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The critical behavior of the contact process is studied in annealed scale-free networks by mapping it on the
random-walk problem. We obtain the analytic results for the critical scaling using the event-driven dynamics
approach. These results are confirmed by numerical simulations. The disorder fluctuation induced by the
sampling disorder in annealed networks is also explored. Finally, we discuss over a possible discrepancy of the
finite-size-scaling theory in annealed and quenched networks in spirit of the droplet size scale and the linking
disorder fluctuation.
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I. INTRODUCTION

Critical phenomena in complex networks have been at-
tracting a lot of interest �1�. Complex networks are charac-
terized by a so-called small-world property �2�. The number
of neighbors of a node increases exponentially with the dis-
tance from it. For this property, it is believed that critical
phenomena in complex networks belong to the mean-field
universality class. Nevertheless, structural heterogeneity
leads to rich behaviors. For example, in scale-free �SF� net-
works having a power-law degree distribution P�k��k−� �3�,
mean-field critical exponents may vary with the degree ex-
ponent � �1�.

Recent studies raise an important issue on the finite-size-
scaling �FSS� theory in complex networks �4,5�. A scale-free
network with N nodes has a maximum cutoff kmax in degree.
In most cases without any constraint, the cutoff scales as
kmax�N1/��−1�, which is determined by the condition
�k�kmax

P�k�=1 /N. This is called the natural cutoff. One may
impose a forced cutoff

kmax = N1/� �1�

with the cutoff exponent ���−1. Taking the thermody-
namic limit, one should take the limit N→� and kmax→�
simultaneously. This may give rise to an intricate finite-size
effect �5�.

Hong et al. �4� developed a FSS theory based on the
single-parameter scaling hypothesis. Their theory predicts
the values of the FSS exponents in the Ising model �includ-
ing a more general equilibrium �n theory� and the contact
process �CP�, respectively. The CP is a reaction-diffusion
model describing an epidemic spreading, which exhibits a
prototype nonequilibrium phase transition from an inactive
phase into an active phase �6�. It has been suggested that the
FSS exponents depend only on the degree exponent �, re-
gardless of the cutoff if it is not strong enough �����. Note
that this condition includes networks with the natural cutoff
��=�−1� as well as networks with a weak forced cutoff
��−1�����. These results were confirmed numerically in
the static model �7� having the natural cutoff and the uncor-
related configuration model �UCM� �8�.

Castellano and Pastor-Satorras �5� considered the CP in
the so-called random neighbor �annealed� network. Links are
not fixed but fluctuate in this annealed network. At each time
step, the neighbors of a node are chosen independently and
randomly according to the degree distribution. It contrasts
with a network where links are fixed permanently in time
once they are formed. In order to stress the distinction, the
former network will be referred to as an annealed network,
while the latter network as a quenched network. From
the analysis of the survival probability at the critical point,
they found that the dynamic exponent characterizing the
relaxation time depends not only on � but also on � when
���−1 �all networks with a forced cutoff� and 2���3. In
particular, it has been shown that there are two different
characteristic time �and also the order parameter� scales
which make a single-parameter scaling impossible. From the
relaxation-time scaling, the order parameter in the quasi-
steady-state also scales with N with an exponent depending
on both � and �.

At a glance, the results of Refs. �4,5� seem incompatible
�single-parameter versus two-parameter scaling and cutoff-
independent versus cutoff-dependent scaling� when �−1
���� �weak forced cutoff� and 2���3 �highly heteroge-
neous regime�. But it is not true. The FSS theory of Ref. �4�
concerns a quenched scale-free network, while that of Ref.
�5� concerns an annealed scale-free network. Quenched dis-
order in linking topology generates local correlations through
quenched links between nodes, which are responsible for the
shift of the phase-transition point and its disorder fluctua-
tions. Therefore, one may not rule out a possibility that the
disorder fluctuations near the phase-transition point may
wipe away or at least significantly alter the cutoff-dependent
scaling regime, see Sec. VI.

