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Directed Ising type dynamic preroughening transition in one-dimensional interfaces
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~Received 25 August 1998!

We present a realization of directed Ising~DI! type dynamic absorbing state phase transitions in the context
of one-dimensional interfaces, such as the relaxation of a step on a vicinal surface. Under the restriction that
particle deposition and evaporation can only take place near existing kinks, the interface relaxes into one of
three steady states: rough, perfectly ordered flat~OF! without kinks, or disordered flat~DOF! with randomly
placed kinks but in perfect up-down alternating order. A DI type dynamic preroughening transition takes place
between the OF and DOF phases. At this critical point the asymptotic time evolution is controlled not only by
the DI exponents but also by the initial condition. Information about the correlations in the initial state persists
and changes the critical exponents.@S1063-651X~99!06401-6#

PACS number~s!: 64.60.Ht, 68.35.2p, 82.65.Jv
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I. INTRODUCTION

Absorbing type dynamic phase transitions are the focu
extensive research@1–12#. These transitions occur in dy
namic processes with trapped states. At the absorbing sid
the phase transition, the system evolves into one spe
microscopic state, a so-called absorbing state, out of whic
cannot escape. At the active side of the phase transition
system manages to avoid such traps. An ensemble has
nite probability to stay alive.

Two distinct types of absorbing phase transitions ha
been identified in one dimension: the directed percolat
~DP! and directed Ising~DI! universality class. DP type dy
namic critical behavior has been found in, e.g., Schlo¨gl’s first
model for contact processes@2,3#, pair contact processes@4#,
and branching annihilating random walks~BAW’s! with an
odd number of offspring@5#. DI type dynamic critical behav-
ior has been found in, e.g., probabilistic cellular autom
@6#, nonequilibrium kinetic Ising type models@7#, interacting
monomer-dimer models@8#, and BAW models with an even
number of offspring@5,9#. These models describe a wid
range of phenomena, in particular, epidemic spreading
catalytic chemical reactions.

In analogy with equilibrium phase transitions, it is b
lieved that dynamic universality classes are determined
the degeneracy and symmetries of the absorbing states
by the symmetry properties of interfaces~domain walls! be-
tween them@10–12#. DP type transitions involve typically
only a single absorbing state or a set of absorbing states
one of them dynamically more prominent in a coarse grai
sense than the others@4,10,12#. DI type transitions involve
two equivalent adsorbing states or two equivalent classe
absorbing states@13#.

Counting the number of absorbing states is not sufficie
The degeneracy of the absorbing states can be obscure
the formulation of the dynamic rule. For example, in BA
dynamics involving only one species of particles, t
‘‘empty’’ absorbing state seems not to be degenerate, but
transition belongs to the DI universality class if the dynam
conserves the particle number modulo 2@5,9#. In that case
particles can be reinterpreted as domain walls and we
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color the domains at opposite sides of the walls alternatin
with two colors. One of the two colors dies out in the a
sorbing state. This is reminiscent of the domain wall form
lation of the equilibrium Ising model, where the existence
two coexisting phases is also obscured.

One appealing scheme of classifying absorbing ph
transitions is by association with conventional equilibriu
phase transitions. For example, consider the one-dimensi
Ising model with single spin-flip dynamics. In terms of d
main walls this involves the following processes: sponta
ous creation of domain wall pairs 0→2A with probability
psp ~the Boltzmann weight!, hopping of single domain walls
with probability ph51, and pair annihilation 2A→0 with
probability pa51. The stationary state of this model is th
equilibrium state, which is obviously ‘‘disordered’’~active!
in one dimension. However, the model evolves always i
one of the two perfectly ordered~absorbing! states if we
disallow the spontaneous creation of domain walls,psp50,
because then the domain wall density can only decrease.
DI transition comes into play when branching processes
allowed; i.e., the creation of domain wall pairs in the vicini
of existing domain walls,A→3A. Branching can keep the
system alive, while the two perfectly ordered Ising grou
states still remain absorbing states. The resulting mode
known as the BAW model with two offspring.

The same line of reasoning associates a distinct absor
type dynamic universality class with each conventional eq
librium universality class, like the familiarq-state Potts and
q-state clock universality classes. However, none of
models studied thus far with higher symmetries than
Ising model has an absorbing phase transition. Dynamic p
cesses with more than two equivalent absorbing statesq
>3) appear to be always active@11,14#. Cardy and Ta¨uber
provide a possible explanation for this@15#. Additional sys-
tematic numerical studies are needed to settle this issue

In this paper we introduce an application of absorbi
phase transitions to the dynamics of one-dimensional so
gas interfaces. We find a one-dimensional dynamic p
roughening~PR! transition from an ordered flat~absorbing!
phase to a disordered flat~active! phase. Consider the one
dimensional restricted solid-on-solid~RSOS! model descrip-
194 ©1999 The American Physical Society
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PRE 59 195DIRECTED ISING TYPE DYNAMIC PREROUGHENING . . .
tion of crystal surfaces. The height difference betwe
nearest-neighboring columns of particles is 0 or61, i.e.,
only steps~kinks! with single atomic heights are allowed.
conventional dynamic Monte Carlo type equilibration pr
cess where single particles adsorb on or desorb from
surface with equal probability leads to a rough equilibriu
surface with Edwards-Wilkinson~EW! type @16# scaling
properties. In analogy with the above directed Ising mo
discussion, we transform the perfectly ordered flat state
an absorbing state by disallowing adsorption and desorp
of particles at flat segments of the surface~spontaneous cre
ation of step pairs!. The only processes allowed ar
hopping/pair annihilation of steps by adsorbing or desorb
a particle at step edges and branching of steps by adsor
or desorption at the next-nearest-neighbor sites near exis
steps. The branching processes fall into two classes: the
that preserve local flatness and those that create local ro
ness. We give them independent probabilities.

