the configurational subspace

with perfectABAB order. The DOF subspace is an attractor, In[P(t)/P(t/m)]

however. It contains the global stationary state for arbitrary —6()= T mm 1)
initial configurations. Consider an arbitrary configuration,

i.e., one withAA andBB pairs. Forr =0 there is no mecha-

nism to increase their total numbeb$, , andNgg. Hopping _ INEN(O/N(t/m) ] )

and OPB-type branching decredsg, andNgg, by annihi- g Inm
lation of AB pairs, but never increase them. For example,
consider a configuration like AOABOBO. Hopping of the |n Fig. 3, we plot these effective exponents againstwith
central A particle to the right induces the annihilation of an m=5 for several values Oﬁl These plots bend up or down
QB pggc":‘ggst:ebsoff'gﬁ;até%r:]g?;%rpfﬁé?eocfagr;&'\'% and i time except at criticality. This leads to an estimate of the
BB A~ PBB
decreases monotonically in time. In fact, they decay aIgebrae:ggileﬁfs'm Qc=1.245(5) [22], and also for the critical
ically to zero along the entine=0 axis(see Secs. V and VI
The active steady state involves only configurations with
perfectABAB alternating order.
To locate the critical point we perform defect dynamics
type Monte Carlo simulations, in which one starts with aThese values are slightly different from the standard DI val-
single nearest-neighbor pair 8B particles at the center of ues;5=0.285 andn=0.000. However, their sum is related

5=0.2745), 7=0.01510). 3)
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0 ' ' ' ' aged over 19 independent Monte Carlo runs a@f=0q,
=1.245. The inset shows the saturated values of the step
density, denoted by, as function olL. From these plots we
obtain

£=0.282{5),V£=0-497(5), ()
1

Yl

logjo p

andz=1.76(1) from their ratio. These results are in excel-
lent agreement with those of the DI universality class.

The above analysis at the critical point gives only ratios of
critical exponents. Their bare values can be extracted from
the off-critical behavior op. The saturated value of the step

! ' ' ' ' ' density follows the scaling form po(8q,L)
64 O (b) =LA g(sqLY+), according to Eq(4). The scaling func-
>.T 128 o© tion G(x) becomes a constant in tlke-0 limit and scales as
= gfg 3 G~x* in the x— limit, becausep,~ (59)# in the L—oo
S 05 1024 o - limit. In Fig. 4(b), we show the log-log plots opoL?/":
- againstsqL”:. Using the values ofj. obtained from the
@ defect dynamics simulations afglv, from Eq.(5), we find
that the data are best collapsed with=1.785). Combin-
0oeavo ing this value with those in Eq5), we obtain the critical
0 ' ' : : : exponents
-1.5 -1 -0.5 0 0.5 1 1.5
logio[ (67) L'Vt ] B=0.843), v, =1.785), »=3.125). (6)

FIG. 4. (a) Decay of the step density a=q.. Each curve These values agree well with the DI values and satisfy the
corresponds toL=25, ..., 20 from top to bottom. From the generalized hyperscaling relatid23], 5+ n=(v.—B)v
asymptotic slope of the curves we obt#ifw;=0.2825). Thebro-  very well. We conclude that our model has an absorbing type
ken line is of slope 0.282. The inset shows the finite size scaling Obreroughening transition between the ordered flat and the

the saturated step density. From the slope we obigim,  DOF phase, which belongs to the DI universality class.
=0.4975). Thebroken line has slope 0.49%) Scaling plot for

logyd poL.?'"+ Jagainst logg 5qL*"+]. Using the values ofj, from IV. CROSSOVER INTO THE ROUGH PHASE
defect dynamics simulations afglv, in (a), the best data collapse
is obtained withy, =1.78. The PR phase transition is unstable with respect to OBB-

type branching, for aif>0. We perform defect dynamics

imulations at various values ofandq. The plots for the
effective exponentsg(t) and »(t), show only upward cur-

Further evidence of the DI nature of the transition is Ob_l/ature. This indicates that the system is always active for all

tained by monitoring the time evolution of the step density" =0 The size of the active regidR(t) averaged over sur-

(83.,t,L) in stationary Monte Carlo simulations on a finite vived samples confirms this. It grows linearly in time so the
plog.t, y spreading velocity of the active region is finite in the long

lattice of sizel with 6g=q—q.. We start with a random  ime Jimit. In this active phase, the densitiesdA and BB
configuration inside the invariant subspace with initial kink pairs, paa and pgg, are nonzero. This suggests that the

densitiesp,(0)=pg(0)=1/4 and periodic boundary condi- gieady-state surface is rough. We measure the surface width
tions. The step density averaged over survived samples W(t,L)

only should obey the scaling relation

to the steady-state properties via the generalized hypersc
ing relation[23] and is in excellent agreement with the value
of the DI universality class.

