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Universality class of absorbing transitions with continuously varying critical exponents
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The well-established universality classes of absorbing critical phenomena are directed perdoRjtiand
directed Ising(DI) classes. Recently, the pair contact process with diffusR@PD has been investigated
extensively and claimed to exhibit a different type of critical phenomenon distinct from both DP and DI
classes. Noticing that the PCPD possesses a long-term memory effect, we introduce a generalized version of
the PCPD(GPCPD with a parameter controlling the memory strength. The GPCPD connects the DP fixed
point to the PCPD point continuously. Monte Carlo simulations strongly suggest that the GPCPD displays, to
our knowledge, novel critical phenomena which are characterized by continuously varying critical exponents.
The same critical behaviors are also observed in models where two species of particles are coupled cyclically.
We present one possible scenario that the long-term memory may serve as a marginal perturbation to the
ordinary DP fixed point.
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[. INTRODUCTION viduals. These clusters can be mapped to the directed perco-
lation clusterq 1], when the temporal direction is set to be
A nonequilibrium system with trappe@bsorbing states  the preferred direction of DP clusters. So all critical expo-
may display a so-called absorbing phase transition betweements(fractal dimensionstake the same values as the corre-
an inactive and an active phagk2]. A state which has a sponding DP critical exponents. Most of the systems with
zero transition probability into any other state is called theabsorbing states belong to this DP class, e.g. the Domany-
absorbing state. A system in the inactive phase alway&inzel cellular automaton[10], the Ziff-Gulari-Barshad
evolves into the absorbing state and stays there forever. Omodel for a surface catalytic reactigtl], the branching-
the other hand, a system in the active phase may not bannihilating random walks with an odd number of offspring
trapped in the absorbing state with a finite probability. Therg12], and the pair contact proce€CB [13]. Unlike others,
has been growing interest in the critical behaviors of thethe PCP has infinitely many absorbing states, which leads to
absorbing phase transitions since a wide range of phenomewantroversial transient behaviors, i.e., nonuniversal scaling
such as epidemic spreading, catalytic chemical reactions, arjd3-16 versus absence of scalifgj7,18. But its stationary
surface roughening, display absorbing transitiphg]. critical behavior still belongs to the DP class at low dimen-
Besides their wide applications, absorbing critical phe-sions[19].
nomena have been the focus of a number of theoretical The DI class includes systems with two equivalent ab-
works, since they are categorized into a few universalitysorbing states with Ising-lik&, symmetry or equivalently in
classes characterized by the symmetry between the absorbinge dimensior{1D) a single absorbing state with parity con-
states and/or the conservation in dynanji@s6]. Criticality ~ servation in the domain wall language. The nonequilibrium
of each universality class is described by three independerinetic Ising (NKI) model with combined zero-temperature
critical exponentsp for the order parameter, for the cor-  spin-flip dynamics and infinite-temperature spin-exchange
relation length, and for the relaxation time. For systems dynamics is an example of the DI systerf20]. In this
which are free from quenched disorder and evolve onlymodel, only Ising spins near domain walls can flip, so that
through short-range processes, the directed percoléfiBn  the two states with all spins up or down are absorbing. These
and the directed IsingDl) (or parity conservingclasses are two absorbing states are probabilistically equivalent. In
well-established ones. terms of the domain wall, there is a single absorbing state
The DP class involves typically a single absorbing stategvacuum with parity conservation in the number of domain
without any kind of conservation in dynamis,8]. The con-  walls, since spin flips change it only in pairs. Other examples
tact process, a model for epidemic spreading, is a prototypin the DI class include the interacting monomer-dimer model
cal example of the DP cla$9]. In this model, individuals on [21], the branching-annihilating random walks with an even
a lattice are either infected or healthy. Infected ones may baumber of offsprind12,22), and generalized versions of the
healed spontaneously or infect healthy neighbors. There is eontact proces$5,23]. There also exist models in the DI
single absorbing state where all individuals are healthyuniversality class that have infinitely many absorbing states
Varying the relative rates between infection and healing prof24—26. They also display nonuniversal scaling behaviors in
cesses, one can find a phase transition from the absorbirige transient regimg25,26.
phase into the active phase. There is annfinite dynamic barrietbetween two absorb-
Its stationary and dynamic critical behaviors are characing states of DI systems, which is similar to the free energy
terized by spatiotemporal cluster patterns of infected indibarrier between two ground states in the ordered phase of the
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equilibrium Ising systen{24]. A state near one absorbing evolves into this absorbing subspace, it drifts freely inside
state cannot evolve into a state near the other absorbing statee subspace but cannot escape out of it. The threshold trans-
by a finite number of successive local changes. In othefer procesg15] is one example with an absorbing subspace.
words, a frustratiodomain wal) in a configuration gener- But it does not contain any other absorbing state and displays
ated by pasting two absorbing configurations cannot disapthe DP-type transition.

pear within a finite number of time steps. For example, a spin  The structure of absorbing states in the PCPD is unique
state in the 1D NKI model with all spins up in one semi- with one pointlike absorbing state and one absorbing sub-
infinite lattice and all spins down in the other semi-infinite space. It is clear that there is no infinite dynamic barrier
lattice never relaxes to the absorbing state. between these absorbing states. Hence, one may argue that

The concept of the infinite dynamic barrier is very usefulthe PCPD should belong to the DP class. However, this ar-
to understand the critical behavior of systems with infinitelygument turns out to be premature. Background diffusing soli-
many absorbing states. For instance, the PC3 and the tary particles generatelang-term memory effean the or-
modified interacting monomer-dime(iIMD-IMA ) model  der parametefpair density. Solitary particles detached from
[24] have infinitely many absorbing states. In the PCP, alifferent trains of particles diffuse and collide each other to
frustration between any of the absorbing states can disappeareate a new particle pair, which leads to history dependence
locally, so the absorbing transition falls into the DP class.in the pair-creation rate. This process is governed by annihi-
However, in the IMD-IMA, the infinite dynamic barrier lating random walks, where the colliding probability of two
separates the absorbing states into two equivalent groups wfalkers decays algebraically with time. This long-term
absorbing states, which results in the DI-type critical behavimemory effect might be relevant and leads to a new type of
ior [24]. critical phenomenon.