This model describes the evolution of the one dimensio
interface from any initial random rough configuration
three types of stationary states: a rough phase with dyna
exponentz52 ~EW type!, a perfectly ordered flat~OF! ab-
sorbing phase without steps, and an active disordered
~DOF! phase. DOF phases are well known in equilibriu
surfaces. They represent step liquids where the surface
mains flat due to long-range step-up step-down alterna
order but steps are placed randomly@17,18#. Our dynamic
DOF stationary state has no defects, i.e., the up-down a
nating order is perfect and the steps are placed randoml

Although the dynamic DOF phase is active, it has an
sorbing state type property. The OF absorbing state and
DOF active phase at the other side of the transition hav
common that both ‘‘ground states’’ lack thermodynamic d
fects ~both are at their fixed point in the sense of renorm
ization theory!.

Equilibrium preroughening transitions belong to t
Ashkin-Teller universality class@17,18#. They involve two
coupled Ising type order parameters. They are nonzer
opposite sides of the transition. A perfectly DOF initial co
figuration has a half-integer average surface heightn1 1

2 and
evolves at the OF side of the PR transition into a perfec
flat ordered absorbing state withn or n11 integer surface
height. This OF-type twofold degeneracy is the conventio
spontaneous symmetry breaking associated with DI t
transitions. However, an Ising type degeneracy exists als
the DOF side of the PR transition. An initial state with a
integer average surface heightn, evolves into a stationary
DOF state with surface heightn1 1

2 or n2 1
2 . We call this the

DOF-type degeneracy. In analogy with equilibrium tran
tions one might expect therefore that the dynamic PR tra
tion be described by two coupled DI transitions. This tur
out not to be the case.

The dynamic PR transition belongs to the~single! DI uni-
versality class. The two types of spontaneous symm
breaking are not on an equal footing. A perfect DOF init
state can decay into the OF state, but a perfect OF sta
frozen forever~even at the DOF side of the PR transition!.
The DOF-type degeneracy does not create additional
critical fluctuations, but it still affects the scaling behavio
Configurations with perfect DOF order form an invaria
subspace~which includes the OF ordered state!. As shown
n
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below, this leads to a peculiar initial configuration depe
dence of the asymptotic decay of the step densities~the kinks
in the one-dimensional interface!.

In Sec. II, we introduce our model in detail. It is instru
tive to interpret it not only as a model for surface relaxatio
but also for surface catalysis. In its latter reincarnation,
process is a two-species generalization of the BAW mo
with two offspring. The up and down steps~kinks! represent
two species of particlesA andB.

In Sec. III we limit ourselves to configurations with pe
fect ABABalternating order. These DOF-type configuratio
form a dynamical invariant subspace. The numerical res
presented in Sec. III confirm that our PR transition belon
to the DI universality class.

In Sec. IV, we discuss the crossover scaling properties
the DI critical point into the rough phase. The rough pha
has conventional EW-type scaling properties. Recall that
disallow spontaneous adsorption and desorption from
surface segments; surface roughness can only be create
maintained by branching. Apparently, this restriction do
not alter the scaling properties of the rough phase.

The DOF-type Ising degeneracy shows up in the evo
tion of arbitrary initial states. The kink densities scale in tim
in an unusual way, not only at the PR transition, but a
everywhere in the OF and DOF phases. They dep
strongly on the initial conditions; whether the initial config
ration is flat or rough, and on the correlations in such init
rough states. Conventional wisdom tells us that the long t
scaling of dynamic processes depends only on the dyna
exponent and the stationary state exponents of a proces
our case, critical exponents vary with the initial condition
We present an analytical scaling theory for this in Sec. V a
numerical results in Sec. VI.

II. MODEL

Consider a one-dimensional lattice. Each site is vacan
occupied by at most oneA or one B type particle. In the
surface catalysis interpretation,A andB represent two types
of particles. In the surface formulation, they represent up
down steps. Configurations evolve in time according to
following dynamic rule. First choose a site at random. If t
site is empty, nothing happens. If the site is occupied,
particle can hop to its nearest-neighbor sites with probab
p. If it lands on top of an existing particle of the opposi
kind, theAB pair annihilates immediately. The move is r
jected if the particle would land on top of a particle of th
same type.

Besides hopping, each particle can also branch into th
particles by the creation of anAB pair. Branching comes in
two distinct flavors; the one that preserves localABABorder
and the one that breaks it. Order preserving branching~OPB!
creates local DOF step-up step-down order in the surfa
Order breaking branching~OBB! creates local roughnes
~see Fig. 1!. These branching processes occur with proba
ity q and r , respectively. Branching could lead into doub
occupancy of a site.AB pairs at the same site annihila
immediately. The branching event is rejected if it would r
sult in two particles of the same type at any site. We requ
that the chosen particle must attempt to hop or branch. T



m

e

-
he
re

r

y o
th

ys
iv

p
i

de
yp

fo
e

su
e

o

h
re

ig
h
n
an
ik
s
as
es
p

own

b-

on.

OF

-
ing

ing
,
n

i-

re-

ains

ated
ly,

-
ns.

tive
with

,

ic
rfa B

196 PRE 59JAE DONG NOH, HYUNGGYU PARK, AND MARCEL den NIJS
implies thatp1q1r 51. q̃[q/p andr̃[r /p are our choices
for independent parameters.

We need to distinguish also between so-called dyna
and static branching. The two new particles,A andB, created
by each branching process may be placed in two differ
ways. The center of mass is stationary~static branching! or
moves~dynamic branching! @19#. In the latter the new par
ticles are placed both to the left or both to the right of t
parent particle with equal probability. In the interface rep
sentation of the model, dynamic branching corresponds
single particle adsorption/desorption. Static branching rep
sents two-particle events~see Fig. 1!. So dynamic branching
is more natural. These details do not affect the universalit
the phase transition. But they can change dramatically
location of the critical point@19#. It is well known that in the
BAW model with two offspring the stationary state is alwa
absorbing. Static branching does not create enough act
to destabilize the absorbing phase@20#. We applied both type
of branching in our simulations. The universal scaling pro
erties do not change. Here only our results for dynam
branching are presented.