In this paper, we present a full FSS theory governing the
critical and off-critical scaling behaviors of the CP in an-
nealed networks. In Sec. II, an annealed network is intro-
duced without any sampling disorder and the heterogeneous
mean-field theory is briefly reviewed for the CP. The critical
dynamics is analyzed in Sec. III, while the off-critical scaling
is investigated in Sec. IV. In Sec. V, we discuss the effect of
sampling disorder in annealed networks and its self-
averaging property. Finally, we summarize our results along
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with a brief discussion on the effect of linking disorder in
quenched networks.

II. CP IN ANNEALED NETWORKS

We consider the annealed scale-free networks with the
degree distribution P�k�=ak−� for kmin�k�kmax with a nor-
malization constant a and P�k�=0 elsewhere. The maximum
degree kmax scales with network size N as in Eq. �1� and the
minimum degree kmin is an O�1� constant. Since neighbors of
each node need not be specified, an annealed network is
realized by choosing a degree sequence �k1 , . . . ,kN� only.

There are two different ways in choosing the degree se-
quence. One may assign degree k to Nk nodes deterministi-
cally in such a way that �k�	kNk�=int�N�k�	kP�k��� for all k
in the decreasing order starting from kmax, where int�x� is the
integer part of x. One may easily show that the maximum
degree realized using this assignment algorithm is the same
order in N of a given kmax when �	�−1. Or one may draw
probabilistically N values of k in accordance with the prob-
ability distribution P�k�. The probabilistic method yields an
ensemble of different samples, which makes an ensemble
average necessary. We mainly consider the annealed network
realized by the deterministic method. Sample-to-sample fluc-
tuations in the ensemble generated by the probabilistic
method will be discussed in Sec. V.

The CP on the annealed SF network is defined as follows.
Each node is either occupied by a particle or empty. A par-
ticle on a node is annihilated with probability p or branches
one offspring to its neighbor, if empty, with probability
�1− p�. At each time step, a neighbor of a node is selected
among all the other nodes with probabilities proportional to
their degree. Since a node is coupled only probabilistically
with all the other nodes, the mean-field theory becomes exact
in the annealed network.

Let n�t� be the number of particles at time t. Following
Ref. �5� in a quasistatic approximation for large t, it increases
by 1 with probability

w+ = p
��
k

kP�k�
	k


1

1 + 
�k/	k

�2�

or decreases by 1 with probability

w− = p� �3�

after a time step �t=1 /N. Here �=n /N is the particle density
and 
= �1− p� / p with the mean degree 	k
.

The transition probability w+ contains a nontrivial � de-
pendence. When the thermodynamic limit is taken first �4� or
the density is high ��
1 /kmax� in finite networks �5�, one
may arrive at a singular expansion

w+/p = 
� − c��−1 + ¯ , �4�

with a constant c and

� = min��,3� . �5�

When the density is low ���1 /kmax� in finite networks, one
can expand the denominator in Eq. �2� to obtain

w+/p = 
� − 
2g�2 + ¯ , �6�

where g= 	k2
 / 	k
2 with 	kn
��kk
nP�k�. Note that g is an

O�1� constant for ��3, while it scales as g�kmax
3−�

�N�3−��/� for 2���3. The scaling behavior can be rewrit-
ten as

g � kmax
3−� � N�3−��/� �7�

for general ���3� and �	�−1. At �=3, g� log N.
As the stochastic fluctuation ���� /� �multiplicative diffu-

sive noise� becomes negligible in the N→� limit, one can
write the rate equation for the average particle density in the
continuum limit as

d�

dt
= w+ − w−. �8�

It is clear that the system undergoes an absorbing phase tran-
sition at p= pc=1 /2�
c=1� at all values of ��2 in the ther-
modynamic limit. The particle density near the critical point
scales as ���
−
c�� with the order-parameter exponent �
=1 / ��−2� �4�. At �=3, an additional logarithmic correction
appears as ���
−
c� / �log�
−
c��.

