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Anomalous roughness, localization, and globally constrained random walks
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The scaling properties of a random walker subject to the global constraint that it needs to visit each site a
even number of times are determined. Such walks are realized in the equilibrium state of one-dimension
surfaces that are subject to dissociative-dimer-type surface dynamics. Moreover, they can be mapped on
unconstrained random walks on a random surface, and the latter corresponds to a non-Hermitian random fr
fermion model that describes electron localization near a band edge. We show analytically that the dynam
exponent of this random walk isz5d12 in spatial dimensiond. This explains the anomalous roughness, with
exponenta51/3, in one-dimensional equilibrium surfaces with dissociative-dimer-type dynamics.
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I. INTRODUCTION

Random walks provide the key to the scaling propertie
many physical phenomena. Some examples are: surface
fusion, wave packet spreading in quantum mechanics, e
librium commensurate-incommensurate phase transition
physisorbed monolayers on substrates, and one-dimens
~1D! interfaces in equilibrium and in stationary growin
states@1–3#. In its elementary formulation, a particle mov
through d-dimensional space by jumping during each d
crete time step over a displacement vectorxW , according to a
given ~localized! probability distributionW(xW ). The fluctua-
tions in the position,nW t5( t851

t xW t8 , after t time steps, obey
the scaling form

DnW t[^unW t2^nW t&u2&1/2;t1/z ~1!

and the spatial probability distributionP(nW ,t) develops at
large time scales into the Gaussian form

P~nW ,t !5
1

~4pDt !d/z
exp@2unW u2/4Dt2/z#, ~2!

which is invariant under the scale transformationP→bdP,
t→bzt, andnW→bnW . z is the so-called dynamic exponent, a
has the simple valuez5zrw52 in all dimensions, as is ob
vious from the linear character of the underlying diffusi
equation. Scale invariance is generic to many other dyna
processes as well, but with typically nontrivial values forz.
Kardar-Parisi-Zhang~KPZ!-type surface growth@4#, and sta-
tistical population dynamics such as directed percolation
directed Ising-type processes are examples of this@5#. In
such processes random walk~diffusion! arguments still play
a central role, e.g.,zrw typically appears within molecular
field-type approximations.

*Present address: Theoretische Physik, Universita¨t des Saarlan-
des, 66041 Saarbru¨ken, Germany.
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The scaling properties of stochastic processes can be cla
sified into so-called universality classes, according to th
symmetries and conservation laws of the underlying dynam
rules. In analogy with equilibrium critical phenomena, dy-
namic critical exponents are universal quantities, that are in
sensitive to varying details of the dynamic rule. For example
all random walks havez5zrw52, irrespective of the shape

of the displacement distributionW(xW ). To break out of the
zrw straight jacket, something more drastic has to chang
Examples of anomalous diffusion are: Levi flights, where th
typical length of the displacement is divergent; correlate
random walks, where the steps have long-range tempor
correlations@2#; walks in a quenched randomness environ
ment, like polymers in disordered media@6,7#; and also dif-
fusion on a one-dimensional lattice, where the particles ca
move only in dimer form@8#. The latter leads to an infinite
number of conserved quantities, and density autocorrelatio
functions that decay as power laws with anomalous expo
nents.

In this paper, we investigate the scaling properties of so
called even-visiting random walks~EVRW! on a
d-dimensional hypercubic lattice. During each time step (0
<t8,t) the random walker hops to one of its nearest neigh
bor sites with equal probability. However, unlike normal ran-
dom walks, it is required to visit every site an even numbe
of times before the walk terminates at timet. This gives rise
to anomalous scaling. The even-visiting condition imposes
~mod 2 type! global constraint on the motion of the random
walker, which it can satisfy only through correlated move
ments. The origin and nature of this type of anomalous sca
ing is completely different from those in the examples men
tioned above.

This study of EVRW’s is complementary to our recent
work on dissociative dimer-type surface growth in one di
mension@9#. The surface grows and erodes by the depositio
and evaporation of dimers only. Those dimers dissocia
while on the surface~but do not diffuse! such that each
monomer can arrive and depart with a different partner. Th
growth rule implies that the number of particles at each
height level is globally~but not locally! conserved mod 2.
©2001 The American Physical Society131-1
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Compared to conventional~monomer deposition type! sur-
face roughness, it imposes a global constraint on the fluc
tions of the surface and leads to anomalous equilibri
roughness. The mod 2 conservation of the particle numbe
dimer growth is equivalent to the even-visiting constraint
random walks, and the anomalous surface roughnes
linked to the anomalous scaling of the EVRW.

There exists a second completely different type of ap
cation of EVRW’s. The time evolution operator of the ra
dom walk can be cast in the form of quantum mechani
noninteracting electrons moving in a random medium. T
global EVRW constraint translates into spatial and dire
tional randomness of the hopping amplitudes and a n
Hermitian random Hamiltonian~Sec. IV D!. The spectral
properties of such Hamiltonians are a topic of growing
search, in particular their localization-delocalization tran
tion aspects@10,11#. Our EVRW scaling involves only one
electron and therefore relates to the scaling of the elec
eigenstates near the bottom of the~almost empty! energy
band. Those edge states have so-called Lifshitz tails, w
essential singularities in the disorder-averaged density
states@12#. Our study of EVRW’s elucidates the nature
the edge states.

The EVRW problem naturally generalizes toQ-visiting
random walks~QVRW! with a constraint that the number o
visits to each site must be multiple ofQ. Diffusive motion of
the QVRW describes the stationary state roughness of di
ciativeQ-mer growth, where a surface grows~erodes! by the
deposition ~evaporation! of a Q-mer. This conserves the
number of particles at each height level moduloQ, which
corresponds to theQ-visiting constraint. In our discussion w
will focus mostly on EVRW and dissociative-dimer-typ
growth, but most results are easily extended to QVRW a
the scaling properties turn out to be independent ofQ.

This paper is organized as follows. In Sec. II, we revie
one-dimensional dissociative-dimer-type dynamics@9#, and
present additional numerical results showing the anoma
roughness of the equilibrium surface.

In Sec. III, we map this dimer growth model onto the 1
EVRW and present numerical results for the anomalous
fusion in 1D EVRW’s. The finite-size-scaling-type exa
enumeration and Monte Carlo simulation results suggest
the dynamic exponent of the 1D EVRW is equal toz.3.0.
We also devise an analytic scaling argument, a healing t
argument, that predicts that the dynamic exponent is equ
z5d12 in d dimensions. The healing time argument pr
sumes the existence of a crossover time scalet free;t2/(d12),
within which the random walker is not influenced by th
global even-visiting constraint imposed at timet. We nu-
merically confirm that such a time scale is present ind51
andd52.