Each particle configuration of the surface catalysis mo
maps onto a surface height configuration of the RSOS t
surface growth model. TheA and B particles represent up
and down steps of unit height. The above dynamic rules
the A and B type particles translate into placement or r
moval of a single surface atom near existing steps~Fig. 1!.
Adsorptions and desorptions have equal probability. The
face does not advance nor retreat on average. Flat segm
of the surface are inactive, which makes the perfectly
dered flat state an absorbing state.

The structure of the phase diagram is shown in Fig. 2. T
numerical details will be presented in Secs. III and IV. He
we want to point out the general features.

OPB-type branching preserves the average surface he
while OBB-type branching creates local roughness. T
suggests two distinct types of active phases. In the regio
the phase diagram where OPB-type branching is domin
the steps prefer up-down alternating order. The surface l
to remain flat on average with randomly placed steps. Thi
a one-dimensional dynamical version of the DOF ph
known from two-dimensional equilibrium crystal surfac
@17,18#. In the region of the phase diagram where OBB-ty

FIG. 1. Step hopping and branching processes of an up step~an
A type particle!. The letterss and d represent static and dynam
type branching, respectively. The dashed lines denote the su
before each event. Dynamic events nearB particles are identical by
mirror symmetry.
ic

nt

-
to
e-

f
e

ity

-
c

l
e

r
-

r-
nts

r-

e

ht,
is
of
t,

es
is
e

e

branching is dominant, the active phase lacks step up-d
alternating order and is therefore probably rough.

In the presence of OBB-type branching (r̃ .0), the sta-
tionary surface state turns out to be always rough~see Fig.

2!. Along ther̃ 50 line, the surface is flat; in the OF absor

ing phase forq̃,q̃c and the DOF active phase forq̃.q̃c .
Spontaneous order is difficult to maintain in one dimensi

This explains why the DOF phase is limited to ther̃ 50
subspace. It would have been nice, but a surprise if the

phase extended intor̃ .0. Equilibrium roughening phase
transitions can be viewed asq→` limits of theq-state clock
model. Absorbing phase transitions withq>3 are unknown
and may not exist at all as mentioned in Sec. I@21#.

The transition point q̃c in Fig. 2 represents a one
dimensional dynamic analogue of equilibrium preroughen
transitions. The disordered flat phase is active~a step liquid
phase!, but maintains perfect step-up step-down alternat
order.A and B type particles move around like in a liquid
but remain perfectlyABAB ordered. The distances betwee
neighboringA andB particles are randomly distributed.

To determine the scaling properties of this transition~Sec.
III ! we measure the step~particle! densityr(t) as a function
of time t, which is the sum of the two single particle dens
ties, rA(t)1rB(t). The difference between them,rA(t)
2rB(t), describes the global tilt of the surface and is p
served by the dynamic rule. The step densityr in the sta-
tionary state vanishes in the absorbing phase and rem
nonzero in the two active~rough and DOF! phases.

We monitor also the density ofAB pairs of particles,
rAB(t). TheA andB particles in eachAB pair do not have to
be immediately adjacent to each other. They can be separ
by a stretch of empty space of arbitrary length. Similar
rAA(t) andrBB(t) are the densities ofAA andBB pairs. It is
easy to show thatrA(t)5rAA(t)1 1

2 rAB(t) and rB(t)
5rBB(t)1 1

2 rAB(t). rAA(t)2rBB(t) is preserved by the dy
namics and equal to zero for nontilted surface configuratio
rAA distinguishes between the DOF and the rough ac
phases. In the DOF stationary state, the system is active
perfectAB alternating order, i.e.,rÞ0 andrAA50. In the
rough stationary state, theAB alternating order is broken
i.e., rÞ0 andrAAÞ0.

ce

FIG. 2. Phase diagram of our model.r̃ 5r /p is the probability

for OBB-type branching~creating local surface roughness! and q̃
5q/p is the probability for OPB-type branching~creating disor-
dered flat type local order!, relative to the hopping probabilityp. yr

and yT[1/n' are the scaling dimensions of the OBB and OP
operators, respectively.
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III. DIRECTED ISING DYNAMIC
PREROUGHENING TRANSITION

In this section we present numerical evidence for the
nature of the dynamic preroughening transition. Consider

r̃ 50 line of the phase diagram~Fig. 2! where OBB-type
branching is excluded. Here, the configurations with perf
ABAB alternating DOF-type order form a dynamically in
variant subspace.

In this subspace our model is almost identical to the BA
model with two offspring and dynamic branching@19#.
There, each site may be empty or occupied by a particle
single species. Those particles can hop to a nearest-neig
site with probabilityp or create two offspring on the neares
and next-nearest-neighbor sites to the left or to the right w
probabilityq512p ~dynamic branching!. Two particles an-
nihilate immediately when they happen to land on the sa
site. This BAW model exhibits an absorbing phase transit
at p50.5105(7), which belongs to the DI universality clas
@19#.

There is an exact two-on-one mapping between the c
figurations in our model and those in the above BAW mod
Simply label the particles in the latter asA andB ~or B and
A) alternatingly. The dynamic processes for the two mod
are virtually the same, except for one detail. In the BA
model, withoutA andB labels, particles can always annih
late when they land on the same site. In our model onlyA
andB pairs can annihilate, andAA andBB pairs repel each
other. Hopping events are not affected by this, but OPB-t
branching processes are. Consider a configuration with
isolatedAB nearest pair, like 000AB000, where 0 represent
a vacant site. Suppose that theA particle is chosen to branc
a pair ofBA particles to the right. In our model, this attem
is rejected because it would result in twoB particles on a
single site. In the BAW model this attempt is accepted, a
results in the annihilation of two particles. This differen
between the two models does not affect the mod 2 conse
tion of the total particle number. So we expect a DI-ty
absorbing phase transition along ther̃ 50 line, but the OF
phase must be more stable.