A few exceptional cases have been reportediytiype A numerical investigation using density matrix renormal-
long-range flights are relevant to the absorbing critical pheization group technique$4] revealed that numerical values
nomena, which lead to continuous variation of critical expo-of some critical exponent ratios are close to the DI values
nents[27]. Multispecies particle reaction-diffusion systems rather than the DP values. Subsequent extensive simulations
also show non-DP and non-DI critical behaviors, where arj35—-37 seem to exclude the possibility of both DI and DP
interspecies hard-core interaction plays an important rolelasses and suggest that the PCPD belongs to a new univer-
[28]. A lattice gas model with a global conservation in the sality class. However, huge corrections to scaling conceal the
particle number shows a novel type criticality related to self-true asymptotic scaling behavior and numerical estimates for
organized critical systemi29]. The nonequilibriumg-state  the critical exponents are obscure with considerable uncer-
Potts models in higher dimensions show interesting criticatainty. Similar critical behaviors were also observed in re-
behaviorqd 30]. A quenched randomness also leads to differ{ated model§38—40, which include a modified PCP[B9]
ent absorbing critical phenomefnad]. with the branching processx2-4X instead of X— 3X and

Recently, Howard and “Téber introduced a modified PCP an effective model with two species of particles coupled cy-
(called as PCPDmodel, which allows single-particle diffu- clically [38].
sion [32,33. They studied the PCPD in the context of Despite all those efforts, universal features that could
bosonic field theory and showed that the field theory is noneharacterize the novel universality class were not uncovered
renormalizable and the absorbing transition does not belonget. We explore this issue in the present work. Hinrichsen
to the DP class. A fermionic version was first studied bynoticed that two types of degrees of freedom are present in
Carlon, Henkel, and Schollves [34] in 1D, which raises the PCPD; a particle pair that can branch and annihilate, and
continuing debate on the universality clé84—40. Hereaf- a diffusing solitary particle[38]. All activities that can
ter, we only focus on the 1D systems. change the number of particles are carried out by the particle

The PCPD is defined on a lattice, each site of which ispairs. So the particle pair density can be regarded as an order
either occupied by a particleX) or empty (J). Dynamic  parameter. The two degrees of freedom are coupled cycli-
rules are given as follows. A nearest neighbor pair of parcally; one can be transmuted to the other, and vice versa, via
ticles can either annihilateXX— @) with probability  particle diffusion. The cyclic coupling results in the long-
p(1—d) or branch one offspring{X— XXX) to one of the term memory effect as described above, which we believe
neighboring sites with probability (2p)(1—d). A particle  plays a crucial role in this critical phenomenon.

can hop to its neighboring site with probabilitly Branching These observations lead us to consider a generalized
and hopping attempts are rejected if a particle would land o®?CPD (GPCPD model with a parameter controlling the
the top of another patrticle. strength of the memory effect, which will be explained in

When the diffusion is not allowedd&=0), it reduces to  Sec. Il. Without the memory effect, the GPCPD should fall
the ordinary PCP with infinitely many absorbing states. Anyinto the DP class. So, our parameter connects the DP fixed
state with only isolated particles is an absorbing state. Bupoint to the PCPD point, which allows us to study the long-
there is no infinite dynamic barrier between them and théerm memory effect on the DP-type models systematically.
transition belongs to the DP clagE3]. One may expect that the long-term memory would serve

At nonzerod, the PCPD has onljwo absorbing states; a as a relevantat least, marginalperturbation to the DP fixed
vacuum state and a state with a single diffusing particle. Irpoint, in order to account for the non-DP-type novel critical
fact, the latter forms an absorbing subspace consistirlg of behavior at the PCPD point. In that case, one can hope that,
configurations with system size in 1D. Once the system by varying the control parameter, those huge corrections to
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scaling found at the PCPD point might be reduced to a tol-g aa a a a
erable level, so the moderate numerical efforts may revea. ® oo o000 606 60

- - { { { { '

the true asymptotic behavior.

We performed extensive Monte Carlo simulations in Sec.O O 000 OO00O O0e OO0
[Il. Our numerical results show that corrections to scaling are ¥
huge only near the PCPD point and the asymptotic regimes 00
are rather easily reached at other values of the control pa (2) (b) (c) (d) (e)
rameter. So, we were able to estimate the values of the criti- . . . .
cal exponents with reasonable accuracy for a wide range of F'C- 1. lllustration of dynamic rules. Filletémpty circles rep-
the control parameter, except not very near the PCPD poinf.esent occupiedempty sites. Dots indicate selected sites.

In the absence of the memory effect, we find the DP univerpayticie or a pair annihilation process of a triplet of particles.
sality class as expected. With the memory effect, surprisy, this process, at least one particle pair is sacrificed. The
ingly, we observe continuous variation of critical exponentsspjitary particles diffuse and collide with each other to form
with the memory strength. Especially, the order parameteg particle pair with probability. So, one can say that particle
exponentB varies more than 60%, which is far beyond the pajrs temporarily turn into solitary particles and resurrect
statistical errors less than at most 10%. . later by collision of those solitary particles. The colliding
_ In order to e;tabh_s_h this novel unlvgrsallty class with CoN-probability of two diffusing particles usually decays algebra-
tinuously varying critical exponents firmly, in Sec. IV, We jcally in time. Therefore, this feedback mechanism induces
introduce two independent model systems with two specieﬁ)ng_term history dependence, which is called ltveg-term
of particles: one species plays the role of the particle pairgnemory effectof the order parameter. As increases, the
are coupled cyclically through transmutations, which leads tqnodel ¢=1) has the maximum memory effect.
the long-term memory e'ffect. These models are a!so studied Ther=0 point is special. Collision of two particles does
by Monte Carlo simulations, and are shown to display the,ot generate a particle pair at all, so there is no feedback
same type of critical phenomena as in the GPCPD. mechanism for the pair density. Once the system evolves into
In Sec. V, we suggest one possible scenario to account fof state without any particle pair, it stays inside a subspace of
th|§ umversallty class with continuously varying exponents.siates without a pair and, in the end, will be trapped into one
This scenario assumes that the long-term memory plays thgr the absorbing statehe vacuum state and the states with
role of the marginal perturbation to the DP fixed point. We 3 single particle So, in the viewpoint of the order parameter
numerically check this scenario by measuring the lifetimegg the pair density, the no-pair subspace serves as the absorb-
distribution of solitary particles. Our analysis shows that this;, subspace which the system cannot escape from. Evolu-
scenario may be considered as a reasonable one, thoughiy, inside this subspace is governed by the trivial pair anni-
needs full field-theoretical analysis for a defmmye test. Fi-pijlation dynamics of diffusing particles that have no memory
nally, in Sec. VI, we summarize our works and discuss OVegfiects on the order parameter fluctuations. Therefore, the
various possible scenarios recently suggested by other respcpp ar =0 should be effectively equivalent to the PCP
searchers. model without diffusion. The no-pair subspace is exactly the
same as the absorbing subspace of the latter. The coupling
Il. MODEL constants for the branching and annihilation processes are
' renormalized due to the inclusion of the single-particle dif-
The GPCPD model is defined on a 1D lattice of size fusion, and the critical point is shifted. However, the critical
with the periodic boundary conditions. Each site is eitherfluctuations should be identical and we expect the DP-type
occupied by a particléxX) or empty (J). The system evolves stationary critical behavior at the absorbing transition. We
in time according to the dynamic rules of the PCRBe Sec. also expect the ordinary DP-type scaling in the transient re-
I) with one additional ingredient. When the hopping of agime, starting from a single pair of particles, in contrast to
solitary particle creates a new particle pair through collidingthe controversial transient behaviors in the PCP model.
with another particle, this new particle pair annihilates in- At nonzeror, the system escapes from the no-pair sub-
stantaneously with probability -1r or survives with prob- space with finite probability. The order parameter can be sig-
ability r. This does not apply to particle pairs formed by nificantly influenced by the memory effect induced by this
branching processes. At=0, two solitary particles always in-and-out dynamics with respect to the no-pair subspace.
annihilate upon meeting and have no chance to turn into @he parameter connects the DP fixed point €0) to the
nearest neighbor particle pair. The parameteontrols the PCPD point (=1). Therefore, the GPCPD allows us to
transmutation rate of two solitary particles into a nearesstudy systematically the origin of the new type of critical
neighbor particle pair upon meeting. A1, the model re- behavior found in the PCPD.
duces to the ordinary PCPD. Dynamics of the GPCPD can be implemented in Monte
As in the PCP, we take the particle pair density as theCarlo simulations as followssee Fig. L First, select a pair
order parameter. At nonzem there is a feedback mecha- of sites ,i+1) at random. When both sites are occupied,
nism to increase the pair density via the collision of diffusingthe two particleqa) annihilate with probability (:d)p or
solitary particles. A solitary particle is created from a train of (b) branch a particle at one of the neighboring sites1 or
particles by a hoppinddetaching process of a boundary i+2, with probability (1—d)(1—p). Branching attempt to
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0.29