In Sec. IV, we embed the EVRW into an Ising spin env
ronment. ASnW561 spin is assigned to every site. Each
them points up at timet50. Next, the particle moves as in
conventional unconstrained random walk, but the Ising s
at sitenW flips with probability e ~or not with probability f
512e) each time the particle visits that site. The glob
EVRW constraint can now be represented by the requ
ment that all spins must be pointing up again at timet, i.e.,
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by projecting out from all conventional RW configuration
those that leave spins pointing down. The even-visiti
walks condition obviously requires thate51, but it is advan-
tageous to proceed with generalized values 0<e<1. We call
this generalized version the stochastic even-visiting rand
walk ~SEVRW!. Next, we construct the time evolution op
erator of the Ising spins and the random walker. The s
part is easily diagonalized and the result has the form o
non-Hermitian single particle quantum Hamiltonian wi
quenched randomness. The latter can also be interprete
the transfer matrix~thermal equilibrium! of a polymer fluc-
tuating in an environment with randomly placed defect line

In Sec. V we focus on one special point in the SEVR
model, e5 f 51/2. There the 1D model is easily solvabl
The dynamic exponent is exactly equal toz53. This point
plays the role of stable fixed point in the sense of renorm
ization transformations in the EVRW phase diagram. T
EVRW, although at the border, belongs to its basin of attr
tion.

In Sec. VI we discuss the same issues as in Sec. V,
now in the framework of the non-Hermitian quantum Ham
tonian. The anomalous dynamic exponentz5d12 relates to
so-called Lifshitz tails in the density of states near the ed
of the energy band. We conclude with a brief summary a
discussion, in Sec. VII.

II. DISSOCIATIVE DIMER SURFACE DYNAMICS

A. Surface roughness

Equilibrium and nonequilibrium properties of 1D inte
faces such as crystal surfaces have attracted considerab
terest @13#. Interfaces display intriguing scaling propertie
and their growth dynamics is well understood in terms o
few universality classes. KPZ growth is one of the examp
@4#. An interesting quantity associated with interface roug
ness is the averaged widthW, i.e., the standard deviation o
the interface heighthl(t) ( l 51, . . . ,L),

W~L,t !25K 1

L (
l 51

L

hl~ t !22S 1

L (
l 51

L

hl~ t !D 2L , ~3!

whereL is the substrate size. The width satisfies the dynam
scaling relation

W~L,t !5La f ~ t/LzW!, ~4!

where the scaling functionf (x) behaves as

f ~x!;H xb for x!1

const for x@1.
~5!

The stationary state roughness exponenta and dynamic ex-
ponentzW5a/b are universal quantities.

In most growth models the structural properties of t
depositing~evaporating! particles are explicitly or implicitly
presumed to be geometrically featureless monomers. Ne
theless, the geometric features of the particle shapes
strongly affect the growth dynamics and the stationary st
scaling properties@9#.
31-2
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B. Dimer dynamics

Consider a crystal built from atoms of typeX. Assume
that deposition and evaporation take place in contact wit
gas where the atoms only appear in molecular dimer fo
X2, and assume that such dimers can only land and de
from the interface when aligned with the surface. Up
deposition a dimer attaches to two nearest neighbor sur
sites and loses its dimer character. Upon evaporation,
nearest neighbor surface atoms form a dimer and depart f
the crystal. This dissociative character of the dimers is
essential feature leading to the anomalous surface rough
in the equilibrium state.

We describe the 1D surface configurations in terms
integer height variables subject to the so-called restric
solid-on-solid~RSOS! constraint,hl2hl 1150,61. The dy-
namic rule is as follows. First, select at random a bond (l ,l
11). If the two sites are not at the same height, neit
evaporation nor deposition takes place. If the two sites ar
the same height, deposition of a dimer covering both site
attempted with probabilityp, or evaporation of a dimer with
probability q512p ~see Fig. 1!. Processes are rejected
they would result in a violation of the RSOS constraint.

Surfaces growing according to such dissociative dim
dynamic rules behave fundamentally different from tho
following monomer-type growth rules. The latter, irrespe
tive of being in equilibrium or in a stationary growing stat
display, with only a few very notable exceptions, the univ
sal roughness exponenta51/2; as exemplified in the
Edwards-Wilkinson~EW! @14# and the KPZ@4# universality
classes. The universal value ofa is understood from a ran
dom walk argument. To be precise, a 1D surface can
mapped on the time trajectory of a particle in 1D by iden
fying the heighthl at each sitel with the particle positionnt
at time t5 l . The steps in 1D surfaces are uncorrelated
yond a definite correlation length. Therefore the particle p
forms a random walk with displacement fluctuationsunt
2nt8u;(t2t8)1/zrw at large time scales. This yields the valu
of the stationary state roughness exponenta51/zrw51/2.

Dissociating dimer growth circumvents the random wa
argument by means of a novel type of nonlocal topologi
constraint. The dimer aspect requires that the number of
ticles at every surface height level must be conser
modulo 2. The dissociative character of the dimers tra
forms this into a nonlocal global feature. This leads to va
ous interesting phenomena. In equilibrium, the surface
rough but with anomalous scaling exponents@9,15#. Out of
equilibrium, while growing or evaporating, it always face
@9#. Moreover, when the model is extended by introducing
so-called reduced digging probability at flat segments,

FIG. 1. The upper panels show the deposition and evapora
of a dimer. The lower panels show diffusion of a monomer.
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wards a directed Ising-type roughening transition in the ex
treme no-digging limit, the roughness becomes even mor
complex@9,16#. The nonequilibrium faceting aspects are al-
ready well documented in Ref.@9#. Here we focus on the
anomalous equilibrium roughness.

C. Anomalous equilibrium roughness

At p5q the above dynamic rule satisfies the detailed bal
ance condition and the stationary state distribution is a genu
ine Gibbs-type equilibrium state. We study the dynamic scal
ing of the surface width via Monte Carlo~MC! simulations.
The crystal sizeL is even, with periodic boundary condi-
tions,hL1 l5hl , and we use as initial condition a flat surface,
hl50 for all l. The surface width is measured and averaged
over Ns independent MC runs, ranging fromNs55000 for
L525 to Ns5500 for L5210.

The results are shown in Figs. 2~a! and 2~b!. The surface
width does not obey monomer-growth-type EW scaling with
a51/2 and b51/4. The dimer surface width saturates
slower (b,1/4) and is definitely less rough in equilibrium
(a,1/2). Notice the large corrections to finite size scaling of
the width in both the temporal and spatial domains. Thes
prevent us from obtaining accurate values for the exponen
a andb from simple log-log type plots of the width vst and
L. Instead, we define effective exponents

a~L ![ ln@W~mL,`!/W~L,`!#/ ln m ~6!

and

b~ t ![ ln@W~L,mt!/W~L,t !#/ ln m, ~7!

wherem is arbitrary~we choosem52) andW(L,`) denotes
the saturated width. Fora(L), we use data forL
525, . . . ,210, and for b(t), the data atL5213 at times
shorter thant,105 where finite size effects are still invisible.
The results are shown in Figs. 2~c! and 2~d!. We estimate

ion

FIG. 2. Monte Carlo results for the dimer model.~a! Time de-
pendence of the surface width forL532, . . .,1024 from bottom to
top. The straight line has slope 2bEW51/2. ~b! Saturated surface
width. The straight line has slope 2aEW51. ~c! and ~d! Effective
values forb anda.
31-3
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a50.29~4!, b50.111~2! ~8!

and zW.2.6(5), since zW5a/b. The exponents are defi-
nitely different from those of ordinary equilibrium rough in
terfaces but the precise values remain uncertain.

The mod 2 nonlocal conservation of particle number
clearly the most promising candidate for being the origin
the anomalous scaling behavior; as confirmed in the follo
ing sections. However, there exist additional more local co
served quantities in the dimer dynamics. When a dimer d
sorbs or adsorbs, the surface heights at two nearest neig
sites change by one unit simultaneously. This implies co
servation of the anti-Bragg,k5p, Fourier component of the
surface height

h̃k[
1

AL
(
l 51

L

e2 iklhl . ~9!