The mapping between configurations of the BAW mod
and our model is lost outside the configurational subsp
with perfectABAB order. The DOF subspace is an attract
however. It contains the global stationary state for arbitr
initial configurations. Consider an arbitrary configuratio
i.e., one withAA andBB pairs. Forr̃ 50 there is no mecha
nism to increase their total numbers,NAA andNBB . Hopping
and OPB-type branching decreaseNAA andNBB , by annihi-
lation of AB pairs, but never increase them. For examp
consider a configuration like 0A0AB0B0. Hopping of the
centralA particle to the right induces the annihilation of a
AB pair and the configuration becomes 0A0000B0. NAA and
NBB decrease by 1. The density of these pairs,rAA5rBB ,
decreases monotonically in time. In fact, they decay alge
ically to zero along the entirer̃ 50 axis~see Secs. V and VI!.
The active steady state involves only configurations w
perfectABAB alternating order.

To locate the critical point we perform defect dynami
type Monte Carlo simulations, in which one starts with
single nearest-neighbor pair ofAB particles at the center o
I
e

ct

a
bor

h

e
n

n-
l.

ls

e
an

d

a-

l
e

,
y
,

,

a-

h

an empty lattice. Obviously, this initial configuration belon
to the DOF-type invariant subspace. Time increments by
unit afterL single site updates~one Monte Carlo step! with L
the lattice size. We measure the survival probabilityP(t)
~the probability that the system is still active at timet) and
the number of kinks~particles! N(t) averaged over 53105

independent runs up to 5000 time steps.
At criticality the long time limits of these two quantitie

are governed by power laws with critical exponentsd andh
as P(t);t2d and N(t);th @3#. Precise estimates for th
critical point and the critical exponents are obtained from
finite time analysis of

2d~ t !5
ln@P~ t !/P~ t/m!#

ln m
, ~1!

h~ t !5
ln@N~ t !/N~ t/m!#

ln m
. ~2!

In Fig. 3, we plot these effective exponents against 1/t with
m55 for several values ofq̃. These plots bend up or dow
in time except at criticality. This leads to an estimate of t
critical point, q̃c51.245(5) @22#, and also for the critical
exponents,

d50.270~5!, h50.015~10!. ~3!

These values are slightly different from the standard DI v
ues;d50.285 andh50.000. However, their sum is relate

FIG. 3. Semilog plots of the effective exponentsh andd vs 1/t

for several values ofq̃ close to criticality. The data at our bes

estimate for the critical pointq̃c are highlighted as thick lines.
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to the steady-state properties via the generalized hyper
ing relation@23# and is in excellent agreement with the val
of the DI universality class.

Further evidence of the DI nature of the transition is o
tained by monitoring the time evolution of the step dens
r(dq̃,t,L) in stationary Monte Carlo simulations on a fini
lattice of sizeL with dq̃[q̃2q̃c . We start with a random
configuration inside the invariant subspace with initial ki
densitiesrA(0)5rB(0)51/4 and periodic boundary cond
tions. The step densityr averaged over survived sample
only should obey the scaling relation

r~dq̃,t,L !5b2b/n'r~b1/n'dq̃,b2zt,b21L !. ~4!

b is the order parameter exponent,n' the correlation length
exponent in the spatial direction,z5n i /n' the dynamic ex-
ponent@24#, n i the correlation length~relaxation time! expo-
nent in the time direction, andb an arbitrary scale factor.

This scaling relation determines all scaling properties
r. At the critical point,r decays algebraically;r;t2b/n i for
t!tL with tL a characteristic time scale that diverges asLz.
r scales atr;L2b/n' for t@tL .

Log-log plots ofr(0,t,L) versust are shown in Fig. 4~a!
at criticality for L525, . . . ,210. The step densities are ave

FIG. 4. ~a! Decay of the step density atq̃5q̃c . Each curve
corresponds toL525, . . . ,210 from top to bottom. From the
asymptotic slope of the curves we obtainb/n i50.282(5). Thebro-
ken line is of slope 0.282. The inset shows the finite size scalin
the saturated step density. From the slope we obtainb/n'

50.497(5). Thebroken line has slope 0.497.~b! Scaling plot for

log10@r0Lb/n'#against log10@dq̃L1/n'#. Using the values ofq̃c from
defect dynamics simulations andb/n' in ~a!, the best data collaps
is obtained withn'51.78.
al-

-

f

aged over 103 independent Monte Carlo runs atq̃5q̃c
51.245. The inset shows the saturated values of the
density, denoted byr0, as function ofL. From these plots we
obtain

b

n i
50.282~5!,

b

n'

50.497~5!, ~5!

and z51.76(1) from their ratio. These results are in exc
lent agreement with those of the DI universality class.

The above analysis at the critical point gives only ratios
critical exponents. Their bare values can be extracted fr
the off-critical behavior ofr. The saturated value of the ste
density follows the scaling form r0(dq̃,L)
5L2b/n'G(dq̃L1/n'), according to Eq.~4!. The scaling func-
tion G(x) becomes a constant in thex→0 limit and scales as
G;xb in the x→` limit, becauser0;(dq̃)b in the L→`
limit. In Fig. 4~b!, we show the log-log plots ofr0Lb/n'

againstdq̃L1/n'. Using the values ofq̃c obtained from the
defect dynamics simulations andb/n' from Eq. ~5!, we find
that the data are best collapsed withn'51.78(5). Combin-
ing this value with those in Eq.~5!, we obtain the critical
exponents

b50.88~3!, n'51.78~5!, n i53.12~5!. ~6!

These values agree well with the DI values and satisfy
generalized hyperscaling relation@23#, d1h5(n'2b)/n i
very well. We conclude that our model has an absorbing t
preroughening transition between the ordered flat and
DOF phase, which belongs to the DI universality class.