III. CRITICAL DYNAMICS

We consider the CP at the critical point �p=1 /2 or 
=1�.
One may regard the particle number n �0�n�N� as a coor-
dinate of a one-dimensional random walker �5�. At each time
step �t=1 /N, the walker jumps to the right with probability
w+ or to the left with probability w−, or does not move with
probability 1− �w++w−�. The walker is bounded by an ab-
sorbing wall at n=0 and a reflecting wall at n=N. Reaching
the absorbing wall, it will be trapped there forever.

It turns out that an event-driven dynamics is useful. In this
dynamics, the walker always makes a jump at each time step
��=1 to the right or left with probabilities

w̃� =
w�

w+ + w−
. �9�

This is equivalent to the original problem if one rescales the
time with the relation

dt =
1

N

d�

w+ + w−
. �10�

A. Defect dynamics

It is interesting to study how particles spread starting from
a localized seed. Dynamics initiated from a single particle is
called the defect dynamics �6,9�. So its initial condition is
n�0�=n0=1.

Quantities of interest are the survival probability Ps�t�, the
probability that the system is still active at time t, and ns�t�,
the number of particles averaged over surviving samples. At
the critical point, they exhibit the power-law scalings

Ps�t� � t−� and ns�t� � t�̃ �11�

for t� tc�N� with the relaxation-time scaling as
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tc � Nz̄. �12�

At t= tc, the system starts to feel its finite size and ns�t�
saturates. For t� tc, Ps�t� decays exponentially. The critical
exponents �, �̃, and z̄ are universal. Note that �̃=�+� where
� is the particle number growing exponent for all samples.

Initially, �0=n0 /N is so small �much smaller than 1 /kmax�
that one can always use the expansion in Eq. �6� for w+. We
will confirm that this is valid throughout the defect dynam-
ics. Then, in the event-driven dynamics, the jumping prob-
ability for the walker at site n is given by

w̃+ =
1 − g�

2 − g�
and w̃− =

1

2 − g�

for small �. This shows that the walker performs biased
walks toward the absorbing wall with the drift velocity

vdrift �
dn

d�
= w̃+ − w̃− = −

g�

2 − g�
. �13�

The bias is negligible �vdrift / w̃��1� during the initial
stage since g��1. Hence, for sufficiently small �, it suffices
to consider the unbiased random-walk motion in the pres-
ence of the absorbing wall at n=0. The effect of the absorb-
ing wall can be taken into account by using the image
method �10�. This yields that the surviving probability de-
cays as

Ps��� 
 n0���/2�−1/2 �14�

and that the surviving walker spreads out diffusively as

ns��� 
 ���/2. �15�

The diffusion velocity for the surviving walkers is given
by

vdif fuse � ns���/� 
 ��/�2�� 
 �/�2ns� . �16�

As � increases, the diffusion velocity becomes smaller while
the bias becomes stronger. The walker reaches a stationary
state when the diffusion velocity and the drift velocity are
balanced. The condition vdif fuse��vdrift� yields that the
walker reaches the stationary state at position

ns
� � �N/g , �17�

and at time

�c � N/g . �18�

This result is self-consistent with the underlying assumptions
that �kmax�1 and g��1.

The time scales t and � are related through Eq. �10�. Using
Eqs. �10� and �15�, one finds that

t 
 �� d��

n����
� �� . �19�

Therefore we conclude that

Ps�t� � n0t−1, �20�

ns�t� � t , �21�

tc � �N/g , �22�

which leads to

� = 1, �23�

�̃ = 1 �� = 0� , �24�

z̄ = �1 − �3 − ��/��/2. �25�

The result for � and z̄ coincides with that of Ref. �5�. At �
=3, tc�ns

���N / log N�1/2.

B. Static dynamics

The static dynamics starts with the initial condition that
all nodes are occupied, n0=N ��0=1�. We consider the scal-
ing behavior of �s, the particle density averaged over the
surviving samples.