In other words, the dynamics is not ergodic; surface config
rations with different values ofh̃k5p are dynamically discon-
nected. Therefore the scaling properties may depend on
initial condition. Such types of effects are studied in Re
@15# in the context of dissociativek-mer growth in body-
centered solid-on-solid-type models,hl2hl 11561.

D. Surface diffusion

In our model the particles do not diffuse along the su
face. In actual experimental settings, surface diffusion can
be ignored. Thek5p broken ergodicity is restored by diffu-
sion, but the mod 2 conservation is preserved as long
diffusion across steps is forbidden. Such jumps to higher a
lower levels are suppressed by so-called Schwoebel barr
@17#. This means that the anomalous surface roughness
cussed here can be observed at time scales smaller than
characteristic time associated with jumps across steps, p
vided the other time scales are short~high surface deposition
rates!.

To test the robustness of anomalous dimer roughness
to verify the essential role of the global mod 2 particle co
servation at each height level, we add to the dimer grow
model diffusion of surface atoms within terraces. The surfa
is again described by integer height variableshl , subject to
the RSOS constraint and periodic boundary conditions. T
dynamic rule is as follows. Select at random a bond (l ,l
11), and attempt with equal probability: a dimer depositio
or evaporation just like above; or a monomer jump from s
l to one of its nearest neighbor sites. The move is rejecte
it would result in a violation of the RSOS constraint. Sinc
the RSOS condition is imposed at every stage, jumps acr
steps are automatically forbidden.

Starting from a flat surface att50, the surface widths are
measured forL525, . . . ,29. The results are shown in Fig
3~a!. They are qualitatively the same as in the absence
diffusion. The exponentsa andb are determined in the same
way as in Eqs.~6! and ~7!, see Fig. 3~b!:

a50.31~3!, b50.115~5!. ~10!
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The finite size corrections to scaling are again very larg
The exponents are slightly larger than in Eq.~8!, but, within
the current numerical accuracy we cannot distinguish o
from the other.

We conclude that dissociative dimer equilibrium dynam
ics represents a new universality class for interface roug
ness. Surface diffusion within terraces is irrelevant and th
new universality class is characterized by the topologic
constraint caused by the mod 2 conservation of the numb
of particles at every height level.

III. EVEN-VISITING RANDOM WALKS

A. The model

The above numerical study of dissociative-dimer-type d
namics clearly indicates that the equilibrium scaling prope
ties of the interface belong to a different universality clas
than conventional monomer-type dynamics. We also iden
fied the most likely origin of this: the constraint that the
number of particles at each height level must be preserv
modulo 2 in a global nonlocal manner. The exact value
the exponenta is difficult to pinpoint from the MC results,
due to strong corrections to scaling. To resolve this, we i
vestigate in this section the properties of a random walk wi
the constraint that it needs to visit every site an even numb
of times before it terminates. This is the so-called EVRW.

Consider a random walker on a 1D lattice, which is re
quired to jump during each time step one site to the left
the right with equal probability,nt8115nt861. nt8 denotes
the position of the walker at timet8. The walker is demanded
to visit every siten an even number of times aftert time
steps.

We focus our presentation on the EVRW in one dimen
sion. The generalization tod.1 is straightforward and men-
tioned when appropriate. Moreover, it is natural to expan
the EVRW into a QVRW with the constraint that each sit
must be visited a multiple ofQ times. We obtained numeri-
cal results forQ>3, but since we did not detect any differ-
ences from the scaling behaviors atQ52 @18#, we limit this
presentation to EVRW.

The connection with dimer surface dynamics is sel
evident. The probability distribution of EVRW represents th
equilibrium Gibbs distribution, i.e., the equilibrium state of
surface where all configurations that satisfy the mod 2 co

FIG. 3. ~a! Time dependence of the surface width of the dime
model with diffusion, forL532, . . . ,512from bottom to top. The
straight line has slope 2bEW51/2. ~b! Effective values ofa for
with (h) and without (s) diffusion.
31-4
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straint are equally likely. There is one minor difference be
tween our RSOS dimer model and the above EVRW. In th
latter the particle is required to make a hop during every tim
step,Dn561, while in the RSOS dimer dynamics it is al-
lowed to stay at the same site,Dn50,61. Figure 4 shows
examples of both. This so-called body-centered solid-o
solid version of the EVRW is more compact and numericall
converges faster.

B. Exact enumerations

The number of possible space-time configurations of
normal 1D random walker is equal toZRW(t)52t. The even-
visiting constraint excludes most of those walks. It is of in
terest to know whether the total number of EVRW’s stil
scales exponentially asZ(t);m t, and if so, whetherm re-
mains equal to 2. For that purpose, we enumerate
EVRW’s that start and return to the origin (n50) after t
time steps, using the exact~but not closed form! expressions,
Eqs.~11! and~12! below, which were developed in Ref.@19#
in the following manner.

Denote the number of steps to the right~left! from siten
to n11 (n21) by r n ( l n). The number of visits of siten is
equal tovn5r n1 l n and the sum of all visits is equal to total
number of time stepst5(nvn . The return-to-origin condi-
tion implies that r n5 l n11, i.e., vn5r n1r n215 l n111 l n ,
and that l n and r n must be even for alln, such thatt
5(nvn52(nr n is a multiple of 4 instead of 2.

Every walk can be specified by the left boundary of th
walk nmin , and m positive integer variables@s1 , . . . ,sm#.
The excursionm is defined by the distance between the righ
and left boundaries of the walk. The number of steps from
site n to n11 is equal tor n52sn2nmin11 with the under-

standing thatsn850 for n8<0 andn8.m. The number of
walks with the same set of positive integers@s1 , . . . ,sm# can
be readily evaluated and is equal to@19#

S[s1 , . . . ,sm]5
t

2s1
)
i 51

m21
~2si12si 1121!!

~2si 11!! ~2si21!!
~11!

for m>2 and is equal toS[s1]52 for m51. The total num-
ber of the EVRW’s is given by the sum

Z0~ t !5 (
m51

t/4

(
$si %

8
S[s1 , . . . ,sm] , ~12!

FIG. 4. EVRW ~solid line! and corresponding surface~dotted
line! configurations.
04613
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where the prime in the second summation denotes the co
straint thatt54( isi , and the superscript inZ0 represents the
return-to-origin condition.

Although analytically exact, this formula still involves in-
finite sums. Therefore we must resort to numerical enumer
tions to determine the scaling properties. This has to be
finite-size-scaling-type analysis because of the numerical u
per limit for t.

In Fig. 5~a!, we plot Z0(t) as a function of time fort
<140. The linear dependence in this semilog plot indicate
an exponential formZ0(t);m t. Next, we define an effective
finite size exponent as

m~ t !5@Z0~ t !/Z0~ t24!#1/4. ~13!

The corrections to scaling in Fig. 5~b! are strong, but a
Neville-type extrapolation analysis@20# yields

m52.000~2!. ~14!

Despite the severe global constraint, the total number o
EVRW’s scales asymptotically in the same way as that o
normal random walks withm52.