an already occupied site is rejected. When only one site is 1.71
occupied,c) the particle hops to the other site with probabil-
ity d. If the hopping(not branching creates a new particle

- 0.06632
\ — 0.06636

1.68

pair, the pairn(d) survives with probability or (e) annihilates 1654
with probability 1—r. When both sites are empty, no change
is made. The time increases by one unit aftesuch trials. 1.62,

To speed up simulations, we adopted a technique utilizing ;¢
a list of active pairs of neighboring sites. A neighboring site
pair is stored in the active pair list if it contains at least one  0.15
particle. Then, a site pair in the list is selected randomly for«
dynamics. The time increases byN}; with N4, the num-

ber of active pairs in the list at each attempt. 0.13L L L
0 0001 0002 70 0001 0.002
t t

Ill. MONTE CARLO SIMULATIONS
FIG. 2. The effective exponents for the GPCPDr &0.5.
Monte Carlo simulations were performed to investigate

critical behaviors of the GPCPD. The critical points are ap- R(t)~t1
proached by varying at eachr=0, 0.25, 0.5, 0.75, and 1 '

ith fixed diffusi babilityd=0.1. N , . .
With Tixed difiusion probabiiity and the double logarithmic plots against time show straight

lines. Off criticality, these plots show curvatures in the long
time limit. Precise estimates for the critical points and the
We performed the so-called defect simulations to locatescaling exponents can be obtained by examining the local
the critical points. Starting with a single pair of particles, we slopes of the curves. The local slope, called as the effective
measured the survival probability(t) that the system is exponent, is defined as
surviving at timet, the number of particle pairsi(t) aver-
aged over all samples, and the mean distance of spreading In[P(t)/P(t/m)]
R(t) averaged over the surviving samples. ()= —————
Our definition of surviving samples is different from the
conventional one where all samples not being trapped into . )
one of the absorbing states are considered as surviving oné¥d similarly for;(t) andz(t) with a constanin (taken to
Here, only samples with at least one particle pair are reP® 10- The power-law scaling behavior implies that they
garded as surviving. Samples with only solitary diffusing converge to the values of’, 7, andz asymptotically as
particles(no pair but irrespective of the number of partigles {— atp=p.. At off-critical points, they behave like being
are regarded aseadones, even if they are not trapped com- at the.c.r|t|cal point in the 9a_r|y time regime and thgn deviate
pletely. They may be dead for a while, but can resurrect latefo @ tnwgl value charactenspc of the active or |nact|ve phase.
as surviving samples when diffusing particles meet and fornfrom th|§_crosso_ver behavior one can determine the location
a particle pair. The dead states form the no-pair subspac¥ the critical point.
(see Sec. )l At nonzeror, the system can evolve in and out  1he defect simulations were performed up to’ 1ne
of the no-pair subspace. With this definition, the survivalStePs and the observables were measured and averaged
probability P(t) actually represents the probability that the OVer ~2x 10> samples. Figure 2 shows plots of the effec-
system contains at least one particle pair, or equivalently thllve €xponents againsttlatr =0.5. Apparently, the effective
probability that the system stays outside the no-pair sub€Xxponents fo’, 7, andz converge to their asymptotic val-
space. ues atp=0.066 36, while they clearly bend up or down
The conventional surviving ensemble includes most of thevith a curvature ap=0.066 32 and 0.066 40. It leads us to
states inside the no-pair subspace exceptrieabsorbing ~ €stimate thap,=0.066 36(4) andz=1.673), 7=0.261),
states(the vacuum state and the states with a single payticle 8 =0.141). _
The survival probability is now dominated by the trivial pair- ~ The errors in the exponent values mainly stem from the
annihilation dynamics of diffusing particles inside the no-uncertainty in thep. estimate. Statistical errors are much
pair subspacg41], which does not reflect the proper dy- smaller than this systematic error, which can be clearly seen
namic and stationary scaling behavior of the order parametdp Fig. 2. A correction to the scaling could lead to a system-
(the pair density Hence, the fluctuations of the order param-atic error in the estimate qf;, and hence, of critical expo-
eter should be described in our surviving ensemble definefients. The plots in Fig. 2 show that the correction is quite

A. Defect simulations

Inm

as the complement of the no-pair subspace. small forN(t). The effective exponent§’ (t) andz(t) have
At criticality, the values of the measured quantities decay? little time dependencéseemingly, linear dependence in
algebraically[42] as 14) even at the estimatepl., while such time dependence
is negligible for 5(t) at the estimateg.. So the best esti-
P(t)~t~7, mate forp, is obtained from the plot of;(t) versus 1t/ [43].
We also find similar behaviors for other valuesroéxcept
N(t)~t7, 1 r=1.
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TABLE I. Critical points and critical exponents estimated from certainty. It may be quite interesting to investigate the origin
the defect simulations. As a reference, corresponding values of thend the nature of the unexpected huge corrections at the

DP and DI classegtaken from Ref[22]) are given. PCPD point, but we do not have any reasonable explanation
/ at this moment.
r Pc z 7 6 g When one faces a strong correction-to-scaling behavior in
0 0.046872) 1.581) 0.3146) 0.1605) 0.1605) invzstligating numerically unlf<nown critical p_hen(_)melna_ of a
025 005508) 1.623) 0.291) 0151) 0.1755) model system, one may perform an extensive simulation up

to much larger length scales and much longer time scales.
However, if it is beyond the present day’'s computing capa-
bility, one should look for an efficient alternative model
which presumably exhibits the same critical behavior with
smaller correction to scaling. The PCPD model applies to
such a case.