The rate Eq. �8� takes a different form depending on the
particle density. When �kmax
1, it becomes d� /dt
=−c��−1 /2, which yields

�s�t� � t−1/��−2�. �26�

If the density becomes sufficiently small such that �kmax
�1, then the rate equation should be replaced by d� /dt
=−g�2 /2, which yields the solution

�s�t� � �gt�−1. �27�

The crossover between the two regimes takes place at time

t� � g��−2�/�3−�� � Nz̄� with z̄� = �� − 2�/w . �28�

At this crossover time scale t= t�, the system starts to feel the
finite upper bound of the maximum degree, kmax. The density
at the crossover is given by

�� � g−1/�3−�� � N−�� with �� = 1/� . �29�

Finally, the system reaches the stationary state. From Eq.
�17�, the particle density at the stationary state is given by

�s
� � �1/�gN� � N−� with � = �1 + �3 − ��/��/2.

�30�

The saturation time tc determined from �gtc�−1�N−� has the
same scaling behavior as the relaxation time in the defect
dynamics �see Eqs. �22� and �25��. This means that the finite
systems reach the stationary state at the same time scale,
irrespective of the initial conditions.

There are a few remarks. For ���−1 and ��3��=��,
there exist two distinct N-dependent time scales t��Nz̄� and
tc�Nz̄ with z̄�� z̄. The former comes into play due to the
finiteness of the maximum degree kmax�N1/�, while the lat-
ter is the time scale to reach the stationary state in finite
networks. This implies that the finite-size effects in the an-
nealed SF networks depend on the limiting procedure of how
N and kmax are taken to infinity. For ��3��=3�, the distinc-
tion between the first regime �Eq. �26�� and the second re-
gime �Eq. �27�� disappears. The particle density decays as
�s� t−1 for t�Nz̄ with z̄=1 /2, and then saturates to the
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stationary-state value �s
��N−1/2. At �=3, �s��t log t�−1 for

t� tc��N / log N�1/2 and �s
���N log N�−1/2.

The systems with the natural cutoff ��=�−1� are special.
Even for ��3, the two time scales t� and tc coincide, having
z̄�= z̄= ��−2� / ��−1�. This means that the second regime
does not exist. The density decays as �s� t−1/��−2� for t�Nz̄,
and then saturates to �s

��N−1/��−1�. The defect and static dy-
namics at criticality are illustrated schematically in Fig. 1�a�.

C. Numerical simulations

We have performed numerical simulations in the annealed
SF networks to confirm the analytic results. In the defect
simulations, the survival probability is expected to scale as

Ps�t,N� = N−z̄�P�t/Nz̄� . �31�

The scaling function behaves as P�x��x−� as x→0 and de-
cays exponentially as x→�. The particle number averaged
over surviving samples is expected to scale as

ns�t,N� = Nz̄�̃N�t/Nz̄� . �32�

The scaling function behaves as N�x��x�̃ as x→0 and con-
verges to a constant as x→�.

Figure 2 shows the scaling plots according to the scaling
form in Eqs. �31� and �32� with the exponent values in Eqs.
�23�–�25�. The annealed networks of size N=103 , . . . ,106

were generated with the deterministic method. The plotted
data were obtained by averaging over 106 runs. The nice data

collapse confirms the validity of the analytic result.
We have also performed the static simulations. Numerical

data at the critical point obtained in networks with �=2.5
and �=2.5 are presented in Fig. 3�a�. Unlike in the sche-
matic plot in Fig. 1, the crossover between two regimes with
�s� t−1/��−2� and �s� t−1, respectively, is not prominent.
Moreover, the decay exponents seem to deviate from the
expected values significantly. In order to understand the ori-
gin of the discrepancy, we have performed a local slope
analysis. As an estimate for the density decay exponent, we
define an effective exponent q�t��−ln��s�t� /�s�t /m�� / ln m
with a constant m=4. The effective exponents measured at
�=2.0, 2.5, and 3.0 are plotted in Figs. 3�b�–3�d�, respec-
tively, against the scaling variable x= t /Nz̄�. The analytic
theory predicts that q should converge to 1 / ��−2�=2�1� as
N increases for x�1 �x�1�. The effective exponent plot
shows a weak but clear tendency toward the analytic predic-
tion. For x�1, the effective exponents steadily increases
above 1 with network size, but still much lower than the
predicted value 2 even for N=106. Moreover there is no
appreciable power-law region �flat region for q�. For x�1,
the effective exponents overshoot the predicted value 1 until
N=105, but start to decrease slightly at N=106. We also no-
tice the appreciable flat region in this case.