IV. CROSSOVER INTO THE ROUGH PHASE

The PR phase transition is unstable with respect to OB
type branching, for allr̃ .0. We perform defect dynamic
simulations at various values ofr̃ and q̃. The plots for the
effective exponents,d(t) and h(t), show only upward cur-
vature. This indicates that the system is always active for
r̃ .0. The size of the active regionR(t) averaged over sur
vived samples confirms this. It grows linearly in time so t
spreading velocity of the active region is finite in the lon
time limit. In this active phase, the densities ofAA andBB
pairs, rAA and rBB , are nonzero. This suggests that t
steady-state surface is rough. We measure the surface w
W(t,L),

W~ t,L !5K 1

L(
i

L

„hi~ t !2h̄~ t !…2L , ~7!

in Monte Carlo simulations on a finite lattice of sizeL. hi(t)
is the height of the surface at sitei , h̄(t) the average height
and ^•••& the average over survived samples. In Fig. 5,
illustrate the typical behavior ofW(t,L) by the evolution of
the surface at q̃5 r̃ 51.0, using as initial condition
•••0A0B0••• with system sizeL525, . . . ,29 and taking
the average over 103 runs. The data satisfy the dynamic sca
ing form W(t,L)5L2a f (t/La/b) with the Edwards-
Wilkinson roughness exponenta51/2 and the growth expo
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nentb51/4. The active dynamic rough phase has the sa
scaling properties as the conventional equilibrium rou
phase in one dimension.

The crossover exponentyr at the DI critical point into the
r̃ direction must be relevant.yr is the scaling dimension o
the OBB type branching operator similar toyT51/n' which
is the scaling dimension of the OPB type branching opera
yr is potentially an independent DI critical exponent~see Fig.
2!. We obtainyr numerically by measuring the size of th
active regionR at various values ofr̃ along theq̃5q̃c line in
defect dynamics type simulations. Consider the scaling r
tion R(t, r̃ )5bR(b2zDIt,byr r̃ ) with zDI5n i /n' the DI dy-
namic exponent, andb an arbitrary scale factor. Forb
5t1/zDI, R takes the formR(t, r̃ )5t1/zDIF( r̃ t yr /zDI). The scal-
ing function F(x) becomes a constant in thex→0 limit,
becauseR;t1/zDI at the DI transition point. In thex→`
limit, F must scale asF;x(zDI21)/yr, becauseR grows lin-
early in time in the long time limit forr̃ .0. Therefore the
asymptotic value of the spreading velocity of the active
gion, v[ limt→`R/t, scales asv; r̃ k with k5(zDI21)/yr .

In our simulations, we measureR up to timest523104

and average over 23103– 53103 samples. The spreadin
velocity v is extracted in two ways. First, we fitR(t) to the
form ak1vkt in the time interval 10k<t<10k11 (k
51,2,3,4).vk will converge tov in the asymptotic regime
Next, we define an effective velocityveff(t)5@R(t1Dt)
2R(t)#/Dt with Dt5500 and the saturated value in th
asymptotic regime is denoted byveff . Fluctuations around
the saturated value give an estimate of the statistical err
In Fig. 6, we plotvk and veff for several values ofr̃ . The
estimates forvk with k>3 merge intoveff . This confirms
that veff is the asymptotic value of the spreading velocityv.
From a power-law fit we estimatek50.64(1) and hence
obtain the value of the crossover exponent,yr51.2(1).

V. DENSITY DECAY DYNAMICS

In Sec. III, we demonstrated the DI nature of the abso
ing phase transition alongr̃ 50. The active stationary stat

FIG. 5. The surface width in the rough phase atq̃5 r̃ 51.0. The
curves correspond to system sizesL525, . . . ,29. The width obeys
the scaling formW5L2a f (t/La/b) with the Edwards-Wilkinson ex-
ponentsa51/2, b51/4, andz5a/b52 as shown in the inset.
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has perfectABAB alternating order. The configurations wit
this perfect DOF-type order form an invariant subspace. T
subspace is an attractor, because the density ofAA andBB
pairs,rAA5rBB , never increases in time in the absence
OBB-type branching, along ther̃ 50 line. In the conven-
tional picture all asymptotic dynamic time scales depe
only on the dynamic exponentz and the stationary state ex
ponents of the DI transition. Surprisingly, this is not true
our model. The step density

r;t2u ~8!

and the pair densities

rAA5rBB;t2uAA, rAB;t2uAB ~9!

decay in the long time limit with exponents that depend
the initial condition. Their values depend on whether t
initial state has perfectAB alternating order or is rough, an
whether this roughness is random or correlated.

These densities decay as power laws everywhere a
the r̃ 50 line, with different exponents in the differen
phases. In this section we review first previously known
sults at pointS of the phase diagram, see Fig. 2, and th
generalize those results to the entirer̃ 50 line.

A. Diffusion-limited pair annihilation: q̃50

At point S ( r̃ 5q̃50) all branching processes are disabl
and the dynamics describes chemical reactions w
diffusion-limited pair annihilationA1B→0. This process
has been studied extensively@25–28#. The particles perform
random walks, subject to an infinite on-site repulsion b
tween the same species andAB pairs annihilate when they
meet each other. A random initial configuration with equ
initial densities,rA(0)5rB(0) ~a nontilted surface!, decays
to the absorbing OF ‘‘empty’’ state.

Neglecting spatial correlations gives rise to the rate eq
tion

drA~ t !

dt
5

drB~ t !

dt
52rA~ t !rB~ t !, ~10!

FIG. 6. Scaling of the spreading velocityv of the active region.
Different symbols are used forv1(1), v2(3), v3(s), v4(n), and
veff. (h). Thevk>3 merge intoveff. , which confirms thatveff. is the
asymptotic value forv.
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with r(t);t21 as solution. In the absence of on-site rep
sion between the particles, it has been shown rigorously
this mean-field behavior,r;t21, holds in dimensions highe
than 4 and that the particle density decays asr(t);t2u with
u5d/4 in dimensionsd<4 @25#. This contradicts the naive
expectation thatu be equal to the inverse of the random wa
dynamic exponentu51/zrw51/2.