L
p(8q,t,L)=b A" p(b¥150,b7%,b71).  (4) W<t,L>=<%E (hi(t)—F(t))2>, @)

is the order parameter exponent, the correlation length . . . - . .
fxponent in thg spatial diregtio,zlvulvl the dynamic SX_ !n Monte_CarIo simulations on afflmte lattice of sﬂzehi(_t)
ponent24], v the correlation lengtfrelaxation timg expo- S the height of the surface at siteh(t) the average height,
nent in the time direction, ankl an arbitrary scale factor. ~ and(---) the average over survived samples. In Fig. 5, we

This scaling relation determines all scaling properties ofillustrate the typical behavior aiV/(t,L) by the evolution of
p. At the critical point,p decays algebraically3~t~#'"I for ~ the surface atq=r=1.0, using as initial condition
t<7_ with 7_ a characteristic time scale that diverged 3s  ---0AOBO- -- with system sizeL=25 ...,2 and taking
p scales ap~L " #/"s for t>7 . the average over £Quns. The data satisfy the dynamic scal-

Log-log plots ofp(0t,L) versust are shown in Fig. &) ing form W(t,L)=L2*f(t/L*#) with the Edwards-
at criticality for L=25, ... ,2° The step densities are aver- Wilkinson roughness exponent=1/2 and the growth expo-



PRE 59

L L L
10' e 3
3 5 b 3
- 65.;9"' SIS AL REL RS R
s F
10° 3 /“& (RE /j E
i = F e
223l (Y Y|
. I 25
10 OI Illl I.IZI Il3l I.I4I ..I5l l6
10 10 10 10 10 10 10

FIG. 5. The surface width in the rough phasejatr =1.0. The
curves correspond to system sizes 2%, ..., 2. The width obeys
the scaling formW=L2f(t/L*'#) with the Edwards-Wilkinson ex-
ponentsa=1/2, B=1/4, andz= /=2 as shown in the inset.
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FIG. 6. Scaling of the spreading velocityof the active region.
Different symbols are used fer,(+), vo(X), v3(O), v4(A), and
Vet (). Thev =3 merge intov ¢ , Which confirms that o is the
asymptotic value fop.

has perfecABAB alternating order. The configurations with

nentg=1/4. The active dynamic rough phase has the samgjs perfect DOF-type order form an invariant subspace. This
scaling properties as the conventional equilibrium roughsubspace is an attractor, because the densityfotnd BB

phase in one dimension.
The crossover exponewt at the DI critical point into the

T direction must be relevany, is the scaling dimension of

the OBB type branching operator similarye=1/v, which

pairs, paa= pgg, Never increases in time in the absence of
OBB-type branching, along the=0 line. In the conven-
tional picture all asymptotic dynamic time scales depend
only on the dynamic exponeatand the stationary state ex-

is the scaling dimension of the OPB type branching operatofyonents of the DI transition. Surprisingly, this is not true in

y, is potentially an independent DI critical exponéste Fig.

2). We obtainy, numerically by measuring the size of the

active regiorR at various values af along theq=q_. line in

our model. The step density

p~t° ®

defect dynamics type simulations. Consider the scaling rela-

tion R(t,r)=bR(b™?1t,b¥T) with zp = /v, the DI dy-
namic exponent, and an arbitrary scale factor. Fob
=tY%01, R takes the fornR(t,r) =t?1 F(rt¥r/?01). The scal-
ing function F(x) becomes a constant in the—0 limit,
becauseR~t'?01 at the DI transition point. In the<—o
limit, 7 must scale asF~x01~ YV becauseR grows lin-
early in time in the long time limit for >0. Therefore the

asymptotic value of the spreading velocity of the active re-

gion, v=lim,_,R/t, scales a® ~T* with k= (zp,—1)/y, .
In our simulations, we measufRR up to timest=2x 10*

and the pair densities
9

decay in the long time limit with exponents that depend on
the initial condition. Their values depend on whether the
initial state has perfed B alternating order or is rough, and
whether this roughness is random or correlated.