The GPCPD model may serve as an efficient alternative

We also plot the combination of the effective exponentsmOdel for thde lP_CPD mode_l.lTh(_a=1_ (PCPD point (_)fhthe
S()=1/z(t) = [ n(t)+ &' (t)]. At criticality, this exponent GPQED model is not apecia pomi_ it possesses neither an
: . yaddmonal symmetry nor conservation law, compared to other

points for O<r<<1. Only the strength of the long-term
memory effect changes with. One may guess that the
GPCPD model with all nonzero may belong to the same
niversality class as the PCPD model and hope that the cor-
ctions to scaling are controllable for smalllt turns out

at the GPCPD model possesses much smaller corrections
to scaling forr<1 (at least up tar=0.75). So the critical
points are very accurately estimated and the critical expo-
nents are determined with reasonable errors.

At r=0, the values of all exponents are in excellent ac-
cord with the DP values. It confirms the expectation that the
_GPCPD without the memory effect should belong to the DP
class. For other values of£ 0, the exponent values begin to

0.50 0.06636%) 1.673) 0.261)  0.141) 0.1975)
0.75 0.08316) 1755 0.202) 0.132) 0.2355)
1 0.11121) 1.71) 0185  0.092) 031
DP 1.5792) 0.313710) 0.15964) 0.16Q2)
DI 1.7533) 0.00q1) 0.2852) 0.2854)

scaling exponents/ v (known as the initial slip exponent

if the hyperscaling relatiofil5] is satisfied. Atr=0.5, we

obtain that5=0.1915). This value will be compared to
Bl v estimated independently later in the static Monte Carlo”
simulations. The same analysis is repeated for other values é‘i’
r and the results are summarized in Table I.

The two exponent$ and 6’ do not necessarily coincide
unless the evolution operator is invariant under the time
reversal transformatiof2]. However, it is well known in
models with multiple absorbing states that these two expo
nents coincide if one starts with the so-calleatural initial
configurations in defect simulations. This aspect will be dis

cussed in details elsewhelré4]. . ;
ciréd] deviate from the DP values. They are also clearly different

The PCPD point atr=1 is an exceptional case. Very . .
strong corrections to scaling are observed in all quantities 1f§om the DI values. It confirms that the GPCPD with the
f

can be seen in Fig. 3. It has been already noted in Re ong-term memory effectr(#0) displays, to our knowledge,

[35,36. We tried to locate the critical point from the curva- riovel-type critical phenomena that do not belong to the DP
ture change in the plots of the effective exponent versts 1/ .

or DI universality class. More importantly and very surpris-
The plot of (t) versus I/ shows thap.=0.1113, while the llrjgg}( ;hﬁ_hexponent values showigl';je&er;(:ﬁncer.dﬂeeI.t
plot of &'(t) versus 1t/ shows thatp,=0.1112. It suggests avie . This opens up a new possibiiity that the universality

that the asymptotic scaling regime has not been reached ygpss would be characterized by continuously varying critical
until 10° time steps at the PCPD point. The exponent exponents, i.e., not a fixed point but a fixed line parametrized

shows the worst behavior. Even one cannot see any diffelt-)y thg memory strength This_remarkable finding should b?
ence between supercritical and subcritical behavisgswe examined carefully whether it is also present in the scaling
could not estimate an error bar 8f. So the values ob. and property of the steady states.

critical exponents at the PCPD limit contain the largest un-

B. Static simulations

2.1 . 0.21
2 £ The criticality in the steady states is studied via the so-
.19 o4 called static Monte Carlo simulations where one starts with a
: ) macroscopically occupied configuration on finite size lat-
1.8 tices. Here, we start with the fully occupied configuration
L7y , on00s %% and use the periodic boundary conditions. As the order pa-
0.15 ) 032 rameter, we measure the pair densiyt) averaged over
) ) surviving samples that contain at least one particle pair at a
0.12 given timet, or equivalently averaged over the complemen-
o © 03 tary states to the no-pair subspace, as defined in the defect
0.09 simulations previously. The averaged quantities over the con-
0.06 , ] 028 , ventional surviving ensemble would also describe the system
Y »y 00005 "0 -y 0.0005 properly in the early time regime, up to the time scale when
the system typically enters into the no-pair subspace. How-
FIG. 3. The effective exponents for the PCPD=(1). ever, since then, the trivial pair-annihilation dynamics of dif-
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100: MRERLL e nall e n

TABLE IlI. Critical exponents of the GPCPD and corresponding
values of the DP and DI classes, taken from R2g].

r Bly) Blv, z v, B

0 0.1591) 0.2533) 1.591) 1.101) 0.2775)

o 10tk 0.25 0.178) 0.2835) 1.64(5) 1.103) 0.31019
c 0.50 0.1973) 0.3306) 1.695) 1.103) 0.36317)

0.75 0.2305) 0.401) 1.725) 1.175) 0.46830)

1 0.2714) 0.504) 1.82) 1.30100 0.6512

DP  0.15964) 0.25226) 1.579818) 1.09726) 0.27674)

, | | | DI 0.2852) 0.50Q05) 1.7505) 1.84(6) 0.923)
U1 10 10 1 0 | 0.001

t 1/¢
0.0550%5), 0.066372), 0.083174), and 0.1113(1) at
FIG. 4. Left: Order parameter decay pt=p. at eachr=0.0  o5ch value of =0, 0.25, 0.5, 0.75, and 1, respectively. Ex-

(.mp)’ 110 (bO“O@- .Right: The effective exponemﬂ/ v|] de- cept for ther =1 case, the values of the effective exponents
fined withm=8. Solid lines represent the effective exponents at the

estimated critical point¢see text and dotted(broken) lines at su- Zirgﬁeaﬁjtén;::ﬁ({bg rchrr]]Otchir:'oav; ?;]ytjtligcn\l/gclzl?g; Sﬁif;naartllc at
percritical (subcritica) points at eachr=0.0 (bottom), ...,1.0 ymp q Y,

