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Anomalous roughness, localization, and globally constrained random walks
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The scaling properties of a random walker subject to the global constraint that it needs to visit each site an
even number of times are determined. Such walks are realized in the equilibrium state of one-dimensional
surfaces that are subject to dissociative-dimer-type surface dynamics. Moreover, they can be mapped onto
unconstrained random walks on a random surface, and the latter corresponds to a non-Hermitian random free
fermion model that describes electron localization near a band edge. We show analytically that the dynamic
exponent of this random walk is=d+ 2 in spatial dimensiod. This explains the anomalous roughness, with
exponenta=1/3, in one-dimensional equilibrium surfaces with dissociative-dimer-type dynamics.
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[. INTRODUCTION The scaling properties of stochastic processes can be clas-
sified into so-called universality classes, according to the
Random walks provide the key to the scaling properties obymmetries and conservation laws of the underlying dynamic
many physical phenomena. Some examples are: surface difdles. In analogy with equilibrium critical phenomena, dy-
fusion, wave packet spreading in quantum mechanics, equiramic critical exponents are universal quantities, that are in-
librium commensurate-incommensurate phase transitions igensitive to varying details of the dynamic rule. For example,
physisorbed monolayers on substrates, and one-dimensiong| random walks have=z,,=2, irrespective of the shape

(1D) mterfaceg in equilibrium and In stationary growing ¢ . displacement distributiow/(x). To break out of the
stateq1-3]. In its elementary formulation, a particle moves e : )
z,,, Straight jacket, something more drastic has to change.

through d-dimensional space by jumping during each dls-Examples of anomalous diffusion are: Levi flights, where the

crete time step over a displacement veotpaccording 0 @ -y ica| Jength of the displacement is divergent; correlated
given (localized probability distributionW(x). The fluctua-  random walks, where the steps have long-range temporal
tions in the positionn,=3;, _, X/, aftert time steps, obey correlations[2]; walks in a quenched randomness environ-

the scaling form ment, like polymers in disordered media,7]; and also dif-
fusion on a one-dimensional lattice, where the particles can
Ane=(|n,—(n)|?) V2~ (1)  move only in dimer form8]. The latter leads to an infinite

number of conserved quantities, and density autocorrelation
and the spatial probability distributioR(n,t) develops at functions that decay as power laws with anomalous expo-

large time scales into the Gaussian form nents. _ _ _ _
In this paper, we investigate the scaling properties of so-

called even-visiting random walks(EVRW) on a

p(ﬁ,t): exp[—|ﬁ|2/4Dt2/Z], 2) d-dimensional hypercubic lattice. During each time step (0
(4mwDt)%? <t’'<t) the random walker hops to one of its nearest neigh-

bor sites with equal probability. However, unlike normal ran-

which is invariant under the scale transformati®r-b"P, dom walks, it is required to visit every site an even number

t—b?, andn—bn. zis the so-called dynamic exponent, and Of times before the walk terminates at timeThis gives rise
has the simple value=z,,=2 in all dimensions, as is ob- [0 anomalous scaling. The even-visiting condition imposes a
vious from the linear character of the underlying diffusion (mod 2 type global constraint on the motion of the random
equation. Scale invariance is generic to many other dynamiwalker, which it can satisfy only through correlated move-
processes as well, but with typically nontrivial values for ~Ments. The origin and nature of this type of anomalous scal-
Kardar-Parisi-ZhangKPZ)-type surface growtf4], and sta- ing is completely different from those in the examples men-
tistical population dynamics such as directed percolation andoned above.

directed Ising-type processes are examples of [ifs In This study of EVRW's is complementary to our recent
such processes random watkffusion) arguments still play work on dissociative dimer-type surface growth in one di-

a central role, e.gz,, typically appears within molecular- mension9]. The surface grows and erodes by the deposition
field-type approximations. and evaporation of dimers only. Those dimers dissociate