These densities decay as power laws everywhere along

the T=0 line, with different exponents in the different
phases. In this section we review first previously known re-

paa=pee~t A pap~tT B

and average over210°-5x10° samples. The spreading Sults at pointS of the phase diagram, see Fig. 2, and then

velocity v is extracted in two ways. First, we R(t) to the
form a,tuv,t in the time interval 10<t<10"! (k
=1,2,3,4).v, will converge tov in the asymptotic regime.
Next, we define an effective velocity¢u(t) =[R(t+ At)

—R(t)]/At with At=500 and the saturated value in the

generalize those results to the entire0 line.

A. Diffusion-limited pair annihilation: q=0

At point S(r=q=0) all branching processes are disabled

asymptotic regime is denoted hy. Fluctuations around and the dynamics describes chemical reactions with
the saturated value give an estimate of the statistical erroréliffusion-limited pair annihilationA+B—0. This process

In Fig. 6, we plotv, and v for several values of. The

estimates fow, with k=3 merge intov;. This confirms
thatv o is the asymptotic value of the spreading velogity
From a power-law fit we estimate=0.64(1) and hence
obtain the value of the crossover exponsnt=1.2(1).

V. DENSITY DECAY DYNAMICS

In Sec. lll, we demonstrated the DI nature of the absorb-
ing phase transition along=0. The active stationary state

has been studied extensivgB5—28. The particles perform
random walks, subject to an infinite on-site repulsion be-
tween the same species aA@ pairs annihilate when they
meet each other. A random initial configuration with equal
initial densities,pa(0)=pg(0) (a nontilted surface decays
to the absorbing OF “empty” state.

Neglecting spatial correlations gives rise to the rate equa-
tion

dpa(t) _ dps(t)

dt qi ~ Palb)ps(t), (10)
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2
Laa lan ~t@w= /22— 38 The sum of all interparticle distances
_I—l—l—l_ adds up to the size of the system:
A B
A =0 B (paatpee)laat paslag=1. (12
q =
<5 The second term becomes negligible in the asymptotic limit,
T = I R B which yields| o~ paa~tY%w, 1,5 diverges faster thaty
Cy Cp but still slower than the interparticle distance of the ordinary
Ca 0 <d<d" Cs random walk problem.

In summary, the dynamics at poiStbelongs to the ran-
FIG. 7. Schematic typical surface configurations at the absorbelom walk (diffusion) universality class. Starting with the
ing side of the DI transition, €q<{q. nontilted random initial configurations, the density A
pairs decays with the naive random walk dynamic exponent,
with p(t)~t~! as solution. In the absence of on-site repul- as= 1/z,,, but the density ofAA pairs and the particle
sion between the particles, it has been shown rigorously th&tensity decay much slower, withy,= 6=1/2z,, .
this mean-field behaviop~t~1, holds in dimensions higher The above results assume that the initial condition is ran-
than 4 and that the particle density decayp@3~t~? with dom. The exponents change when we modify the initial state.
6=d/4 in dimensionsi<4 [25]. This contradicts the naive The factor 2 appearing in the expone#iis, and ¢ originates
expectation thap be equal to the inverse of the random walk from the random nature of the rough initial configurations
dynamic exponent= 1/z,,= 1/2. discussed in the beginning of this subsection. Suppose it
The following scaling argument explains this result intu- Were correlated such that the initial value for the surplus of
itively [28]. Let Dy be the difference in the number Afand ~ Particles of one species in a box of si& scales with a
B particles in a cube of sizRY. For random(uncorrelateyi ~ different power, |-e-!DR~[l_)_(O)Rd]X- That leaves fap
initial configurations,Dg will be of order Jp(0)R%. As the ~ =1/zy unchanged, but modifies the asymptotic behavior of
system evolves, each particle diffuses over a distancéw  the particle density anchA pair density to 6= 6= (1
during timet (ignoring on-site repulsion So after timetg ~ —X)/Znw in one dimension. The exponents for the interpar-
~R2w, all members of the minority species found a partnerticle distances change accordingly. The nontilted random ini-
in the cube and have annihilated. This leaves the region odi@l configurations correspond to=1/2 and theAB ordered
cupied by the majority species only. Therefore, the particidhitial configurations tax=0. The tilted random initial con-