In order to identify numerically the power-law scaling in
the first regime, it would be required that at least t��102

�two log decades�. With �=2.5 and w=2.5, the system size
must be larger than �1010, which is beyond the current com-
puter capacity.

We have also studied the FSS behavior of the stationary-
state particle density at criticality. It exhibits a power-law
scaling with N as �s

��N−�. It is found �not shown here� that
the numerical result for the exponent � is compatible with
the analytic result given in Eq. �30�. However, a discrepancy
becomes noticeable as � becomes smaller and � becomes
larger due to strong finite-size effects. The degree distribu-
tion becomes singular as � approaches 2. At large �, the
maximum degree kmax�N1/� grows so slowly that it be-
comes difficult to observe the asymptotic scaling behavior.

IV. OFF-CRITICAL SCALING

For 2���3, the particle density exhibits distinct dy-
namic characteristics depending on whether �kmax�1 or
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FIG. 1. �a� Schematic plot of �s vs t in the log-log scale at the
critical point in the annealed networks with 2���3 and ���
−1. The solid �dashed� line corresponds to the static �defect� dy-
namics. �b� Schematic plot of �s vs � in the same condition.
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�kmax�1. This causes an interesting cutoff-dependent FSS
behavior at the critical point. Such a cutoff dependence dis-
appears far from the critical point. However, in finite systems
near the critical point, the cutoff dependence can still survive
to lead to an anomalous FSS behavior. For ��3, the system
shows a simple normal FSS behavior.

Near the critical point at p= pc�1−��, the rate equation for
the density, Eq. �8�, reads for 2���3

d�s/dt = ��s − c��s
�−1 for �skmax � 1, �33�

=��s −
1

2
g�s

2 for �skmax � 1, �34�

where kmax=N1/�, g= 	k2
 / 	k
2�N�3−��/�, and c�=c /2.
By setting d�s /dt=0, one obtains that the stationary-state

solution is given by

�s
� � �� for �skmax � 1, �35�


2�/g for �skmax � 1, �36�

with the bulk order-parameter exponent

� = 1/�� − 2� . �37�

This shows that the stationary-state solution also depends on
the degree cutoff kmax. There is a crossover at �=�� with

�� � g−��−2�/�3−�� � N−1/�̄� with 1/�̄� =
� − 2

�
. �38�

For ����, the order-parameter scaling changes into the
�-independent ordinary mean-field linear scaling as in Eq.
�36�, although this crossover disappears ���→0� in the ther-
modynamic limit.

When � decreases further below ��, the system will reach
the critical state where the particle density scales as �s

�

��1 / �gN� �see Eq. �30��. The critical region in finite sys-
tems starts at �=�c with

�c �� g

N
� N−1/�̄ with 1/�̄ =

1 − �3 − ��/�
2

, �39�

where the finite-size saturation starts to occur �2�c /g=�s
��.

The off-critical FSS behavior is illustrated in Fig. 1�b�.
This scaling theory predicts that there exist two characteristic
sizes N���−�̄� and Nc��−�̄ which separate three scaling re-
gimes. In regime I ������ where N��N, the system be-
haves as in a SF network with infinite N and infinite kmax,
e.g., �s���. In regime II ��c������ where Nc�N�N�, it
behaves as in a SF network with infinite N but with finite
kmax. The density scales as �s
2� /g��N−�3−��/�. Finally, it
behaves as in a SF network with finite N and kmax in regime
III ����c� where N�Nc. The density scales as �s�N−� with
�= �1+ �3−�� /�� /2 �see Eq. �30��.

At the special case of the natural cutoff with �=�−1,
regime II disappears and there is a direct crossover from
regime I �no size effect� to regime III �critical size scaling�.
For ��3 where �=3 and g�O�1�, �s

��� in both regimes I
and II, so �� becomes meaningless. Here again we observe a
direct crossover from regime I to regime III.