while on the surfacgbut do not diffus¢ such that each
_ monomer can arrive and depart with a different partner. This
*Present address: Theoretische Physik, Univarsiés Saarlan- growth rule implies that the number of particles at each
des, 66041 Saarbken, Germany. height level is globally(but not locally conserved mod 2.
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Compared to conventiondmonomer deposition typesur- by projecting out from all conventional RW configurations
face roughness, it imposes a global constraint on the fluctuahose that leave spins pointing down. The even-visiting
tions of the surface and leads to anomalous equilibriunwalks condition obviously requires thet 1, but it is advan-
roughness. The mod 2 conservation of the particle number itageous to proceed with generalized valueseé=<1. We call
dimer growth is equivalent to the even-visiting constraint inthis generalized version the stochastic even-visiting random
random walks, and the anomalous surface roughness igsalk (SEVRW). Next, we construct the time evolution op-
linked to the anomalous scaling of the EVRW. erator of the Ising spins and the random walker. The spin
There exists a second completely different type of appli-part is easily diagonalized and the result has the form of a
cation of EVRW’s. The time evolution operator of the ran- non-Hermitian single particle quantum Hamiltonian with
dom walk can be cast in the form of quantum mechanicafjuenched randomness. The latter can also be interpreted as
noninteracting electrons moving in a random medium. Thehe transfer matriXthermal equilibrium of a polymer fluc-
global EVRW constraint translates into spatial and directuating in an environment with randomly placed defect lines.
tional randomness of the hopping amplitudes and a non- In Sec. V we focus on one special point in the SEVRW
Hermitian random HamiltonianSec. IV D). The spectral model, e=f=1/2. There the 1D model is easily solvable.
properties of such Hamiltonians are a topic of growing re-The dynamic exponent is exactly equalze 3. This point
search, in particular their localization-delocalization transi-plays the role of stable fixed point in the sense of renormal-
tion aspect§10,11. Our EVRW scaling involves only one ization transformations in the EVRW phase diagram. The
electron and therefore relates to the scaling of the electroBVRW, although at the border, belongs to its basin of attrac-
eigenstates near the bottom of tfEmost empty energy tion.
band. Those edge states have so-called Lifshitz tails, with In Sec. VI we discuss the same issues as in Sec. V, but
essential singularities in the disorder-averaged density ofiow in the framework of the non-Hermitian quantum Hamil-
states[12]. Our study of EVRW's elucidates the nature of tonian. The anomalous dynamic exponentd+ 2 relates to
the edge states. so-called Lifshitz tails in the density of states near the edge
The EVRW problem naturally generalizes @visiting  of the energy band. We conclude with a brief summary and
random walk§QVRW) with a constraint that the number of discussion, in Sec. VII.
visits to each site must be multiple @ Diffusive motion of

the QVRW describes the stationary state roughness of disso- 1. DISSOCIATIVE DIMER SURFACE DYNAMICS

ciative Q-mer growth, where a surface groerode$ by the

deposition (evaporation of a Q-mer. This conserves the A. Surface roughness

number of particles at each height level mod@p which Equilibrium and nonequilibrium properties of 1D inter-

corresponds to th@-visiting constraint. In our discussion we faces such as crystal surfaces have attracted considerable in-
will focus mostly on EVRW and dissociative-dimer-type terest[13]. Interfaces display intriguing scaling properties
growth, but most results are easily extended to QVRW angynd their growth dynamics is well understood in terms of a
the scaling properties turn out to be independenQof few universality classes. KPZ growth is one of the examples
This paper is organized as follows. In Sec. Il, we review[4]. An interesting quantity associated with interface rough-

one-dimensional dissociative-dimer-type dynanfig§ and ness is the averaged widt, i.e., the standard deviation of
present additional numerical results showing the anomalouge interface heightt(t) (I=1,... L),

roughness of the equilibrium surface.

In Sec. I, we map this dimer growth model onto the 1D 1t 1t 2
EVRW and present numerical results for the anomalous dif- W(L,t)?= T >, h|(t)2—(E >, h|(t)) )
fusion in 1D EVRW's. The finite-size-scaling-type exact =t =t
enumeration and Monte Carlo simulation results suggest thafere| js the substrate size. The width satisfies the dynamic
the dynamic exponent of the 1D EVRW is equalzs 3.0. scaling relation
We also devise an analytic scaling argument, a healing time
argument, that predicts that the dynamic exponent is equal to W(L,t)=Lf(t/L2w), (4)
z=d+2 in d dimensions. The healing time argument pre-
sumes the existence of a crossover time seglg~t%@+2),
within which the random walker is not influenced by the
global even-visiting constraint imposed at timeWe nu- xP  for x<1
merically confirm that such a time scale is presentiinl f(x)~
andd=2.

In Sec. IV, we embed the EVRW into an Ising spin envi- The stationary state roughness exponernd dynamic ex-
ronment. AS;=*1 spin is assigned to every site. Each of honentz,= /8 are universal quantities.
them points up at time=0. Next, the particle moves asina = |n most growth models the structural properties of the
conventional unconstrained random walk, but the Ising spifjepositing(evaporating particles are explicitly or implicitly
at siten flips with probability e (or not with probability f presumed to be geometrically featureless monomers. Never-
=1-e) each time the particle visits that site. The globaltheless, the geometric features of the particle shapes can
EVRW constraint can now be represented by the requirestrongly affect the growth dynamics and the stationary state
ment that all spins must be pointing up again at tigniee.,  scaling propertie§9].

where the scaling functiof(x) behaves as

®

const for x>1.

046131-2



ANOMALOUS ROUGHNESS, LOCALIZATION, AND. .. PHYSICAL REVIEW BE54 046131

= 2
&\ 10 1
P d1op e - _
—| |_ — > 10° ] *
10° 10! 107 10% 10* 10° 10° 107 10! 10? 103
t L
FIG. 1. The upper panels show the deposition and evaporatior 015 05
of a dimer. The lower panels show diffusion of a monomer. ' (e) ' (d)
. ) 04 ?
B. Dimer dynamics @ 0125 i 5 . s ¢
Consider a crystal built from atoms of typé Assume 03 I
that deposition and evaporation take place in contact with & , 02 ,
gas where the atoms only appear in molecular dimer form 0 5000 10000 "o 0.035 0.07
X,, and assume that such dimers can only land and depai. ' /L

from the interface when aligned with the surface. Upon . .

deposition a dimer attaches to two nearest neighbor surface "G 2- Monte Carlo results for the dimer modé) Time de-

sites and loses its dimer character. Upon evaporation. tw endence of the surface width for=32, . . .,1024 from bottom to
. - O P ' op. The straight line has slopeB2,=1/2. (b) Saturated surface

nearest nelghb_or S_urfac_e a.‘toms form a dimer and depart froWidth. The straight line has slopea2\,=1. (c) and (d) Effective

the crystal. This dissociative character of the dimers is the ;e forg anda

essential feature leading to the anomalous surface roughness

in the equilibrium state.