density decays as figurations should correspond xo=1.
For initial configurations inside DOF subspags,, and
p(t)~ Dr/RY g1, ~ \p(0)t V22w, (11) Pesare always equal to zero. Then the particle density be-

comes equivalent tp,g and decays with the ‘“conven-
nal” random walk dynamic exponenp,~t~ 2w,

Let's now investigate how this dependence of the decay
é:ritical exponents on the initial states generalizes along the

This argument gives the correct value of the decay exponerli'i0
0=d/2z,,=d/4 for d=4. Several numerical simulations
[26,27] found that the on-site repulsion between the sam

species does not alter the decay exporgent entirer=0 line, according to the same type of reasoning.
The same argument can be extended to the time evolution
of the pair densities and the interparticle distan@&. We B. Absorbing phase: 0<g<q

need them later in this section. The size of a domain occu- At the absorbing side of the DI transition point, the

pied by one single species of particl@sg., a train ofA’s), Lo . . .
Iy, grows in time with the same exponent as the rar]domasymptotlc time scaling behavior remains the same as at

walk radius) o~ t¥2w. The AB pair density scales id=1 as point S except for one important detail. Clouds of particles

) A . . take over the role of single particles. Consider an initial
pap~|p~ because each domain with a single species of par

! ; . ) rough state with a low particle density. Each of thésand
ticles is bognded by tWOAB pairs. S0pag d'ecays W'.th B particles broadens itself quickly into a small cloud of par-
Opg=1/zyy,, 1.€., decays faster than the particle dengity icjeq with a characteristic widtl via branching processes
Ong=20. , . . (see Fig. J. These clouds are created by OPB-type branch-

The AA andBB pair densities scale differently. They are 50 therefore preser@BAB alternating local order.
equal for nonFiIted initigl states. The pair densities add up tol’hiis broadening is governed by the DI type dynamics, like in
the total particle densityp=pap+pan+tpee (S€€ Sec. Il gofect dynamics with a single starting particle. The width of
Sinceppg(t) decays faster thap(t), paa=pgg Must have

> . 8 o the cloudsé is finite and of the order of the DI correlation
the same asymptotic behavior as the particle densitye.,  |ength. These clouds are well defined in the asymptotic limit
Oap= 0=1/2z,, in one dimension.

. . . . . . .. because the distances between them, the length stajes,
The interparticle distances diverge in the long time limit. andl g, diverge in time while¢ remains finite.

Definel ax (1ap) @s the average distance between the nearest- there are two topologically distinct types of clouds: the
neighboring particles of the sanifferent speciedsee Fig. ¢ clouds, nucleated from a singheparticle and withA’s at
7). These distances grow via pair annihilationsAd® pairs. )i, edges AB- --BA), and theCy clouds BA- - -AB).
The A andB particle meet through random walk fluctuations ~|5.,ds diffuse through hopping, branching, and pair annihi-

at time intervals of ordek} . Therefore, the particle density |ation of bare particlesCCg pairs can annihilate each other.

decays asdp(t)/dt~ —pAB(t)/IZ’VBV, which leads tol,g  Clouds do not branch. They could in principle, but a branch-
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the fact that the DOF structure is close packed. Only the
solitons at the boundaries of the DOF domains are active.
Their dynamics is basically identical to that of the bare par-
ticles at pointS. Soliton diffusion is a second-order OPB
process. Each soliton can hop to a next-nearest-neighbor site
by applying OPB-type branching twid€ig. 8. The solitons

of the same species repel each other 8g8 soliton pairs

, : . can annihilate each other when they meet. There is no
Sa Sp ’ mechanism to create solitons.

S, N
! ? At finite q, the solitons broaden. Their widthis the DI
FIG. 8. Schematic surface configurationsgat 1. They illus-  correlation length in the active phase. Just as the clouds in
trate that hopping of the solitons requires a sequence of two branchhe absorbing phase, these broadened solitons must obey ef-
Ing processes. fective dynamics at length scalés ¢ identical to those of

ing process likeC,—CaCgCa, requires a collective se- the sharp solitons aj—o; i.e., identical to the particles at
guence of microscopic events involving many particles, angointS. The soliton density decays with the same exporent
at length scales> ¢ this does not happen. as that of the clouds at the other side of the transition.