The FSS scaling behavior in the annealed SF network is
sharply contrasted with that in the quenched SF network.
While there are two characteristic sizes N� and Nc that de-
pend explicitly on the degree cutoff in the former �at least for
2���3 and ���−1�, it has been proposed in the latter
through a droplet-excitation �hyperscaling� argument �4� that
there exists a unique cutoff-independent characteristic size
Nq��−�̄q with 1 / �̄q= ��−2� / ��−1� for 2���3 and 1 / �̄q
=1 /2 for ��3. It is interesting to notice that the FSS theory
in the annealed network coincides with that in the quenched
network for ��3 and also at the special case with the natural
cutoff with �=�−1 for 2���3. The origin of the discrep-
ancy in the FSS theory between two different networks as
well as the relevance/role of the quenched linking disorder
have not been fully explored as yet, which awaits a further
investigation.

We have performed extensive simulations in the annealed
SF networks to test the off-critical FSS theory. In Fig. 4, we
present a scaling plot of y��sN

� against a scaling variable
x��N1/�̄ at �=2.5 and �=1.5, 2.0, 2.5, and 3.0. When �
=�−1=1.5 �natural cutoff�, the FSS theory predicts that the
quantity y converges to a constant value for x�1 �regime
III� and scales as y�x1/��−2�=x2 for x
1 �regime I�. There
should be no regime II. The numerical data in Fig. 4 seem to
support this two-regime scaling behavior reasonably well.

When ���−1, we expect three scaling regimes. The nu-
merical data in regimes II and III will converge to a single
curve, but those in regime I should deviate from it because of
the two different characteristic sizes. The numerical data in
Fig. 4�a� show a clear evidence of regime III �flat region�,
but a weak signature of regimes II �linear-slope region, y
�x� and I �no collapse�. Although the signature is not promi-
nent due to strong finite-size effects, the existence of the
three scaling regimes is evident. In Fig. 4�b�, we present the
numerical data in a different style by plotting y /x against x,
so regime II can be identified by a flat region. As expected,
there is no flat region at �=1.5 �natural cutoff�. As � in-
creases, one can see clearly the broadening of the flat region
�regime II� which becomes larger with increasing N. This
behavior is qualitatively consistent with the expected FSS
behavior. It is very difficult to observe the regime III scaling
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FIG. 4. �Color online� �a� Scaling plots of y=�sN
� vs x=�N1/�̄

at �=2.5 and �=1.5, 2.0, 2.5, and 3.0. Network sizes are N
=103 , . . . ,107. �b� Plots of y /x against x. Each data set is shifted
vertically by a constant factor to avoid an overlap.
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even at N=107, similar to the difficulty encountered in the
study of the critical dynamics in Sec. III.

Finally, the off-critical dynamic behavior can be easily
derived from the rate equations, Eqs. �33� and �34�, in the
thermodynamic limit, approaching the criticality from the ac-
tive or the absorbing side, �s�t�−�s

��e−t/� where the relax-
ation time scales as ���−�t with �t=1 in all cases. These
results are consistent with our previous results through the
relaxation-time relations of z̄=�t / �̄ and z̄�=�t / �̄�.

V. SAMPLE-TO-SAMPLE FLUCTUATIONS

Suppose that one wants to generate a network of N nodes
with a given degree distribution P�k� with a �forced or natu-
ral� cutoff. In general, there are two kinds of quenched dis-
order to be considered. First, one should sample a degree
sequence �k1 , . . . ,kN� from P�k� and then choose a way of
linking the nodes together to create a network. Disorder can
be involved in both processes, which is named as sampling
disorder and linking disorder, respectively. A quenched net-
work involves both sampling and linking disorder, in
general.

An annealed network is free from the linking disorder.
However, it may still have the sampling disorder. In the nu-
merical studies in the preceding sections, we have sampled
the degree sequence deterministically without any disorder.
On the other hand, probabilistic sampling of the degree se-
quence leads to the sampling disorder. In this section, we
investigate sample-to-sample fluctuations in annealed net-
works due to the sampling disorder. The quantity of our pri-
mary interest is g�	k2
 / 	k
2.