(top) aroundt=10°. Statistical fluctuations are also very small.
' The off-critical data in Fig. 4 at the values pfdisplaced by

fusing particles governs the system evolutj@ri] and the the ampunt of error bars in the abope estimate; clearly
average value of the order parameter crosses over to thi&1OW either upward or downward curvatures, which demon-

trivial stationary value. strates the accuracy of op, estimate. Moreover, thesg,
The pair density averaged over our surviving ensembl/alués are in very good agreement with those obtained from
satisfies a finite-size-scaling form as the defect simulationgsee Table)l
The values ofg/ v are given by the limiting values of the
ps(e,t,L)=L"Af(eL¥r t/L?), (2) effective exponents for largeat the estimateg,, which are

presented in Table Il. For consistency, we use the defect
wherelL is the system size ang=p.—p is the distance from simulation results for thep, values and their errors. The
the critical pointp. . The exponentg andv, are the critical  estimated values oB/v are again in excellent accord with
exponents associated with the order parameter and the spat{fib values ofs=1/z— (7+ 8') measured in the defect simu-
correlation length, respectively. The dynamic exporer® |ations forr # 1, which implies that the hyperscaling relation
the ratio of the two exponentg=wv/v, , wherey is the [15] holds in this model.
relaxation time exponer{see Ref[2] for a review. Note that the correction to scaling is significant at the
At criticality (p=pc), we have PCPD point (=1), as found in the defect simulations. At
By r=1, the effective exponent plot shows a strong time depen-
ps(0, t,L)=L"Fg(t/L?) 3) dence even at the estimated critical point and there is a no-
ticeable curvature in Fig. 4. It leads to a rather large error in
large x. Thus, atp=p,, the pair density decays as. the p. estimate and, hence, th<=T exponent estimates. .Our es-
~t 81" for t<L? and saturates to a steady-state vaiye timate of /v also shows a noticeable dlscr_epa}ncy with the
~LB for t>L2 estimate ofs (see Tables | and )l However, this discrepancy
epresumably comes from the inaccurate estimatiorpofat
r=1 and insufficient time steps getting into the asymptotic
regime. So it cannot be regarded as an evidence for the
In[ p<(t)/ ps(t/m)] breakdown of the hyperscaling relation at the PCPD point.
The steady-state pair density for L? satisfies

whereg(x)~x~#'I for smallx and becomes a constant for

The power-law scaling behavior in the transient regim
(t<L? can be studied with an effective exponent

[Blv 1= Inm
with a constantn. It converges tg8/ v for larget (<L?) at ps(e,t=o0,L)=L"F"rh(sL"), 4
the critical pointp=p., but deviates from it ap#p.. Us-
ing this property we could determine the critical pot  where the scaling function behaveshgx)~x? for large x
independently, and hence the exponght . and becomes a constant near0. At criticality (¢=0), it

The order parameter is measured in a lattice of $ize decays algebraically with size ag~L ~#/*L. Utilizing this
=10* up tot= 10" time steps and averaged over 2000—5000algebraic scaling property, we could also estimate the loca-
samples. The finite-size saturation effect is invisible up to tion of the critical pointp.. They again agree perfectly well
=10 for this system size. Figure 4 shows the log-log plotswith the previous other results.
of the order parameter at the estimated critical points as well We run 16-10* samples up to % 10° time steps for the
as the plots of the effective exponents at and near the critisystem sizelL =2°, ... 2! at the estimated critical points
cality. From these plots, we estimate,=0.046872), given in Table I. Plots op versusL at each critical point are
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FIG. 7. Scaling plots according to Eq4) at eachr=0.0
FIG. 5. The power-law scaling behavior of the order parameterbottom), . . .,1.0 (top). The solid line is a guide for the eyes whose
atp=p, at eaclr. The solid line is a guide for the eyes whose slope slope isg in Table 1. Each dataset is shifted vertically by a constant
is B/v, in Table Il factor to avoid an overlap with others at different values.of

presented in Fig. 5. A least-squares straight-line fitting in the, single curve with a specific value of , respectively. The

log-log plot might yield the value of3/v, . However, it  qer parameter exponeftis then obtained by a product of

would result in an inaccurate estimate in the presence of /v, andv, and presented in Table II. They are equal to the
1 1 .

strong correction to scaling. Instead, we made use of an e 3 : . :
) i opes of the scaling functidm(x) for largex in the log-log
fective exponen{ B/v, ]=—In[py2L)/p{L)}/In2 to extract scale as shown in Fig. 7.

the accurate exponent value from the extrapolation. It is plot- At the PCPD point (=1), our results are consistent with

ted in the inset of Fig. 5 and the results are presented in Tabl

Il. As before, there exists a strong correction to the power-t%ose obtained by Carloretal. [34] [p.=0.11X2), z

law scaling at the PCPD point at=1, whereas such an — 1-843), and B/v, =0.503)] and Hinrichsen [35] [p.
effect is very small for the other values f =0.11171), B/”H:_Q'ZE(Z)' = 1-83_5)' B<0.67]. Al
With p, and /v, determined, we could estimate the dy- though some of critical exponent ratios are close to the DI
namic exponent using the scaling form in Eq3). It was  values, the critical exponents are incompatible with those of
estimated as the optimal value that yields the best collapse ¢f€ DI class. They are also inconsistent with the DP univer-
ps(e=0t,L) for L=27, ... 2! (see Fig. 6. The resulting sality class. The strong correction-to-scaling behaviors were
values ofz are presented in Table Il. They are consistent withobserved at the PCPD point with= 1 in both the defect and
the ratio of the two exponent ratio@/», and g/v|, and the static simulations. So our estimates for the critical expo-
agree very well with the values measured in the defect simurents contain considerable uncertainty at the PCPD point.
lations. However, such corrections are not prominent for other values
We also determined the value @f by collapsing off-  of r, which enables us to estimate the values of the critical
critical steady-state data pf(e,t=0,L) in the scaling plot, exponents very accurately forx1. As expected, the values
using Eq.(4). In Fig. 7, the data for eachcollapse well on  of the critical exponents at=0 agree very well with the DP
values.
10— For 0<r<1, the correlation length exponent seems to
; ] remain the same as the DP value for a wide range, @it
least up to 0.75. The value of the relaxation time exponent
v|=zv, seems to increase slightly with increasing.0% up
to r=0.75), but, within present numerical accuracy, it may
be difficult to conclude that its variation is real and not due
to corrections to scaling. However, it is clearly visible that
the order parameter expongdi(alsos/v, andpg/v)) varies
considerably withr (more than 60% It clearly signals a
universality class with scaling exponents varying continu-
ously with the parametar.
o el il il Summing up all results, our Monte Carlo simulations
10 10 10 10 10 10 show that the GPCPD displays the critical phenomena dis-
tinct from the DP and DI classes, with continuously varying
FIG. 6. Scaling plots according to Eq3) at eachr=0.0 €xponents depending on the strength of the long-term
(top), . . .,1.0 (bottorm). Each dataset is shifted vertically by a con- memory effectr. These results are quite surprising and re-
stant factor to avoid an overlap with others at different values of markable. In the renormalization group language, it implies
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that there is a fixed line parametrized hyinstead of fixed
points at two end points: the DP£{0) and the PCPD point
(r=1).