The clouds, at the DI length scalg obey therefore the Since the soliton density is equal to the particle pair den-
same dynamic rules as the diffusion-limited pair annihilationsities paa and pgg, we obtain paa~t~ %2A with Oaa
process of bare particles at poftwith renormalized prob- =1/2z,,. The particle density is finite in the steady active

abilities. The density of the cloudp(t), and the cloud pair State. S andp,g do not decay as power laws, but remain

densities, paa (0f CAC, cloud pair and pag (of CoCg ~ ONZET0:
pairg, must scale in the same way as particle densities at
point S, i.e., p(t)~t~YZw pra(t)~t~YZw, and pag(t)
~t Ve, The decay dynamics at the DI critical point can be dis-
In numerical simulations we measure the bare particleussed equally well from the cloud or the soliton perspective
densities. Those are related to the cloud densities as followsthe absorbing state or the active phase point of viéwthe
EachC,C, pair of clouds contains only on&A pair of bare  critical point the DI correlation length diverges in time &s
particles, since each cloud consists out of a perfectly ordered t*?o! with the DI dynamic exponentp,= v /v, =1.76.
ABARB train of particles. This implies thabaa=pas and  This length diverges much faster than the typical distance
Oap=1/22,,. The number ofAB pairs of bare particles in between cloudsI¢,c,~t"* and I¢,c,~t¥9) (or solitons
each cloud is proportional to its wid# sopag=£p(t) and from the other point of view This implies that the motions

0,5=1/22,,. The bare particle density is equal to the sum ofof the cloudssolitong become correlated by DI critical fluc-
all pair densities,p=paa+pga+pag. Thereforep scales tuations. Their diffusion is not driven by random walks with

with the slowest exponent, i.e9=1/2z,,. dynamic exponent,,=2, but by correlated random walks

The only difference with poinGis that all three densities With the DI dynamic exponertp, . We expect this to be the
decay with the same modified random walk exponentnly change in the scaling theory for the clougslitons.
~t~Y2w,_The random walk nature of the dynamics is com-That means that we only need to replatg by zp,. The
pletely obscured now. The random walk nature of the decayotal density of clouds should scale a§t)~t~Y%0i, the
dynamics mani.fe_slts itself only inside the subspace withjensity of C,C, cloud pairs aspaa(t)~t~¥%0i and the
ABAB ordered initial configurations; theré=1/z,, . density of CoCg cloud pairs a$xg(t) ~t~ 2201, The densi-

o ties of the solitongon the opposite side of the transitjon
C. DOF active phase:q>q, scale identically.

In the active phase, solitons play the same role as the Neéxt, we need to establish how these cloud and soliton
particle clouds do at the absorbing side of the DI phase trardensities are related to the bare particle densities. We did this
sition. First, consider the limiting casg=2 (p=0g4=1) ]:aoarsibeort?r’o%n?h;hgloaundssw ecrarlss g:taivfaagqned’ Elgré?c?rea:/%/}g m?Q;eIrS]t
where the hopping probability becomes negligible with re- Persp P

spect to OPB-type branching. Any random initial configura-Only the former. . o
tion develops quickly by OPB-type branching into fully- '(I;he Inur(rjlber. OAA paétlcle\[/}alrf,r;]s eqfual t%the num.bler of
developed DOF domains separated by nearest-neighbor palcr:é* a cloud pairs(as in Sec. V B. Therefore thé\A particle
of AA (step-up step-upor BB (step-down step-dowrpar- and lI;%ZZB particle pair den.smes scale quA(t)=pB~B(t)
ticles as shown in Fig. 8. ThegeA andBB pairs denoted by ~t _ ~°" The total density of clouds scales axt)
S, andS; in Fig. 8 are the topological excitations against the =t ™ aj‘d therefore the average distance between clouds
DOF phase and will be called the A- and B-type solitons.diverges ad (t)~tY%o. To find the total density of particles,
The density of each soliton type is equal to the pair densitiewve need to know how many clouds there are and how many
of bare particlespa, andpgg, respectively. particles each cloud carries. The width of the clouds,