The following scaling argument explains this result int
itively @28#. LetDR be the difference in the number ofA and
B particles in a cube of sizeRd. For random~uncorrelated!
initial configurations,DR will be of orderAr(0)Rd. As the
system evolves, each particle diffuses over a distance;t1/zrw

during time t ~ignoring on-site repulsion!. So after timetR
;Rzrw, all members of the minority species found a partn
in the cube and have annihilated. This leaves the region
cupied by the majority species only. Therefore, the part
density decays as

r~ t !;DR /RduR;t1/zrw;Ar~0!t2d/2zrw. ~11!

This argument gives the correct value of the decay expon
u5d/2zrw5d/4 for d<4. Several numerical simulation
@26,27# found that the on-site repulsion between the sa
species does not alter the decay exponentu.

The same argument can be extended to the time evolu
of the pair densities and the interparticle distances@28#. We
need them later in this section. The size of a domain oc
pied by one single species of particles~e.g., a train ofA’s!,
l D , grows in time with the same exponent as the rand
walk radius,l D;t1/zrw. TheAB pair density scales ind51 as
rAB; l D

21 because each domain with a single species of p
ticles is bounded by twoAB pairs. SorAB decays with
uAB51/zrw , i.e., decays faster than the particle densityr;
uAB52u.

The AA andBB pair densities scale differently. They a
equal for nontilted initial states. The pair densities add up
the total particle density,r5rAB1rAA1rBB ~see Sec. II!.
SincerAB(t) decays faster thanr(t), rAA5rBB must have
the same asymptotic behavior as the particle densityr, i.e.,
uAA5u51/2zrw in one dimension.

The interparticle distances diverge in the long time lim
Definel AA ( l AB) as the average distance between the near
neighboring particles of the same~different! species~see Fig.
7!. These distances grow via pair annihilations ofAB pairs.
TheA andB particle meet through random walk fluctuatio
at time intervals of orderl AB

zrw . Therefore, the particle densit

decays asdr(t)/dt;2rAB(t)/ l AB
zrw , which leads to l AB

FIG. 7. Schematic typical surface configurations at the abs

ing side of the DI transition, 0,q̃,q̃c .
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;t(2zrw21)/2zrw
2

;t3/8. The sum of all interparticle distance
adds up to the size of the system:

~rAA1rBB!l AA1rABl AB.1. ~12!

The second term becomes negligible in the asymptotic lim
which yields l AA;rAA

21;t1/2zrw. l AB diverges faster thanl AA

but still slower than the interparticle distance of the ordina
random walk problem.

In summary, the dynamics at pointS belongs to the ran-
dom walk ~diffusion! universality class. Starting with the
nontilted random initial configurations, the density ofAB
pairs decays with the naive random walk dynamic expone
uAB51/zrw , but the density ofAA pairs and the particle
density decay much slower, withuAA5u51/2zrw .

The above results assume that the initial condition is r
dom. The exponents change when we modify the initial st
The factor 2 appearing in the exponentsuAA andu originates
from the random nature of the rough initial configuratio
discussed in the beginning of this subsection. Suppos
were correlated such that the initial value for the surplus
particles of one species in a box of sizeRd scales with a
different power, i.e.,DR;@r(0)Rd#x. That leaves uAB
51/zrw unchanged, but modifies the asymptotic behavior
the particle density andAA pair density tou5uAA5(1
2x)/zrw in one dimension. The exponents for the interp
ticle distances change accordingly. The nontilted random
tial configurations correspond tox51/2 and theAB ordered
initial configurations tox50. The tilted random initial con-
figurations should correspond tox51.

For initial configurations inside DOF subspace,rAA and
rBB are always equal to zero. Then the particle density
comes equivalent torAB and decays with the ‘‘conven
tional’’ random walk dynamic exponent,r;t21/zrw.

Let’s now investigate how this dependence of the de
critical exponents on the initial states generalizes along
entire r̃ 50 line, according to the same type of reasoning

B. Absorbing phase: 0<q̃<q̃c

At the absorbing side of the DI transition point, th
asymptotic time scaling behavior remains the same as
point S except for one important detail. Clouds of particl
take over the role of single particles. Consider an init
rough state with a low particle density. Each of theseA and
B particles broadens itself quickly into a small cloud of pa
ticles with a characteristic widthj via branching processe
~see Fig. 7!. These clouds are created by OPB-type bran
ing, and therefore preserveABAB alternating local order.
This broadening is governed by the DI type dynamics, like
defect dynamics with a single starting particle. The width
the cloudsj is finite and of the order of the DI correlatio
length. These clouds are well defined in the asymptotic li
because the distances between them, the length scalesl AA
and l AB , diverge in time whilej remains finite.

There are two topologically distinct types of clouds: t
CA clouds, nucleated from a singleA particle and withA’s at
both edges (AB•••BA), and theCB clouds (BA•••AB).
Clouds diffuse through hopping, branching, and pair ann
lation of bare particles.CACB pairs can annihilate each othe
Clouds do not branch. They could in principle, but a bran

b-
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ing process likeCA→CACBCA , requires a collective se
quence of microscopic events involving many particles, a
at length scalesl .j this does not happen.

The clouds, at the DI length scalej, obey therefore the
same dynamic rules as the diffusion-limited pair annihilat
process of bare particles at pointS, with renormalized prob-
abilities. The density of the clouds,r̃(t), and the cloud pair
densities,r̃AA ~of CACA cloud pairs! and r̃AB ~of CACB
pairs!, must scale in the same way as particle densities
point S, i.e., r̃(t);t21/2zrw, r̃AA(t);t21/2zrw, and r̃AB(t)
;t21/zrw.

In numerical simulations we measure the bare part
densities. Those are related to the cloud densities as follo
EachCACA pair of clouds contains only oneAA pair of bare
particles, since each cloud consists out of a perfectly orde
ABAB train of particles. This implies thatrAA5 r̃AA and
uAA51/2zrw . The number ofAB pairs of bare particles in
each cloud is proportional to its widthj, sorAB.jr̃(t) and
uAB51/2zrw . The bare particle density is equal to the sum
all pair densities,r5rAA1rBB1rAB . Thereforer scales
with the slowest exponent, i.e.,u51/2zrw .