Continuously varying critical exponents in nonequilib-
rium systems are very rare. Systems with infinitely many
absorbing states like the PCP may display continuously vary
ing exponents depending on initial conditions, but only the
exponents describing nonstationary properti&sand») are
varying [13]. This variance is even disputed very recently
[17,18. Levy-type long-range flights are known to be rel-
evant to absorbing critical phenomena and the stationary
critical exponents vary continuously with the exponent de-
scribing the long-range tail distribution of the flight&7]. - ) o o
However, the GPCPD involves only short-range processes. FIG_. 8. Cr_ltlcal spreading of activities (_)rlglnated from a seed
Recently, multispecies particle reaction-diffusion systemd?@ Particle pair for the GPCPD and @nparticle for theABB and
with interspecies hardcore interactions are conjectured to dig:BC models. A black p'xe.l represents a part'c.le pair or arpar-
play continuously varying stationary-state exponents, but th (cle, am.j agray one a.som.ary particle oBzparticle. The ho.r'zon'

o, LT T ) al [vertical (down)] direction corresponds to the spacgme)
transition occurs at the trivial annihilation poif&8]. More- direction
over, the variance is very small and it would be extremely '
difficult to confirm it numerically. Our studies suggest The evolution rule of the second modéhe ABC mode)
strongly that the GPCPD belongs to a completely differenis almost equivalent to thABB model, except that the con-
type of universality class with continuously varying expo- tact process is adopted for the particle dynamics. AnA
nents which has not been explored before. particle (a) branches arA with probability (1—p) on a
neighboring site, ofb) vanishes spontaneously with prob-
ability p(1— w), or (c) transmutes to 8 particle with prob-
ability pu. When the branched particle would land on

In order to establish the universality class firmly, we studyeitherA or B particle, the trial is rejected and the involvBd
other model systems that share the common feature of thgarticle transmutes to th& particle. AB particle hops to a
memory effect with the GPCPD. As described in R&8],  neighboring site with probabilityd or does nothing with
the PCPD can be regarded in a coarse-grained level asmobability 1—d, as in the ABB model. When it would land
cyclically coupled system of two particle species: one speon another particléeitherA or B), the trial is rejected and all

GPCPD

ABB ABC

IV. UNIVERSALITY

ciesA performing DP-like dynamics and the other spedes

performing the annihilating random walks. In the GPCPD

model, a particle pair corresponds to &nparticle and a

involved B particles transmute té particles.
In both models, the two species of particles are coupled
cyclically through the transmutations. The transmutation rate

solitary particle to aB particle. Two species are coupled from Ato B is controlled explicitly by the parametgr. As u
through transmutations, which leads to the long-termincreases, the transmutation events occur more likelyu At

memory effect. We set up two different 1D models of a cy-

=0, the A—B channel is completely blocked. Therefore

clically coupled system and investigate numerically theirthere is no feedback mechanism to change Ahparticle
scaling behavior to check our universality class. The twodensity through intermediat® particles. The transmutation

typical DP dynamics are employed for tAeparticle dynam-

rate fromB to A is implicit and determined by the evolution

ics, i.e. the branching-annihilating random walk model withrule and the other control parameters. TBesA channel

one offspring(BAW1) [12] and the contact process.

The first modelreferred to as th&BB mode) adopts the
BAW1 evolution rule for theA dynamics. Each lattice site is
either occupied by aA or B particle, or empty. First, select
a site at random. When it is occupied with Anthe A par-
ticle (a) branches am\ with probability (1—p) on a neigh-
boring site, onb) hops to a neighboring site with probability
p(1—w), or (c) transmutes to & particle with probability
pu. When the branched or hoppirgparticle lands on an-
otherA particle, bothA particles annihilate immediately as in
the BAW models. In case that it would land orBgarticle,
the trial is rejected and thB particle transmutes to tha
particle. When the selected site is occupied wit particle,
the B particle hops to a neighboring site with probabilityr
does nothing with probability ¢ d. When it would land on
another particlgeither A or B), the trial is rejected and all
involved B particles transmute té particles. When the se-
lected site is vacant, nothing happens.

relies heavily on the diffusive property & patrticles. With
nonzerod, the B particles diffuse until they meet another
particle and transmute to th& particles. This process in-
vokes the same mechanism that gives rise to the long-term
memory effect in the GPCPD model fagr+0. TheB par-
ticles created by thé particles through transmutations per-
form the random walks before transmuting back to the
particles at later times. Al=0, the B— A channel is still
open, but only with the short-term memory processes, which
should be irrelevant.

We expect to observe the same type of critical behaviors,
as in the GPCPD model, characterized by the continuously
varying critical exponents. We performed the defect and
static simulations to locate the critical points and estimate the
critical exponents of th&BB and theABC models at several
values ofu with fixed hopping probabilityd=1. In Fig. 8,
we compare the space-time structures of spreading patterns
of activities in the GPCPDr(=0.5), ABB (x=0.5), and
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FIG. 9. Parametric plots g8/ v, (filled symbo) andB/v (open  the critical points of the GPCPD with=0.25 ...,1.00 andt,y
symbo) with respect tog of the GPCPD, theABB, and theABC =10P. Inset: Effective exponent fdf(7)~ 7~ . The apparent cur-
models. The data taken from Ref85,36,38—4]are also plotted vature nearr=t,, is simply due to the finite,,, effect.
and labeled by “Others.”

nonlocal in time. In this section, we give a quantitative de-
ABC (1=0.2) models at critical points. In all cases, the scription of the long-term process by measuring the distribu-
intermediate long-range diffusive processes of the solitaryion of lifetime of intermediate solitary particles.
particles(or theB particles are commonly observed between  simulations are performed up test,,,,With a single par-
the particle pairgor A particles at different space-time po- ticle pair (A particle) on an infinite lattice initially. Whenever
sitions. The time scale of these processes represents the g isolated particleR particle is created, a label recording
fective lifetime of the intermediatd3 particles, which seems the creation time is attached to it. Then' we can eas”y mea-
to be comparable to the simulation time. This aspect will besyre thelifetime of each isolated particle by recording the
discussed quantitatively in the following section. elapsed time until it collides with another particle since its