Figures 5~a! and 5~b! indicate the presence of strong cor-
rections to scaling. They are of an exponential form

Z0~ t !;2te2atu. ~15!

as shown in Fig. 5~c!. The slope yields

u50.34~2!. ~16!

In Sec. V, we will argue that the exponentu is a universal
quantity, and equal to the inverse of the dynamic exponentz
of the EVRW;u51/z.

We also performed an exact enumeration of the finite siz
scaling of the width of the EVRW. All configurations
counted in Eq.~11! have the same number of visitsvn up to
a constant shift inn. Hence, they all have the same width,
W@$si%#5(n̄22n̄2)1/2, with

n̄5
2

L (
i 51

m

~2i 11!si

n̄25
2

L (
i 51

m

@ i 21~ i 11!2#si .

The ensemble averaged surface width

FIG. 5. Exact enumeration of the total number of EVRW’s.~a!
ln Z0 vs t, ~b! m(t) vs 1/t, and~c! log-log plot of 2 ln@22tZ0# vs t.
1-5
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W25 1
Z0~ t5L !

(
m51

t/4

(
$si %

8
W@$si%#2S[s1 , . . . ,sm] ~17!

is evaluated numerically and plotted in Fig. 6~a!. The rough-
ness exponenta, W;La, is estimated from an effective ex
ponent

a~L !5
L

4 S W~L !

W~L24!
21D , ~18!

see Fig. 6~b!. Again, the convergence is slow, but th
Neville-type extrapolation yields

a50.327~9!. ~19!

Within the numerical accuracy, this result is consistent w
those in the two dimer growth models~with/without mono-
mer diffusion! of the previous section, see Eqs.~8! and~10!.

The surface roughness exponenta is simply related to the
dynamic exponentz of the EVRW asz51/a. So the above
numerical result implies that

z53.06~8!. ~20!

All the results of this section are checked numerically f
Q53,4,5 in the QVRW model. We find noQ dependence of
the values of scaling exponents@18#.

C. Gaussian distributions

We performed Monte Carlo simulations to determine th
probability distributionP(n,t) for the EVRW, i.e., the prob-
ability to start at siten50 and end after timet at siten. This
was done by brute force. We simply generated an ensem
of normal random walks and trashed the ones that did
satisfy the EVRW condition. The ratio decreases rapidly. F
example, out of a total of 23109 normal random walks only
about 600 walks satisfy the constraint att5500.

The distribution function is shown in Fig. 7~a! and can be
assumed to obey the scaling form

P~n,t !5
1

t1/z
F~n/t1/z! ~21!

with z the dynamic exponent. The best data collapse is o
tained for 1/z50.32, as shown in Fig. 8. This value ofz is
consistent with the exact enumeration results of the previo

FIG. 6. Exact enumeration of the EVRW.~a! Surface widthW.
~b! Effective values of the roughness exponenta.
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subsection. It is also consistent with a direct evaluation of th
second moment of the distribution function data, which
yields that

Dn5F(
n

n2P~n,t !2S (
n

nP~n,t ! D 2G1/2

~22!

scales asDn;t1/z, with z.3.3 as shown in Fig. 7~b!.
The functional form of the scaling functionF is a sur-

prise. It is of the form ofF(u)5Ae2BuuuD , as shown in Fig.
8, with D.1.98. This means that the probability distribution
is Gaussian in nature,

P~n,t !5At21/z exp@2B~n/t1/z!2#. ~23!

This is surprising, because in other models with anomalou
surface roughness, such as Levi flights, the probability dis
tribution is certainly not Gaussian@2#.

Gaussian distributions withz52 are characteristic of un-
correlated random processes. The appearance of a Gauss
shaped scaling function in the EVRW problem suggests us
search for an effective representation of the EVRW in which
the correlation effects somehow transform away, with th
possibility for an exact derivation of the EVRW dynamic
exponent, possiblyz53. This is the topic of the next section.

FIG. 7. Monte Carlo results for the 1D EVRW.~a! Probability
distribution P(n,t) at t532 (h), 64 (s), 128 (n), and
256 (,). ~b! Scaling of the spreadingDn.

FIG. 8. Scaling ofP(n,t) for the 1D EVRW att532 (h),
64 (s), 128 (n), and 256 (,) according to Eq.~21!. The best
collapse is obtained with 1/z50.32. The scaling function is as-

sumed to be of the formF(u)5Ae2BuuuD. A least square fitting
yields A50.88, B50.62, andD51.98.
31-6
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IV. RANDOM WALKS COUPLED TO ISING SPINS

A. Defect spreading

The even-visiting constraint is nonlocal in time. To kee
track of this constraint in a local way, we can add an Isi
field to a normal conventional random walk, i.e., a mark
Sn561 to each site, that keeps track of the visits in the pa
Initially at time t850, all spins are prepared in the spin-u
state.Sn flips each time the random walker visits siten. The
requirement that all spins are pointing up att85t, represents
the EVRW constraint. The generalized distributio
P($S%;n) t contains all the information we need.n is the lo-
cation of the random walker at timet and $S% the spin con-
figuration.P($1%;n) t is the EVRW distribution.

Each down spin at intermediate time 0,t8,t represents
a defect, which needs to be healed at a later time. The de
area spreads in exactly the same way as the width of
conventional random walk,Wd;t1/2. We confirmed numeri-
cally that the defect distribution inside this cone is unifor
in 1D and 2D. This allows us to build the following healin
time argument for the value of the EVRW dynamic exp
nent.

B. Defect healing time argument

Divide the time intervalt into two segments,t free and
theal. For t8,t free the random walker does not feel the co
straint, diffuses freely, and leaves defects behind that
uniformly spread over a region of sizej;t free

1/2 . In order to
satisfy the defect-free constraint at timet, the walker stops
spreading and starts to heal defects during the second pa
the walk,t8.t free. The typical distance it needs to travel t
heal a specific defect is of orderj, and the time it takes the
random walker to do that is of ordert1;j2. The total num-
ber of defectsNd is of orderjd (d is the spatial dimension!.
Therefore, the healing time scales astheal;Ndt1;jd12. Put-
ting this all together yields a relation between the final tim
and the widthj of the EVRW.

t5t free1theal;j21jd12. ~24!

theal diverges faster thant free, so we conclude that

j;t1/(d12) and z5d12. ~25!

The argument is more subtle ind.2 due to the fact that the
number of defects after timet free cannot be larger than the
total number of time steps, while the volume of the spread
cone,jd;t free

d/2 , diverges faster than that. This implies that
d.2 the density of defects inside the spreading cone d
not reach a constant. The number of defects insidejd is only
proportional toNd;j2 instead ofjd. The time to heal one
defectt1, however, changes as well.t1 is proportional to the
time it takes to travel across the spreading conej, times the
probability to hit a defect while doing so, which is propo
tional to jd/Nd . The end result is that the healing time st
scales the same as ind,2,

theal;Ndt1;Nd S j2
jd

Nd
D;jd12. ~26!
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We conclude thatz5d12 in all dimensions. The valuez
53 in 1D, is consistent with the numerical studies of th
previous sections. This derivation is far from rigorous, b
has the merit of being simpler than the ones in the followin
sections.