When N values �k1 , . . . ,kN� are drawn probabilistically in
accordance with the distribution P�k� for kmin�k�kmax, a

sampled distribution P̃�k�=�i=1
N �k,ki

/N may deviate from the
target distribution P�k� due to the finiteness of N. The devia-

tion is denoted by �P�k�= P̃�k�− P�k�. Then, it is straightfor-
ward to show that

��P�k�� = 0, �40�

��P�k��P�k��� = −
P�k�P�k��

N
+

P�k�
N

�k,k�, �41�

where �¯� denotes the sample �disorder� average.
The nth moment of the degree of a sample is given by

	kn
 � �
k

knP̃�k� = 	n
0�1 +
	n
�

	n
0
� , �42�

where we introduce shorthand notations as 	n
0��kk
nP�k�

and 	n
���kk
n�P�k�. There is a 1 /N factor in the correlator

in Eq. �41�. So, 	n
� / 	n
0 can be considered as a small ex-
pansion parameter for large N. Up to the second order, the
quantity g of a given sample can be written as

g =
	2
0

	1
0
2�1 +

	2
�

	2
0
− 2

	1
�

	1
0
+ 3

	1
�
2

	1
0
2 − 2

	2
�	1
�

	2
0	1
0
� .

The disorder-averaged correlators in Eqs. �40� and �41� im-
ply that �	n
��=0 and that

�	m
�	n
�� =
1

N
�	m + n
0 − 	m
0	n
0� . �43�

This allows us to systematically expand �g� and ��g�2

��g2�− �g�2 in powers of 1
N . After some algebra, we obtain

the following result up to the order of 1 /N:

�g� =
	2
0

	1
0
2�1 +

1

N
�3

	2
0

	1
0
− 2

	3
0

	1
0	2
0
− 1�� �44�

and

��g�2 =
1

N

	2
0
2

	1
0
4� 	4
0

	2
0
2 − 4

	3
0

	1
0	2
0
+ 4

	2
0

	1
0
2 − 1� . �45�

Our interest lies in the SF network of N nodes having the
degree distribution P�k��k−� in the interval kmin�k�kmax
=N1/� with ��2 and �	�−1. The 1 /N term in Eq. �44� is
always subleading, so the scaling behavior of �g� is deter-
mined by 	2
0, which yields that

�g� = ��N�3−��/� for 2 � � � 3

�log N for � = 3

�O�1� for � � 3.
� �46�

On the other hand, the term 	4
0 / 	2
0
2 in the parenthesis of

Eq. �45� makes a leading-order contribution. Hence, we find
that the relative variance Rg= ��g�2 / �g�2 is given by

Rg =�
�N��−1�/w−1 for 2 � � � 3

�N2/w−1�log N�−2 for � = 3

�N�5−��/w−1 for 3 � � � 5

�N−1 log N for � = 5

�N−1 for � � 5.
� �47�

In the theory of disordered systems, the relative variance
RX of an observable X due to a quenched disorder is an
indicator of the self-averaging property �11�. When it van-
ishes in the thermodynamic limit N→�, such a system is
said to be self-averaging. The self-averaging property im-
plies that an observable measured in a sample with a typical
disorder configuration takes the same value as the sample-
averaged value in the N→� limit. A system with RX�N−1 is
said to be strongly self-averaging �SSA�. This is the case
when the central limit theorem works. When RX�N−r with
r�1, such a system is said to be weakly self-averaging
�WSA�. A system with strong or relevant disorder lacks the
self-averaging property near the criticality. In such a system,
RX converges to a finite value as N increases.

The result in Eq. �47� discloses the self-averaging prop-
erty of the annealed SF network under the sampling disorder.
First of all, we find that the system with ��5 is SSA at all
values of the degree cutoff exponent �. For ��5, Rg decays
slower than N−1 at all values of ���−1. So the system is
WSA.