The only difference with pointS is that all three densities
decay with the same modified random walk expone
;t21/2zrw. The random walk nature of the dynamics is co
pletely obscured now. The random walk nature of the de
dynamics manifests itself only inside the subspace w
ABAB ordered initial configurations; there,u51/zrw .

C. DOF active phase:q̃>q̃c

In the active phase, solitons play the same role as
particle clouds do at the absorbing side of the DI phase t
sition. First, consider the limiting caseq̃5` (p50,q51)
where the hopping probability becomes negligible with
spect to OPB-type branching. Any random initial configu
tion develops quickly by OPB-type branching into fully
developed DOF domains separated by nearest-neighbor
of AA ~step-up step-up! or BB ~step-down step-down! par-
ticles as shown in Fig. 8. TheseAA andBB pairs denoted by
SA andSB in Fig. 8 are the topological excitations against t
DOF phase and will be called the A- and B-type soliton
The density of each soliton type is equal to the pair densi
of bare particles,rAA andrBB , respectively.

At q̃→`, all activity is blocked inside each DOF domai
because any attempt of OPB-type branching is rejected
to the infinite on-site repulsion between the same species

FIG. 8. Schematic surface configurations atq51. They illus-
trate that hopping of the solitons requires a sequence of two bra
ing processes.
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the fact that the DOF structure is close packed. Only
solitons at the boundaries of the DOF domains are act
Their dynamics is basically identical to that of the bare p
ticles at pointS. Soliton diffusion is a second-order OP
process. Each soliton can hop to a next-nearest-neighbor
by applying OPB-type branching twice~Fig. 8!. The solitons
of the same species repel each other andSASB soliton pairs
can annihilate each other when they meet. There is
mechanism to create solitons.

At finite q̃, the solitons broaden. Their widthj is the DI
correlation length in the active phase. Just as the cloud
the absorbing phase, these broadened solitons must obe
fective dynamics at length scalesl .j identical to those of

the sharp solitons atq̃→`; i.e., identical to the particles a
point S. The soliton density decays with the same exponenu
as that of the clouds at the other side of the transition.

Since the soliton density is equal to the particle pair d
sities rAA and rBB , we obtain rAA;t2uAA with uAA
51/2zrw . The particle density is finite in the steady activ
state. Sor andrAB do not decay as power laws, but rema
nonzero.

D. At the critical point: q̃5q̃c

The decay dynamics at the DI critical point can be d
cussed equally well from the cloud or the soliton perspect
~the absorbing state or the active phase point of view!. At the
critical point the DI correlation length diverges in time asj
;t1/zDI with the DI dynamic exponentzDI5n i /n'.1.76.
This length diverges much faster than the typical dista
between clouds (l CACA

;t1/4 and l CACB
;t3/8) ~or solitons

from the other point of view!. This implies that the motions
of the clouds~solitons! become correlated by DI critical fluc
tuations. Their diffusion is not driven by random walks wi
dynamic exponentzrw52, but by correlated random walk
with the DI dynamic exponentzDI . We expect this to be the
only change in the scaling theory for the clouds~solitons!.
That means that we only need to replacezrw by zDI . The
total density of clouds should scale asr̃(t);t21/2zDI, the
density of CACA cloud pairs asr̃AA(t);t21/2zDI, and the
density ofCACB cloud pairs asr̃AB(t);t21/zDI. The densi-
ties of the solitons~on the opposite side of the transition!
scale identically.

Next, we need to establish how these cloud and soli
densities are related to the bare particle densities. We did
for both, and the answer is the same, but the argumen
easier from the clouds perspective and therefore we pre
only the former.

The number ofAA particle pairs is equal to the number o
CACA cloud pairs~as in Sec. V B!. Therefore theAA particle
and BB particle pair densities scale asrAA(t)5rBB(t)
;t21/2zDI. The total density of clouds scales asr̃(t)
;t21/2zDI, and therefore the average distance between clo
diverges asl̃ (t);t1/2zDI. To find the total density of particles
we need to know how many clouds there are and how m
particles each cloud carries. The width of the clouds,l w ,
diverges. For a single isolated cloud this happens with the
correlation length,j(t);tzDI. This is much faster than the
intercloud distance,l̃ . Therefore the width of the clouds i

h-
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limited by the latter,l w5 l̃ . The density of particles inside
each cloud scales asrp; l w

2b/n' @Eq. ~4!#, and their total

number therefore asNp; l w
12b/n';t (12b/n')/2zDI. The total

density of steps scales asr;Npr̃. Putting all this together
givesr;t2b/(2n'zDI);t2b/2n uu @29#.

The density ofrAB pairs is related to the other two by th
relation r52rAA1rAB and therefore must scale with th
slowest power law,rAB;t2b/2n uu.

The density exponents are smaller by a factor of 2, co
pared to their asymptotic behavior starting from theAB or-
dered initial configurations~see Sec. III!. This is the same
factor of 2 found at pointS and everywhere else along th
r̃ 50 line. This factor reflects the random roughness of
initial configurations. It changes for correlated initial roug
configurations in the same manner as discussed in Sec.
for the S point, i.e., simply replace12 →(12x).

In conclusion, the above arguments predict that at the
transition point the step density scales asr;t2(12x)b/n uu, that
the AB step pair density scales with the same exponent,
that the AA and BB step densities scale asrAA5rBB

;t2(12x)/zDI. zDI , b, andn uu are directed Ising critical expo
nents, butx represents the correlations in the initial config
ration. The initial state properties persist into the asympto
scaling properties.

VI. NUMERICAL SIMULATIONS
FOR THE DENSITY DECAY

The scaling theory in the previous section is heuristic, a
certainly not exact. It is somewhat questionable in particu
at the PR transition because we assume that the clouds~and
solitons! remain valid concepts, while their widths actual
like to diverge faster than allowed by the intercloud~soliton!
distances.