The separation oft into two distinct time scalest free and
theal is artificial. Consider the average over all possible sta
ing positions of the random walker and all possible sp
configurations with periodic boundary conditions in the tim
direction ~full trace!. Then, the system becomes translatio
ally invariant in the time direction and the two distinct tim
domains should disappear. However,t free is still the natural
crossover time scale in the problem. Consider the EVR
over time intervalt. Measure the width of the walk in a
smaller time windowt8 inside t. For very small windows,
t8!t, the even-visiting constraint is invisible, and the widt
scales in the same manner as for a normal conventional r
dom walk. This implies the following crossover scaling form
for the widthj of the EVRW,

j~ t8,t !5bj~b2zrwt8,b2zt !5t1/zG~ t8/t free!, ~27!

with b an arbitrary scale factor andzrw52. G is the cross-
over scaling function andt free5tzrw /z the crossover time
scale.

This crossover is important from a surface science p
spective. The time scalet corresponds to the characteristi
length scale between impurities or other surface defects t
acts as an effective lattice cutoff. Depending on the expe
mental setup, such as an x-ray beam width or STM scann
window that might be larger or smaller than this, one ma
measure the true asymptotic surface width scaling witha
51/(d12), or the unconstrained valuea51/2.

To illustrate the existence of this crossover time scale,
measure the spreading of the EVRW’s,

D tnt8[@^^nt8
2 && t2^^nt8&& t

2#1/2, ~28!

where^^•••&& t denotes the ensemble average over the wa
that satisfy the even-visiting constraint at timet. Note that
Dn in Eq. ~22! is equal toD tnt . The spreading must obey the
same type of crossover scaling form as in Eq.~27!,

D tnt85t1/(d12)G~ t8/t2/(d12)!, ~29!

Monte Carlo simulations confirm this. We generate EVRW
over a given time intervalt subject to the return-to-origin
constraint, and record the time trajectories for 0<t8<t/2.
Figure 9 shows the spreading in~a! d51 and~b! d52. The
crossover behavior is clearly visible in Figs. 9~c! and 9~d!.
The data for differentt collapse very well. As expected from
Eq. ~29!, the scaling functionG(u) increases asu1/2 in the
short time region and saturates to a constant in the oppo
limit.
31-7
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C. Stochastic spin flip dynamics

Consider a generalization of the EVRW in which the ra
dom walker flips the spin only probabilistically during eac
visit. The spin flips with probabilitye or is left unchanged
with probability f 512e.

As in the deterministic EVRW problem, we require that
time t all spins return to the spin-up position. A more elega
and equivalent formulation of this is to require timelike pe
riodic boundary conditions, because it suffices to dema
that all spins at timet return to the same state as at time zer
irrespective of what that state might be, and the trace over
such initial conditions leads to periodic timelike bounda
conditions.

We call this model the stochastic even-visiting rando
walk ~SEVRW!. The deterministic EVRW corresponds t
(e, f )5(1,0) and the conventional RW to (e, f )5(0,1).

The purpose of this generalization is twofold. On the o
hand, it allows us to address the robustness of anomal
EVRW diffusion. On the other hand, and more importantl
there is an exactly solvable ‘‘decoupling point,’’e5 f 51/2,
where we can evaluate the anomalous diffusion scaling r
orously, see Sec. V.

D. Non-Hermitian quenched randomness

The master equation for the probability distribution rea

P~$S%;n! t115
e

2
@P~$S8%;n11! t1P~$S8%;n21! t#

1
f

2
@P~$S%;n11! t1P~$S%;n21! t#,

~30!

where configurations$S8% and $S% are related asSn852Sn

andSm8 5Sm for mÞn. This can be cast in state vector nota
tion,

uP& t5 (
$S%,n

P~$S%;n! tu$S%;n&,

FIG. 9. Crossover scaling in the EVRW.~a! and ~b! Spreading
of the EVRW in d51 andd52. ~c! and ~d! Scaling of the data
according to Eq.~29!. The broken lines have slope 1/2.
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as uP& t115T̂ uP& t with the time evolution operator

T̂5
1

2 (
n

~eŝn
x1 f !@ ân

†ân111ân
†ân21#. ~31!

The x components of the Pauli spin operators,ŝx, represent
the spin flips, and the fermion annihilation/creation operator
â and â† represent the random walker. We have only on
fermion in the energy band.

The spin part ofT̂ is easily diagonalized since theŝx do
not couple to each other directly. Perform a rotation in spino
space to the eigenvectors, 1/A2(u1&6u2&), of ŝn

x , and de-
note the eigenvalues ascn561. In the rotated spinor basis,
the operatorsŝn

x becomec numberscn and the time evolu-
tion operator reads

T̂~$c%!5
1

2 (
n

~ecn1 f !@ ân
†ân111ân

†ân21#. ~32!

The initial all-spin up configuration becomes in the rotated
spinor basis the linear superposition over all possible$cn%.
Eachcn is either11 or 21 at random and does not evolve
in time. The fermion~random walker! hops on a 1D lattice
with randomly placed defects, thecn521 sites. The spin
degrees of freedom transform into quenched random noise
the hopping probabilities. The time-periodic boundary con
ditions for the original spin variables translate into a
quenched average over all defect configurations distribute
uniformly. The wave function~probability distribution! is
multiplied by a factor (2e1 f ) each time the fermion visits
a defect. Notice that the probability distribution can be nega
tive whene. f for certain defect configurations.

The generalization toQ-visiting random walks is straight-
forward. The eigenvalues become complex,cn
5exp(i2pj/Q) with j 51, . . . ,Q, and (Q21) different kinds
of defects appear with different random hopping probabili
ties. This type of generalization does not lead to any ne
scaling behavior of the probability distribution of the random
walker in the asymptotic limit@18#.

The time evolution operator in Eq.~32! resembles the
Hamiltonian for an electron in a random medium. One fun
damental difference is thatT̂ is non-Hermitian. The hopping
probability fromn to n11 is not Hermitian conjugate to that
from n11 to n. Non-Hermitian random Hamiltonians arise
in various areas of physics. Stochastic processes, like ra
dom walks in disordered environments, have non-Hermitia
time evolution operators. Equilibrium systems with
quenched disorder, like vortex line pinning in dirty supercon
ductors@10# are described in the transfer matrix formulation
by a non-Hermitian random Hamiltonian. Delocalization
transitions for such non-Hermitian types of disorder are dif
ferent in nature from those in Hermitian systems, see, e.g
Ref. @11#.

This relation between non-Hermitian random Hamilto-
nians and the EVRW is not new. It is presented as typicall
starting from the non-Hermitian perspective. Our derivation
presented above using the reverse route has~in our opinion!
31-8
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the advantage of being more transparent. To be precise
cutaet al. @19# recently considered a ‘‘roots of unity’’ mode
with Hamiltonian

H5(
n

~ b̂n
†b̂n111xnb̂n

†b̂n21!, ~33!

whereb̂,b̂† is a fermion operator andxn561 is the random
variable with a uniform distribution. They relate this no
Hermitian random Hamiltonian to the deterministic EVRW
The disordered average of the trace ofHt generates the
EVRW configurations @19#. Alternatively, the similarity
transformationân5znb̂n with uznu251 maps the time evolu-
tion operator in Eq.~32! onto Eq.~33! with cn5zn /zn11 and
xn5cncn21.

E. Polymers in random media

In the spin diagonalized form of Eq.~32!, the single fer-
mion is equivalent to a walker~fermion! in a quenched ran-
dom environment. With probability 1/2 each site~n! is occu-
pied by a defect,cn521, or not,cn511. The probability
distribution satisfies the recursion relation

P~$c%,n! t115 1
2 ~ecn1 f !@P~$c%,n11! t1P~$c%,n21! t#.