We take theA particle density as the order parameter andcreation (free diffusing timg. We expect that the lifetime
use the same de_zfinition of the surviving _samples as in th%istributionF(r) may be of the power-law type for large
GPCPD model, i.e. only the samples with at least @ne pecause its long time tail should be governed by the annihi-

particle are regarded as surviving ones. Here, we only statgting random walk processes of solitai§) particles in the
the results without showing the data. Our numerical simulapresence of particle pairé\j.

tions confirm that botA BB andAB C models show continu- At the critical points of the GPCPD model, the lifetime
ously varying exponents with the parameterAs expected, distribution F(7) was measured with,, =1, ... 16.
both models converge to the DP classuat 0. Figure 10 shows () averaged over T0surviving samples

In Fig. 9, the values of the critical exponents at variousyith tma=10°. We found that it follows power law asymp-
transmutation rates are plotted together with those for theygically (large 7),

GPCPD model and those available from other previous
works [35,36,38—40 Remarkably, they are lying along a
single smooth line. It indicates that all these models fall into

the same universality class with continuously varying expo-The values off are determined from the effective exponent

nents that can be parametrized by a single parametquOts as shown in the inset. After the transient regime at
(memory strength The lines forg/v, and§/v| seem to be swalllr, thef effective exponent converges fie-2.25(5) at
almost linear for smal3<0.5. It implies that the values of a '\I'/? u? ?L tion deviates f th | heni

the correlation exponents, and v, do not vary too much € distribution deviates 1rom the power law whens

from the DP values, in contrast to a wide variation of thecompargble with thg simulation t.'me”ax' At t:FmaX' there
order parameter exponefit may exist remnant isolated particles whose lifetime can be

comparable with or is larger thah,,.. The data of such
isolated particles are not included F{7), which leads to a
slight downward deviation of (7) for large 7=t 5. There-
fore, the apparent blowup of the effective exponéntear
Numerical results presented in the previous sections sugt/7=0 in the inset of Fig. 10 should be ignored. The power-
gest that the critical exponents of the GPCPD model varyaw distribution with=2.25(5) is observed universally for
with the parameter which controls memory strength. The all three models considered in this paper. Note that the
memory effect is mediated by diffusing solitary particles. power-law distribution sets in later as one approaches the
Each of them is created from a pair of two or more particlesPCPD point at =1. Presumably, this is related to the strong
diffuses until colliding with another particle, and then forms correction-to-scaling behavior observed in the PCPD.

F(r)~7° (5)

V. LIFETIME DISTRIBUTION
OF INTERMEDIATE PARTICLES

a particle pair with the probability. Such a long-term pro- For a more systematic analysis of the firtitgs effect, we
cess makes dynamics of the order paramégeir density  present in Fig. 11 the scaling plot B{ 7)t%2> versust/tyay.
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on our scenario needs accurate determination of the marginal

: =100 value in a full field-theoretical context, which is beyond the
R scope of the current paper.

?nax = 10°

£ =10°] 7] VI. SUMMARY AND DISCUSSION

= 025 In summary, we introduced a generalized version of the

PCPD(GPCPD with a parameter controlling the long-term

= 0.50 i i
memory effect. The GPCPD connects the DP fixed point to
=075 the PCPD point continuously. We investigated numerically
r =100 the nature of the absorbing phase transitions for the GPCPD

) in one dimension. Our numerical results strongly suggest that
the GPCPD belongs to the universality class, which is char-
acterized by the long-term memory effect and the continu-
ously varying critical exponents. This model can be viewed
as the cyclically coupled systems based on the DP dynamics

Mith the long-term memory effect. We showed numerically
that the two other variants of these systems fall into the same
universality class.

The data collapse shows that the lifetime distribution follows We presented one possible scenario to account for this

the scaling relatiorF (1) =t g(/tne) With 6=2.25. The  universality class that the intermediate particles generate the
scaling functiong, (x) should behave as ™ (independent of long-term memory effect which may play the role of the

r) for smallx, which is consistent with numerical data in Fig. Marginal operator to the DP fixed point. However, this is
11. only speculative and definitely needs a full field-theoretical

The mean lifetime of the intermediate solitary particles,trei‘;me”t- v there . ! work A
— e Co ery recently, there have appeared several works on the
7~ [7F(7)d7, is finite for 6>2 and becomes infinite fof .
<2. With finite lifetime, one may guess that the long-term gigsrzn?n\?arrie Ir?tted ][nt%dd;b';%rk ?nr? Kias] S"%dl'eld ‘hfeeth
memory effect can be washed away by rescaling the time b ants ot Ine along a special finé in the

) Barameter space of the diffusion and the reaction rates. They
7. Without the long term memory effect €0), the GPCPD

: o et found numerically that the exponent values for all three mod-
displays the critical behavior in the DP class. Therefore, ongs are consistent within  statistical errors e. @l

may conclude that the presence of the intermediate particles 0.24(1). However, this does not imply that the PCPD scal-

and their long-term memory fegdback are irrelevant and th‘f11g with general parameter values can be also described by
GPCPD belongs to the DP universality class, regardless ghe same fixed point.
thg value ofr. The exponent valu@=2.25 is quite near the Dickman and de Menezd#6] studied the PCPD using
naively thought marginal value dim,=2 where the mean he same ensemble for the surviving samples as we used
lifetime 7 begins to diverge. With the DP scenario, one mayhere. They found that this ensemidlalled as the reactive
argue that the apparent deviation of the critical exponentsectoy is quite useful to study the finite-size scaling of the
from the DP values is due to the strong corrections to scalingrder parameter. They observed numerically that the critical
induced by quite larger. However, a careful analysis for exponents vary with the diffusion raté Similar to our re-
numerical data reveals that there are not much corrections tgults, the correlation exponent appears to be independent
scaling for smalr. Hence, this DP scenario does not seem toof d and the same as the DP value. The relaxation time ex-
be supported by our present numerical results. ponenty and the order parameter expongneary withd up