To test these predictions, we perform Monte Carlo sim
lations starting from a random initial state where particles
distributed randomly on a lattice of sizeL5215 with initial
densitiesrA5rB51/4. We apply periodic boundary cond
tions. The time evolutions of the densitiesr(t), rAB(t), and
rAA(t)5rBB(t), are monitored up tot5104 and averaged
over 100 independent runs. A few simulations on a lar

FIG. 9. The particle densityr vs t at pointS. The dashed line
has the expected slope21/4. The inset shows that the effectiv
exponentu(t) approaches 1/4 with a power-law correction, i.
u(t)21/4;t21/8. The dashed line in the inset has the predic
slope 1/8.
-

e

A

R

d

ic

d
r

-
e

r

lattice of sizeL5216 demonstrate thatL5215 is adequate to
describe the scaling behavior up to timet5104.

First, we test the density decay at pointS (q̃5 r̃ 50). In
the absence of the on-site repulsion between the same
cies, the total particle densityr should decay algebraically
with exponentu51/4 @25#. It is important to confirm explic-
itly that the infinite on-site repulsion between the same s
cies in our model does not change this result. In Fig. 9,r is
plotted againstt on a log-log scale~the solid line!. It seems
that the density decays slightly faster thant21/4 ~the dashed
line!. Similar results were found previously@28#. This is a
correction-to-scaling effect. Insert the leading scaling beh
iors of l AB;t3/8 and rAB;t21/2 into Eq. ~12!. This gives
2rAAl AA.(12at21/8), and shows the presence of a gene
O(t21/8) type correction-to-scaling term. To isolate th
term, we define an effective exponentu(t)[
2 ln@r(t)/r(t/m)#/ln m with m58. The leading scaling expo
nentu is given by the limiting value of limt→`u(t) and the
correction-to-scaling behavior is contained inu(t)2u. The
log-log plot ofu(t)21/4 against 1/t is shown in the inset of
Fig. 9. We find thatu(t)21/4 scales clearly ast21/8. This
confirms thatr(t);t21/4@11O(t21/8)#. This correction-to-
scaling term decays very slowly. Fittingr(t) to a simple

,

FIG. 10. Estimates for the density exponents. The squares (h),
up-triangles (n), and down-triangles (,) correspond tok51, 2,
and 3, respectively. The predicted values of the exponents are
resented by solid lines and circles.
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power-law form therefore fails to produce the correct va
of the leading exponent. We measured also the effective
ponentsuAA(t) anduAB(t) at pointS. They approach 1/4 and
1/2, respectively, with power-law corrections to scaling
well.

The step density suffers from the same type of correcti
to scaling everywhere along ther̃ 50 line. Log-log plots of
the density versus time are not straight lines. They curv
little. We analyze the data in the following manner. We co
struct estimatesu (k) (k51,2,3) for the exponentu by fitting
the measured densityr(t) to a power law in the time interva
10k<t,10k11 (k51,2,3). Approximants foruAA

(k) and uAB
(k)

are constructed in the same way. As time increases
correction-to-scaling term contributes less and less, and
estimates should converge to the correct values of the l
ing decay exponents.

In Fig. 10, the estimates are presented and compare
the predicted values from the scaling theory in the previ
section. The step density exponentu is predicted to take the
value ofu51/4 below the transition and12 (b/n i).0.141 at
the critical point. Above the transition, the density satura
to a finite value, i.e.,u50. The estimates foru merge to the
predicted value at the critical pointq̃c51.245. Above the
transition,u (k) become smaller ask increases, which is con
sistent withu50. Below the transition, the convergence
slow ~due to strong corrections to scaling! but compatible
with u51/4.

The exponentuAB is predicted to take the value ofuAB

51/2 at pointS, uAB51/4 along 0,q̃,q̃c , uAB5 1
2 (b/n i)

.0.141 at the transition point, anduAB50 in the DOF
phase. The estimates, shown in Fig. 10, converge not as
as those foru, but are still compatible with the theoretica
predictions. The exponentuAA is expected to take the valu
of uAA51/2zDI.0.284 at the critical point anduAA51/4 ev-
erywhere else. The data for this exponent converge slo
than the other two, but they are compatible with the theo
ical results as well.

VII. CONCLUSIONS

In this paper we presented a surface physics applicatio
dynamic phase transitions in the directed Ising universa
class. We introduced a model for the relaxation of a o
dimensional interface starting from arbitrary initial~rough!
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configurations, e.g., the straightening of a step on a vic
surface. This model undergoes a DI type dynamic prerou
ening transition between a perfectly ordered flat~OF! ~ab-
sorbing! stationary state and a disordered flat~DOF! ~active!
stationary phase. The step becomes perfectly straigh
straight in average with randomly placed kinks but in perf
up-down alternating order.

The OF and DOF phases are both unstable with respe
the OBB-type branching processes that break the up-d
alternating order. There we find a rough stationary state w
Edwards-Wilkinson type scaling behavior. The crossover
ponent into the rough phase is determined numerically.

The asymptotic long time behavior of the kink dens
depends strongly on the statistical properties and correlat
of the initial configurations. Information about the correl
tions in the rough initial state~controllable experimentally by
sputtering, for example! never gets lost. It obscures the ra
dom walk nature in the absorbing phase and the DI natur
criticality. We develop a scaling theory for the decay dyna
ics of the various kink densities and predict the values of
decay exponents. Numerical simulations confirm these.

It is noteworthy to mention a different recent applicatio
of absorbing phase transitions to one-dimensional interf
problems by Alonet al. @30#, which describes the dynami
roughening phase transition from a smooth phase int
rough phase of Kardar-Parisi-Zhang type@31#. They consid-
ered a solid-on-solid type model where particles can ads
at any site but desorption takes place only at existing ste
In other words, one can build mountains but is not allowed
dig new holes. This leads to the dynamic roughening ph
transition at a finite value of the adsorption rate, which
triggered by the absorbing nature of the lowest level. T
phase transition belongs to the DP universality class. It m
be interesting to introduce in our model a symmet
breaking field between adsorption and desorption proce
like in the above model. Generalization of our model in th
direction is currently under study.
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