~34!

During each time step,P is multiplied by a factor12 and with
an additional factorf 2e each time the walker lands on
defect site~recall that f 1e51). This equation of motion
does not preserve probability, and therefore we cannot in
pret it as a master equation. The random walk nature of
problem is only restored after taking the quenched aver
over thecn randomness.

Instead, we can interpret this equation of motion as
transfer matrix of a polymer wandering~but not back bend-
ing! on a 2D (n,t) lattice with defect lines~at specificn
along thet direction!. The partition function is equal to

P~n,t !522Ns(
$c%

(
walks

22t expS 2m(
n8

vn8D ~35!

with Ns the number of lattice sites,vn the number of times
the polymer visits siten in the specific walk under consider
ation, andm52 ln(f2e) the energy associated with hitting
defect line. The prime inn8 represents that we only sum
inside the exponential over defect sites.

The SEVRW interpolates between the normal rand
walk and the EVRW. At the random walk point, (e50,
f 51), the defects decouple from the polymer. At the EVR
point, (e51, f 50), the summand in the partition functio
changes sign each time the polymer hits a defect line.

Next, we can integrate out the defects altogether, beca
the order of the two summations, the one over all polym
walks and the one over all possible defect line configu
tions, $c%, can be interchanged.~From the polymer perspec
tive, the disorder is annealed, not quenched.! The trace over
all defect configurations leaves us with
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P~n,t !5 (
walks

22t)
m

@ 1
2 ~11e2mvm!# ~36!

with the product now running over all lattice sitesmPNs .
This leads us back into familiar territory. The SEVRW prob
lem is now reformulated as a trace over normal uncon
strained RW’s, but with Gibbs-type weights giving each
walk a different probability depending on the number of vis
its vn to every site. We could have started this way, becaus
at e2m521 Eq. ~36! counts naturally only the EVRW, and
at e2m51 it counts all RW. For other values ofm the walks
are weighted in a more complicated way, except ate5 f , as
we will discuss next.

V. THE EXACTLY SOLVABLE POINT

A. Reflective walls

At point e5 f the SEVRW is exactly solvable. Here the
properties of the walk simplify in a manner different than a
the EVRW point,e51, and the normal RW point,f 51. The
generating function representation of Eq.~36! reduces to

P~n,t !5 (
walks

22t2Nv ~37!

with Nv the number of distinct sites visited by that particula
random walk. The total number of walks is equal to

Z~ t !52t(
n

P~n,t !5 (
walks

e2hNv ~38!

with h5 ln 2, and the summation running now over all walks
irrespective of their end point.Nv is also equal to the dis-
tance between the two extremal points reached by the RW.
is as if an energy is being assigned to each RW proportion
to its space-time width.

In the formulation of Eq.~35! the polymer is not allowed
to cross defect lines (m diverges!, i.e., the problem factorizes
in random sets of polymers on strips with finite widths. Simi
larly, the fermion time evolution operator reduces to

T̂5
1

4 (
n

~cn11!@ ân
†ân111ân

†ân21#. ~39!

The hopping probability to cross defect sites,cn521, is
zero. The defects act ashard core walls. The fermion is
trapped and localized between two neighboring defect
These reflective walls are randomly distributed with a prob
ability 1/2 to find one at every site without any spatial cor
relations.

The probability to find in the quenched average the fer
mion within a blocked line segment of lengthj is propor-
tional toj22j; because the probability to randomly place the
fermion on a line segment of lengthj is proportional toj,
and the probability that such a line segment exists in th
quenched average is proportional to 22j. This allows us to
calculate several quantities analytically in 1D.
31-9
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B. Total number of walks

The total number of SEVRW walks can be reformulate
as

Z~ t !;(
j

j22jZ~j,t !, ~40!

where Z(j,t) is the number of possible normal random
walks within a line segment of sizej with reflective bound-
ary conditions. A heuristic evaluation ofZ(j,t) runs as fol-
lows.

For t,j2, Z grows asZ;2t just like normal random
walks, but after this typical time scale the random walk
begins to hit the boundary. It can only bounce back inste
of having two possible futures~hopping directions!. So com-
pared to a walk in infinite space without reflective walls, th
total number of walks is reduced by a definite factor ea
time the walker hits the wall. During timet, the random
walker hits the boundary;t/j2 times on average. So one
expects

Z~j,t !;2t exp@2at/j2#, ~41!

with a being a constant ofO(1). Thetotal number of con-
figurations then scales as

Z~ t !;E dj 2tj exp~2at/j22j ln 2!. ~42!

The integral can be evaluated from the method of steep
descent in the limit of larget,

Z~ t !;2tt1/2exp~2btu! ~43!

with u51/3 andb a constant. The maximum contribution
comes fromjm;t1/3 and the power-law correction term fol-
lows in second order.

The total number of walks returning to the origin,Z0(t),
can be calculated in a similar way. The return-to-origin co
straint reducesZ(j,t) by a factor ofj. We obtain

Z0~ t !;2tt1/6exp~2btu!. ~44!

C. Spreading exponent

The spreading,Dn(t), of the walker can be evaluated a
well. First consider widthw(j,t) of a random walker trapped
on a line segment of lengthj. Initially, for t,j2, the random
walker diffuses normally withw(j,t);t1/2, until it realizes it
is trapped. Sow(j,t) saturates toj, and the spreading scale
as w(j,t)5jg(t1/2/j) with g(x);x for small x and g(x)
constant for largex. The total spreading is the average o
this:

Dn~ t !5^w~j,t !&5

E dj Z~j,t !j22jw~j,t !

E dj Z~j,t !j22j

. ~45!
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We use the method of steepest descent for larget, and again
the maximum contribution comes fromjm;t1/3. This leads
to

Dn~ t !;t1/3, ~46!

i.e., z53 @sinceDn(t);t1/z], or after taking the crossover
scaling into account,

Dn~ t !5t1/3g~ t1/6!. ~47!

The crossover scaling dies out very slowly at larget, such
that the corrections to scaling are large.

D. Exponent identity

We just established that the width scales asDn;t1/z with
z53, see Eq.~46!, and that the total number of walks has a
correction factor exp@2btu# with u51/3, see Eqs.~43! and
~44!. We will demonstrate now thatu51/z.

The total number of constrained walks,Z(t), at the de-
coupling point is given by Eq.~38!. The average width of the
random walk is equal to

^Nv@h#&52
]

]h
ln Z@h#. ~48!

Integrating this equation leads to the formal relation

Z@h#5Z@0#expF2E
0

h

^Nv@h8#&dh8G ~49!

with Z@0#52t. It is reasonable to presume that^Nv@h8#& is
continuous as a function ofh8. Then, according to the mean
value theorem, the integral in the exponent is proportional
h^Nv@h08#& for 0,h08<h. By settingh085 ln 2, we obtain

Z~ t !;2t exp@2a^Nv&#. ~50!

Nv is equal to the excursion width of the walks, and propor
tional to Dn. Therefore

Z~ t !;2t exp@2aDn~ t !#. ~51!

Hence we conclude that the exponential factor in the par
tion function originates from the spreading of the walks an
that u51/z.