Interestingly, the systems lack the self-averaging property
when 2���3 and �=�−1 �Rg approaches a nonzero con-
stant as N increases�. Note that the cutoff exponent �=�
−1 corresponds to the natural cutoff. Networks without ex-
plicit constraint on the degree also display the cutoff scaling
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kmax�N1/��−1�. In these networks, not only the node-to-node
degree fluctuation but also the sample-to-sample degree fluc-
tuations are very strong.

We present the numerical data showing the �non� self-
averaging property in Fig. 5. Drawing N values of k from the
distribution P�k��k−� in the interval 2�k�N�, we calcu-
lated g= 	k2
 / 	k
2. This was repeated NS=105 times, from
which one can construct the probability distribution function
Pg�x� for x=g / �g�. Figure 5�a� shows that the distribution
becomes sharper and sharper as N increases. It indicates the
self-averaging property at �=2.75 and �=3.0. On the other
hand, Fig. 5�b� shows that the distribution converges to a
limiting distribution. It indicates that the system is not self-
averaging at �=2.75 and �=�−1=1.75.

The strong disorder fluctuation raises an important ques-
tion. In general, a real complex network is a disordered me-
dia having a quenched disorder, for example, the sampling
disorder and the linking disorder as mentioned before. Being
coupled with dynamic degrees of freedom, the quenched
structural disorder may give rise to disorder-relevant critical
phenomena. This is a plausible scenario, but has been ig-
nored in most studies. It seems to be a quite challenging
problem to incorporate the quenched disorder into a system-
atic analysis.

In the annealed network considered in this study, the dy-
namic degrees of freedom are completely decoupled with the
sampling disorder �no linking disorder�. Hence, the scaling
theory developed here should be valid whether the sampling
disorder is self-averaging or not. However, our result still
warns that the sample average of any observable involving g
is practically meaningless due to its broad distribution, which
occurs in the critical region �regimes II and III� in annealed
networks with 2���3 and the natural cutoff.

VI. DISCUSSION AND SUMMARY

We studied the critical behavior of the CP in annealed
scale-free networks. For the degree exponent ��3, the stan-
dard single-parameter FSS is found with various dynamic
and static exponents which are independent of the cutoff ex-
ponent � and also �. For highly heterogeneous networks
with ��3, there exist two different characteristic time scales
and their associated exponents depend not only on � but also
on �. These results are contrasted with those in the quenched
scale-free networks where a single-parameter FSS is found
without any cutoff dependence even for ��3 if the cutoff is
not strong enough ����� �4,12�. At the special case of �
=�−1 �natural cutoff�, these two different FSS coincide to
each other.

Annealed networks may include the sampling disorder,
which generates a strong sample-to-sample fluctuation in
highly heterogeneous networks with the natural cutoff. In
quenched networks, the linking disorder is inherent, which
generates the density-density correlation in neighboring
nodes through coupling with fluctuating variables. This cor-
relation leads to the shift of the transition point of the CP
model �12,13�. In addition, the linking disorder generates
another type of sample-to-sample fluctuations which cause
spreading of the transition points in finite systems. Hong et
al. �4� showed that there exists a characteristic �droplet� size
scale diverging as Nq��−�̄q with 1 / �̄q= ��−2� / ��−1�
for ��3. For N�Nq �or equivalently ���q with
�q�N−��−2�/��−1��, the system feels the droplet length scale
and the finite-size effect is dominant. As �q��c given in Eq.
�39�, one may expect that the finite-size saturation induced
by the droplet length scale comes in earlier �at �=�q� in
quenched networks than in annealed networks. Then, the cut-
off dependency of the saturation density may disappear.
However, as �q��� given in Eq. �38�, the cutoff-dependent
density-decaying dynamics comes in before saturation. The
linking disorder fluctuation may be responsible for the dis-
appearance of this dynamics in the quenched networks, but
this is just a speculation as yet. A full understanding of the
FSS behavior in quenched networks needs a further investi-
gation.

Note added. Recently, Boguñá et al. posted a preprint
�14�; the results of which partially overlap with those pre-
sented here.
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