As an alternative, we propose another possible scenario t® only about 20%(much smaller than the variation in the
account for continuously varying non-DP exponents that th&sPCPD~60%), which leads to an indecisive conclusion.
long-term memory effect plays the role of the marginal per- More recently, Hinrichsefi47] introduced a cellular au-
turbation to the DP system. We note that the finiteness of thtomaton, which presumably belongs to the same universality
lifetime does not always guarantee the irrelevancy of theclass as the PCPD. Using a parallel update, he simulated the
memory effects to the DP universality class in the fully in- model with size up td_= 22! until t=2.5x 10°. This work
teracting theory. The lwy-flight DP system is such an ex- confirms again the difficulty in studying the critical behavior
ample [27], where it is analytically shown by the ofthe PCPD. The system does not reach the asymptotic scal-
e-expansion-type RG analysis that the relevancy of longing regime at that time scale. From the temporal trend of the
range flights sets in a little bit earlier than expected from theeffective exponents, he suggested an extremely slow cross-
naive noninteracting theory. It implies that the system flowsover to DP, but this suggestion is also far from being conclu-
into a non-DP fixed point with finite mean flight distance. We sive. Recently, Barkema and Carlp#8] supported this sce-
suspect that a similar situation also occurs in the GPCPD andario of an extremely slow crossover to DP by analyzing
Omar DECOMES Sslightly bigger than 2. In this point of view, our numerical data, assuming that the correction to scaling is of
scenario may be still alive and even considered reasonabtbe special type. However, our numerical results for small
because?=2.25(5) is not far away from 2. A definitive test do not show this extremely slow crossover to DP as dis-

FIG. 11. Scaling plots of the log-binned lifetime distribution of
solitary particles at the critical points of the GPCPD at
=0.25...,1.00. The straight lines have the slope 2.25. Eac
dataset at different values ofis shifted vertically by a constant
factor to avoid overlaps.
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cussed in the preceding section. value (0.25 for /v at low d is higher than both the DP
Kockelkoren and Chat¢49] studied general reaction- (0,16 and the estimated PCPD val(@.20. Therefore, the
diffusion processes without the fermionic constraint. Fromg=0 |imit in the PCPD model is unusually singular, which
Monte Carlo study up td.=2%* andt~10’, they obtained makes it impossible to study the PCPD scaling behavior sys-
Blv=0.200 in a model characterized wiX—XXX and  tematically starting from the DP fixed point. In contrast, our
XX—. They reported that the same exponents are ob6PCPD model is generically well suited to a systematic in-
served in other similar models, and hence claimed that thereestigation of the PCPD model by controlling the long-term
is a single universality class for the PCPD. However, theirnemory effect directly.
study does not cover the general cases with controlling the Besides that, there is one important technical point we
memory effect. @or [50] studied the PCPD with Monte adopted in this paper for analyzing the numerical data. As
Carlo simulations up td.=10° and t=10%, and obtained explained in Sec. Ill, we chose tiservivingensemble as the
Blvj=0.21 for high diffusion rates an@/»=0.25 for low collection of samples with at least one particle pair and the
diffusion rates. On the other hand, assuming a Iogarithmié_’rder parameter as the particle pair density. With the conven-

correction, @or obtaineds/»j=0.21 also for the low diffu- tional choice for the surviving ensemblgsamples not
sion rates. trapped in one of the absorbing statese found that the

These numerical results seem to favor a single non-DIQrder parameter in finite-size systems bears two time scales

universality class for the PCPD. However, as hinted in the(nontrivial relaxation time and trivial pair annihilation time
work of Dickman and de Menez§46] there ,may be, if any and does not show simple scaling collapse with one-variable

a rather small variation<{20%) of the scaling exponents by S.C"’.‘I'ng function like n Eq(3) [44]. Our c;h0|ce of the sur-
viving sample should involve only one time scale and leads

changing diffusion rates. So it is not surprising to see an . L . ;
. : : o an excellent scaling as shown in Fig. 6. With this en-
apparent single universality under the effect of huge correc-emble it is natural to ?:hoose the particlg pair densigher

tions to scaling. In contrast, the exponent variations in th han the particle densias the order parameter
PCPD are much bi % iti ier nfirm i ) )
GPCPD are much bigger-(60%), so itis easier to co Summing up, we believe that the GPCPD model serves as

their variations. - i
We believe that the long-term memory effect is respon—an efficient generalized model to study the PCPD model sys-

sible for unusually long relaxation and non-DP scaling, an({iernatltcally. -:—irr:e GPEPDr s(;eetms;hto hﬁ;/iﬁ Tu%hclsés rﬁogef_
possibly for continuously varying exponents. The long-term ons 1o scaling, compared to the ordinary odel,
memory is also present in the ordinary PCPD model, but it i‘g,/vhlch enables us to present accurate numerical data for the

controlled implicitly via diffusion ratesl of isolated or inter- exponetn:_valules. IanlgtSr.] 2and 4, onte car: (_:Iearlytsee tfrat thte
mediate particles. So, it may not be clear to predict how th&SYmptotic vajues or the exponents Set in quite early, a

long-term memory emerges with In the GPCPD model, we aLourlldt= 10% e?gtleplt thetPCPD case<1). In orfder tod
directly control the strength of the long-term memory effectCNECK any possibie long IME Crossover, We periormed an
by varying the parametet extra static simulation for the GPCPDrat 0.25 on a lattice

i — — \/

The GPCPD model smoothly connects the DP fixed poinf)f S'ZEL_..4X105.Up tot=4x10". We found the more ac-
(r=0) to the PCPD modelr=1), in a sense that the expo- curate critical point alpC=0.055_045(3) and the exponent
nent values change with continuously and monotonically, Blv|=0.172(2)[44]. The result is in excellent accord with
starting from the DP values. In contrast, the PCPD exponerffu! €arly-time result on a smaller latticgee Tables | and )l
values seem to jump from the DP \}alues and decreas his confirms again that the GPCPD for at least smdlbes

slightly with the diffusion ratel. For example, as soon as we not suffer from huge corrections to scaling as observed in
turn on the diffusion procesg@/v increases abruptly from Refs.[47,50. However, for large =0.75, we found that the

the DP value of 0.1595 to-0.25 atd=0.1 and slightly de- €XPonent/v; tends to become smaller and seemingly ap-
creases to 0.20—0.23 at high-=0.7-0.8[46,49,5Q. Even if  Proaches around 0.20 wii=0.083 11(1) in the very long

one accepts the claim that this variation is not real ghg| time limit neart~10° [_51]' So, at this st_a_Lge, Itis fa_|r to say
converges to-0.20 asymptotically at any nonzeeb(single that the_exponeryB/v” is not much sensitive to varyingfor
universality class one cannot avoid the fact that corrections” =0+ in contrast to the case for0.5.

to scaling are much bigger at loal than at highd. This
suggests that thé— 0 limit in the PCPD model should en-
counter an unusual crossover behavior. In the ordinary cross- We thank P. Grassberger for his critical reading of this
over, one expects an interference of the DP fixed point on thenanuscript and valuable comments. We also thank H. Chate
PCPD universality class at=0, which generates an appar- for useful discussions, especially on the long time crossover
ent exponent value between the DP and the PCPD value. Afbr larger. This work was supported by Grant No. 2000-2-
numerical results simply disagree with this. The appareni1200-002-3 from the Basic Research Program of KOSEF.
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