E. Universality

Our numerical results for the EVRW model of the previ-
ous sections agree with all the above exact results at t
reflective wall point; see Eqs.~15!, ~16!, ~19!, and~20!. This
is actually somewhat surprising.

It is relatively easy to argue that the scaling properties i
the direct vicinity of the decoupling pointe5 f should be
robust and universal, with the decoupling point acting a
stable ‘‘fixed point’’ in the sense of renormalization transfor-
mations. At the decoupling point the fermion is deflected b
the defects, while ateÞ f it can tunnel through them. This
tunneling is an exponentially small effect, see Eq.~36!. Pass-
ing through two defects is equivalent to passing through on
1-10
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one at a much smaller value off 2e, which means that unde
a rescaling of the spatial resolution the renormalizede2m

decreases towards zero.
The normal random walk, atf 51, and the deterministic

EVRW, at e51 mark the natural horizons of the basin o
attraction of thise5 f fixed point. At these points,e2m be-
comes equal to61, respectively. So it remains surprisin
that the scaling properties of the deterministic EVRW are
same as in the reflective wall model.

The following intuitive derivation of Eq.~51! sheds some
light on this. We expect that the total number of walks
every type of SEVRW is proportional to the total number
normal random walks 2t times the probability that the Ising
spin configuration satisfies the global constraint. At thee
5 f point, the Ising spins flip randomly when their sites a
visited. Therefore all spins inside the spreading cone are r
domized completely and lack any spatial correlations. T
means that the probability to find all Ising spins pointing u
is proportional to exp@2aDn#, which confirms Eq.~51!.

The extension of this argument to general SEVRW a
the EVRW point in particular, requires that the distributio
of down spins is still uniform and that the spin-spin correl
tions are short ranged in the larget limit.

At the EVRW point, the random walker flips the spin a
every visit. For larget, it is very likely that the number of
visits to every site inside the spreading region is even or o
with equal probability; we checked this numerically. Spi
spin correlations are the strongest at the EVRW point,
since this is a 1D chain of Ising spins it is very unlikely th
they can develop long-range order of any type. We nume
cally measure the spin-spin correlation function,^SnSn1r&,
and find exponential decay in the spatial direction; the c
relation length saturates to a finite value for larget @18#. This
explains why Eq.~51! still holds at the EVRW point.

VI. LIFSHITZ TAILS IN RANDOM HAMILTONIANS

A. Density of states

Let us return to the fermion time evolution operator E
~32!, and examine the same scaling issues from that pers
tive. The number of walksZ0(t) returning to the origin after
t steps (n50) and satisfying the EVRW constraint can b
written as

Z0~ t !52t22Ns(
$c%

^0u@ T̂~$c%!# tu0&52tE dE r~E!Et,

~52!

where E is an eigenvalue ofT̂ and the disorder-average
density of states is denoted byr(E). Since the operator is
non-Hermitian,E is a complex number and the integratio
runs over the complexE plane. Eigenstates near the ban
center are rather well documented for this type of no
Hermitian random Hamiltonians@10,11#. However, we need
to focus on the eigenstates near the band edge~at small wave
numbers! since there is only one fermion in the system a
our interests lie with its long time behavior.

The nature of the eigenstates near the band edge is ra
well known for Hermitian random systems. The density
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statesr(E) of these edge states exhibits an essential sing
larity, known as a Lifshitz tail@12#. We review here an in-
tuitive argument for the existence of Lifshitz tails and exten
it to the non-Hermitian random SEVRW model.

B. Lifshitz tails

Consider a 1D free fermion Hamiltonian with bond disor-
der,

H52
1

2 (
n,m

tn,mân
†âm , ~53!

where tn,m5tm,n* are random hopping amplitudes between
sitesn andm. This Hamiltonian is Hermitian. For simplicity,
assume that thetn,m are nonzero only for pairs of nearest
neighbor sites and take only the values 1 andb (0,b,1)
with equal probability.

Without disorder, with alltn,m51, the energy band is
trivial, E52cosk, with uniformly distributed wave num-
bers,dk52p/L, in the range (2p,k<p). The states near
the lower band edge,k.0 describe the large length scale
behavior, and the density of states diverges as a power-la
with the familiar van Hove singularity

r~E!;uDEu21/2, ~54!

in terms ofDE5E2Eedge.
The eigenstates become localized in the presence of d

order. The probability to find a pure domain, i.e., a connecte
string of tn,m511, of sizej decreases exponentially as 22j.
The crucial feature behind Lifshitz tails is that the state
extending across the boundaries of pure domains do not co
tribute to the density of states near the edge, even in t
presence of small tunneling probabilities (b.0). In that
case, the energy levelsEl in each segment are similar to
those of a free particle in a box of sizej, i.e., DE5E(k)
2Eedge.k2/2, with wave number spacingdk52p/j; or,
phrased in terms of the domain sizej, uDEl u;(l /j)2 for
low-lying eigenstates withl 51,2, . . . .

The distribution of first excited statesr1(E) between en-
ergyE andE1dE is proportional to the probability to find a
pure domain segment with a size betweenj and j1dj,
which is r1(E)dE;22j dj. Therefore, r1(E)
;uDEu23/2exp@2auDEu21/2#. Similarly, for the l th level,
r l (E);l uDEu23/2exp@2al uDEu21/2#. The total density of
states is the sum over all levels, but near the band edges,
contributions from higher levels yield only corrections to
scaling. Hence the density of edge states is of the form

r~E!;uDEu23/2exp@2auDEu21/2#. ~55!

This exponential factor in the density of states near the ban
edge is known as a Lifshitz tail. Rigorous calculations con
firm its existence@12#. Moreover, the tails exist also in
higher dimensions in the form of

r~E!;exp@2auDEu2d/2#, ~56!

because, roughly speaking,r1 then scales as 22jd
.

1-11
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C. Hermitian SEVRW model

Let us now generalize this to negative hopping amp
tudes. This may not be useful to real fermions in disorde
media, but is helpful to understand SEVRW’s. Consider
Hermitian analog of the SEVRW model

T5
1

2 (
n,m

~ecn,m1 f !ân
†âm , ~57!

where the sum is over nearest neighbor pairs ande512 f
with 0<e, f <1. The random variablecn,m5cm,n can be ei-
ther 11 or 21 with equal probability. So the hopping am
plitude tn,m5ecn,m1 f is either11 or (2e1 f ), and can be
negative fore. f . The conventional Lifshitz tail argumen
applies toe, f .

Similar to our earlier discussions, thecn,m can be re-
garded as eigenvalues of Ising-type spin flip operatorsŝn,m

x .
Unlike before, these Ising spins live on the bonds instead
the sites.e is the spin-flip probability when the walker~fer-
mion! passes through the bond. Point (e, f )5(0,1) corre-
sponds to the normal RW model just like in the SEVR
model. However, there is an important difference betwe
the Hermitian and the non-Hermitian versions. The Herm
ian formulation satisfies a self-duality relation between (e, f )
and (f ,e). The following transformation on the creation
annihilation operators

b̂n5ân)
p51

n21

cp,p11 ~58!

maps (e, f ) onto (f ,e). Therefore, the two limiting points
(e, f )5(0,1) and (1,0) must correspond both to the norm
unconstrained RW. There is an even-visiting condition
point (e, f )5(1,0), but it is imposed on the bonds. Unlik
the site version, the bond constraint is automatically satisfi
by all normal random walks returning to the origin. Consid
a simple walk as example: walk ten steps to the left and th
all the way back. When the RW turns around, it leaves
defect behind at the extremal point, in the site version but
in the bond version. On its way back it repairs all defects l
behind during the first part of the journey, in both the s
and bond versions. So in the bond version, all defects
automatically repaired. In the non-Hermitian version~the
original SEVRW model! the self-duality does not exist an
(e, f )5(1,0) is the anomalous EVRW problem.