At g— o, all activity is blocked inside each DOF domain, diverges. For a single isolated cloud this happens with the DI
because any attempt of OPB-type branching is rejected dugorrelation length £(t)~t*0\. This is much faster than the
to the infinite on-site repulsion between the same species ariatercloud distancel. Therefore the width of the clouds is

D. At the critical point: q=0
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FIG. 9. The particle densitp vst at pointS. The dashed line g
has the expected slope1/4. The inset shows that the effective @ 0.25 Vf‘ig)& o .
exponenté(t) approaches 1/4 with a power-law correction, i.e., ¢ ‘&"‘Ei:;u
6(t)—1/4~t~*8, The dashed line in the inset has the predicted ~§
slope 1/8. \B"‘ﬂ.\..,ﬂ
0.00 - ST
~ 1 1 1 1 1
limited by the latter|,,=1. The density of particles inside
each cloud scales za,spfvl\:vﬁ”L [Eqg. (4)], and their total 0.30 : : : : :
number therefore adl,~I% #"+~t1=A")/2%01 The total .
~ e
density of steps scales as-Nyp. Putting all this together /,.v-"”X.A..Z;}_ -
gives pNt*ﬂ/(anm)wt*B/ZVH [29]. ﬂ/g{'_af’#ﬂ_- '&'f-&."_":‘:-:;-»_»._,‘\_hw
The density ofpag pairs is related to the other two by the 3 025 ng—aﬂ e T——
relation p=2paa+ pag and therefore must scale with the ) T
slowest power lawpag~t~#/2"Il. )4
The density exponents are smaller by a factor of 2, com- o
pared to their asymptotic behavior starting from thB or- 0.20 ! ! ! ! !
dered initial configurationgsee Sec. I). This is the same 00 05 10 15 20 25 30

factor of 2 found at poinS and everywhere else along the

T=0 line. This factor reflects the random roughness of the

initial configurations. It changes for correlated initial rough  FIG. 10. Estimates for the density exponents. The squargs (

configurations in the same manner as discussed in Sec. V #p-triangles (), and down-triangles\() correspond tk=1, 2,

for the S point, i.e., simply replacé —(1-x). and 3, respectively. The predicted values of the exponents are rep-
In conclusion, the above arguments predict that at the PResented by solid lines and circles.

transition point the step density scalespast ~(*)#/%| that

the AB step pair density scales with the same exponent, an

that the AA and BB step densities scale gsaa=pgg i , <~
~t @/ 7 B, andv, are directed Ising critical expo- First, we test the density decay at po#i{q=r=0). In

nents, buix represents the correlations in the initial configu- tN€ @bsence of the on-site repulsion between the same spe-

ration. The initial state properties persist into the asymptoti€€S: the total particle densiy should decay algebraically
scaling properties. with exponentd= 1/4[25]. It is important to confirm explic-

itly that the infinite on-site repulsion between the same spe-
cies in our model does not change this result. In Figp &
plotted against on a log-log scaldthe solid ling. It seems
that the density decays slightly faster thart’* (the dashed

The scaling theory in the previous section is heuristic, andine). Similar results were found previous[28]. This is a
certainly not exact. It is somewhat questionable in particulacorrection-to-scaling effect. Insert the leading scaling behav-
at the PR transition because we assume that the cl@ms iors of | ,g~t*8 and pag~t~ 22 into Eq. (12). This gives
solitong remain valid concepts, while their widths actually 2pal an=(1—at 8 and shows the presence of a generic
like to diverge faster than allowed by the intercloisdliton) O(t™ ¥ type correction-to-scaling term. To isolate this
distances. term, we define an effective exponentd(t)=

To test these predictions, we perform Monte Carlo simu-—In[p(t)/p(t/m)]/Inm with m=8. The leading scaling expo-
lations starting from a random initial state where particles arement ¢ is given by the limiting value of liq. .. 6(t) and the
distributed randomly on a lattice of size=21° with initial correction-to-scaling behavior is contained d(t) — 6. The
densitiespa=pg=1/4. We apply periodic boundary condi- log-log plot of (t) — 1/4 against 1/is shown in the inset of
tions. The time evolutions of the densitipét), pag(t), and  Fig. 9. We find thatd(t)—1/4 scales clearly as & This
paa(t)=pgg(t), are monitored up td=10* and averaged confirms thatp(t)~t~ Y41+ O(t~¥®)]. This correction-to-
over 100 independent runs. A few simulations on a largescaling term decays very slowly. Fitting(t) to a simple

lattice of sizel = 2'® demonstrate thdt=2'°is adequate to
escribe the scaling behavior up to time 10°.