At the decoupling pointe5 f 51/2, the 1D chain of Eq.
~57! breaks up completely into randomly distributed fini
segments, just like before in the non-Hermitian SEVRW
The hopping amplitudestn,m are either11 or 0. These dis-
connected sections correspond to the pure domains in
Lifshitz argument and all states are completely localiz
within those sections. The Lifshitz tail argument is exact
the decoupling point.

The partition function, Eq.~52!, is easily evaluated with
the method of steepest descent as
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Z0~ t !;2tE dE uDEu23/2exp@2auDEu21/22tuDEu#

;2tt1/6exp~2bt1/3!. ~59!

As expected, we have exactly the same formula as in E
~44! for the non-Hermitian decoupling point. Again, the dy
namic exponent is equal toz53 in 1D.

In higher dimensions, the Lifshitz tails are of the form

r~E!; exp@2auDEu2d/2# ~60!

and therefore the partition function is proportional to

Z0~ t !;~2d! t exp@2atd/(d12)#. ~61!

Recall from Eq.~50! that

Z~ t !;Z0~ t !;~2d! t exp@2a^Nv&#, ~62!

where^Nv& is the average number of distinct sites visited b
the constrained random walker aftert time steps. Comparing
these two equations yields

^Nv&;td/(d12), ~63!

and that every site is visitedt2/(d12) times on average. This
implies that^Nv& simply scales with the spreading volume
(Dn)d;td/z. Therefore,

Z~ t !;Z0~ t !;~2d! texp@2atd/z#, ~64!

with

z5d12. ~65!

This is the same result as obtained from the healing tim
argument for the EVRW, Eq.~25!.

D. Lifshitz tails in the EVRW

The Lifshitz tail argument also applies to the SEVRW
time evolution operator, Eq.~32!. Since T̂($c%) is non-
Hermitian, the density of states is defined in the entire com
plex E plane. We focus here on the EVRW point (e, f )
5(1,0) where the distribution of states has a special symm
try property @19#. Apply the similarity transformationân

5e2 ip/2b̂n to the even sites and leave the odd sites invarian
ân5b̂n . T̂($c%) transforms toe2 ip/2T̂($c8%) with cn85cn

(2cn) for even~odd! n. Note that the disorder$c8% and $c%
have the same distribution. Therefore, one obtains

r~E!5r~eip/2E!. ~66!

This symmetry implies that there exist four Lifshitz tails
along the rays of arg(E)5 j p/2 with j 50,1,2,3 atuEu51.
Each tail contributes equally to the partition functionZ0(t)
apart from a phase factor exp(ijpt/2) originating from the
energy eigenvalue at each edge. SoZ0(t) is equal to Eq.~59!
multiplied by the constant( j 50

3 exp(ijpt/2). The latter is
nonzero only whent is a multiple of 4, which is trivially true
for EVRW’s that return to the origin. We conclude that the
1-12
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dynamic exponent for the non-Hermitian case is againz53
in 1D andz5d12 in general dimensions.

Finally, we can generalize toQ-visiting random walks.
The analog of Eq.~32! for d-dimensional QVRW’s is the
time evolution operator

T̂~$c%!5 1
2d (

n
(
m

8
cnân

†âm , ~67!

wheren is a site of ad-dimensional hypercubic lattice an
the primed sum runs over nearest neighbor sites of given.
The random variablecn takes equally likely the value
exp(i2pj/Q) with j 51, . . . ,Q.

The density of states has the symmetry propertyr(E)
5r(eip/QE), following the generalized similarity transfo
mation ân5e2 ip/Qb̂n applied to one sublattice and leavin
the others unchanged,ân5b̂n . Through this transformation
T̂($c%) picks up a phase factore2 ip/Q. There are 2Q Lifshitz
tails, along the rays with arg(E)5 j p/Q for j 50, . . . ,2Q
21 at uEu51. Each tail contributes equally to the partitio
function Z0(t) except for the same type of trivial phase fa
tors as in the EVRW (t is now a multiple of 2Q). The rest of
the story is the same as for the EVRW, and the results
identical.

VII. SUMMARY AND DISCUSSION

In this paper we have investigated the scaling proper
of even-visiting random walks. The number of visits to ea
site by the random walker is required to be a multiple of
This is a global constraint that leads to anomalous diffus
motion of a novel type compared to more conventional o
such as Levi flights and correlated random walks. Using
act enumerations and Monte Carlo simulations, we find
the dynamic exponent is equal toz53 in 1D. Surprisingly,
the probability distribution is not a stretched Gaussian~as for
the other types of anomalous diffusion! but a simple Gauss
ian ~with an anomalous value ofz). We devise an healing
time argument which suggests thatz5d12 in d dimensions.
These results are verified numerically in 1D and 2D.

We embed the even-visiting random walk into an Isin
type environment, with an Ising spin at every site, where
random walker flips the spin at the site where it lands dur
each visit. Diagonalizing the spin sector of the master eq
tion translates the EVRW into a free fermion problem w
quenched randomness. The time evolution operator take
a
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form of a non-Hermitian random-bond free fermion Ham
tonian. This leads naturally to the formulation of a genera
zation, SEVRW. The master equation for SEVRW can
reinterpreted as the partition function of a polymer fluctu
ing in an environment of randomly placed defect lines, a
after integrating out the randomness, as the equilibrium p
tition function of a polymer with an energy proportional t
the width of the polymer configurations.

The SEVRW model has a trivially exactly solvable poin
the decoupling point where the polymer cannot cross de
lines. At that point we can show rigorously thatz53 in 1D.
Moreover, this point acts as a stable fixed point in
renormalization-transformation-type sense in the SEVRW
a whole, such thatz53 is valid in general. In the fermion
interpretation, the same asymptotic anomalous diffus
properties of the EVRW determine the spectral properties
the non-Hermitian Hamiltonian near the band edge, in ter
of so-called Lifshitz tails. This confirms thatz5d12.

The anomalous roughness we observed numerically in
surfaces described by dissociative-dimer-type dynamics
the starting point and motivation of this study. Such inte
faces provide possible experimental realizations of EVRW
such as the roughness of steps on vicinal surfaces where
dynamics only allow attachment/detachment in the form
diatomic molecules.

The scaling we found here are very robust. For examp
they also apply toQ-mer type growth models. We estab
lished that the relationz5d12 remains valid for all values
of Q in the Q-visiting random walk generalization o
EVRW’s, and that the probability distribution still takes
Gaussian form.

Random walks are a generic type of stochastic proces
will be very interesting to search for more novel types
scaling originating from RW’s subject to global constraint

During the final stages of preparing this manuscri
Bauer, Bernard, and Luck posted a preprint on the cond-
archive@21# exploring the same type of connections betwe
the EVRW and Lifshitz tails. Their results overlap only pa
tially with the research presented here.
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