VI. NUMERICAL SIMULATIONS
FOR THE DENSITY DECAY
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power-law form therefore fails to produce the correct valueconfigurations, e.g., the straightening of a step on a vicinal
of the leading exponent. We measured also the effective exsurface. This model undergoes a DI type dynamic prerough-
ponentsdaa(t) andf,g(t) at pointS. They approach 1/4 and ening transition between a perfectly ordered fl@aF) (ab-
1/2, respectively, with power-law corrections to scaling assorbing stationary state and a disordered flROF) (active
well. stationary phase. The step becomes perfectly straight or
The step density suffers from the same type of correctionstraight in average with randomly placed kinks but in perfect
to scaling everywhere along tife=0 line. Log-log plots of ~ up-down alternating order. _
the density versus time are not straight lines. They curve a The OF and DOF phases are both unstable with respect to
little. We analyze the data in the following manner. We con-the OBB-type branching processes that break the up-down
struct estimate®® (k=1,2,3) for the exponent by fitting  alternating order. There we find a rough stationary state with
the measured densip(t) to a power law in the time interval Edwards-Wilkinson type scaling behavior. The crossover ex-
10f<t<10"! (k=1,2,3). Approximants fomgk/l and eng); ponent into the rpugh phqse is dete.rmlned num.encally. .
are constructed in the same way. As time increases th The asymptotic long time pehawor Of. the kink dens[ty
correction-to-scaling term contributes less and less, and th epends strongly on the statistical properties and correlations

estimates should converge to the correct values of the lead’ the initial configurations. Information about the correla-
ing decay exponents tions in the rough initial statecontrollable experimentally by

In Fig. 10, the estimates are presented and compared uttering, for examp}enever gets lost. It obscures the ran-
the predicted values from the scaling theory in the previou om walk nature in the absorbing phase and the DI nature at

section. The step density exponehis predicted to take the criticality. We develop a scaling theory for the decay dynam-
value of 9= 1/4 below the transition anél(,b’/v”):o 141 at ics of the various kink densities and predict the values of the

the critical point. Above the transition, the density saturatesdeca.y exponents. Numerlc_al S|mu_lat|ons confirm the_se._
to a finite value, i.e.f=0. The estimates fof merge to the It is noteworthy to mention a different recent application

. . o~ of absorbing phase transitions to one-dimensional interface
predicted value at the critical poimj;=1.245. Above the  ,ohiems by Alonet al. [30], which describes the dynamic

transition, 6 become smaller asincreases, which is con- oughening phase transition from a smooth phase into a
sistent with6=0. Below the_ transition, the convergence is roygh phase of Kardar-Parisi-Zhang tyj#4]. They consid-
slow (due to strong corrections to scalingut compatible  greq a solid-on-solid type model where particles can adsorb
with 6=1/4. ) ] at any site but desorption takes place only at existing steps.

The exponen®,g is predicted to take the value s  |n other words, one can build mountains but is not allowed to
=1/2 at pointS, 6,5=1/4 along 0<q<qc, aABzé(ﬁ/vH) dig new holes. This leads to the dynamic roughening phase
=0.141 at the transition point, ané,g=0 in the DOF transition at a finite value of the adsorption rate, which is
phase. The estimates, shown in Fig. 10, converge not as wetiggered by the absorbing nature of the lowest level. This
as those forg, but are still compatible with the theoretical phase transition belongs to the DP universality class. It may
predictions. The exponertiy 5 is expected to take the value be interesting to introduce in our model a symmetry-
of ,a=1/22p,,=0.284 at the critical point an,p=1/4 ev-  breaking field between adsorption and desorption processes
erywhere else. The data for this exponent converge slowdike in the above model. Generalization of our model in this
than the other two, but they are compatible with the theoretdirection is currently under study.
ical results as well.
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