We describe the 1D surface configurations in terms of ..o no-digging limit, the roughness becomes even more

integer height variables subject to the so-called restricte omplex[9,16]. The nonequilibrium faceting aspects are al-

solid-on-solid(RSOS constrainth —h,,=0,=1. The dy-  oa4y well documented in Ref9]. Here we focus on the
namic rule is as follows. First, select at random a bohtl ( 5omalous equilibrium roughness.

+1). If the two sites are not at the same height, neither
evaporation nor deposition takes place. If the two sites are at
the same height, deposition of a dimer covering both sites is
attempted with probability, or evaporation of a dimer with At p=q the above dynamic rule satisfies the detailed bal-
probability q=1—p (see Fig. 1 Processes are rejected if ance condition and the stationary state distribution is a genu-
they would result in a violation of the RSOS constraint.  ine Gibbs-type equilibrium state. We study the dynamic scal-
Surfaces growing according to such dissociative dimeing of the surface width via Monte Carl®/C) simulations.
dynamic rules behave fundamentally different from thoseThe crystal sizel is even, with periodic boundary condi-
following monomer-type growth rules. The latter, irrespec-tions,h, ;=h;, and we use as initial condition a flat surface,
tive of being in equilibrium or in a stationary growing state, h;=0 for all I. The surface width is measured and averaged
display, with only a few very notable exceptions, the univer-over Ng independent MC runs, ranging frois=5000 for
sal roughness exponent=1/2; as exemplified in the L=2°to Ng=500 forL=2%
Edwards-WilkinsonEW) [14] and the KPZ 4] universality The results are shown in Figs(a2 and 2Zb). The surface
classes. The universal value efis understood from a ran- width does not obey monomer-growth-type EW scaling with
dom walk argument. To be precise, a 1D surface can be=1/2 and B=1/4. The dimer surface width saturates
mapped on the time trajectory of a particle in 1D by identi-slower (3<1/4) and is definitely less rough in equilibrium
fying the heighth, at each sité with the particle positiom; (@< 1/2). Notice the large corrections to finite size scaling of
at timet=1. The steps in 1D surfaces are uncorrelated bethe width in both the temporal and spatial domains. These
yond a definite correlation length. Therefore the particle perprevent us from obtaining accurate values for the exponents
forms a random walk with displacement fluctuatiojrg a and B from simple log-log type plots of the width ¥vsand
—ny|~(t—t")Y%w at large time scales. This yields the value L. Instead, we define effective exponents
of the stationary state roughness exponentl/z,, = 1/2.
Dissociating dimer growth circumvents the random walk a(L)=In[W(mL,)/W(L,*)]/Inm (6)
argument by means of a novel type of nonlocal topological
constraint. The dimer aspect requires that the number of paﬁnd
ticles at every surface height level must be conserved
modulo 2. The dissociative character of the dimers trans- B(H)=In[W(L,mt)/W(L,t)]/Inm, (7)
forms this into a nonlocal global feature. This leads to vari-
ous interesting phenomena. In equilibrium, the surface igvheremis arbitrary(we choosen=2) andW(L,>) denotes
rough but with anomalous scaling exponeffisl5]. Out of  the saturated width. Fora(L), we use data forlL
equilibrium, while growing or evaporating, it always facets =2°, ...,2% and for B(t), the data atL=2'% at times
[9]. Moreover, when the model is extended by introducing ashorter thari< 10° where finite size effects are still invisible.
so-called reduced digging probability at flat segments, toThe results are shown in Figs(c2 and 2d). We estimate

gards a directed Ising-type roughening transition in the ex-

C. Anomalous equilibrium roughness
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a=0.294), B=0.1112) (8) NP 05 -
10 3 (b)
and zy=~2.6(5), since zy=a/B. The exponents are defi- _ o4r 0 °
nitely different from those of ordinary equilibrium rough in- & ;0| { a5 °©
terfaces but the precise values remain uncertain. ] 03 ]
The mod 2 nonlocal conservation of particle number is

clearly the most promising candidate for being the origin of 10 bt 02 .
the anomalous scaling behavior; as confirmed in the follow- 10" 107 10 “t’ 107 107 10 0 01";3; 0.07

ing sections. However, there exist additional more local con-
served quantities in the dimer dynamics. When a dimer de- FIG. 3. (a) Time dependence of the surface width of the dimer
sorbs or adsorbs, the surface heights at two nearest neighb@bdel with diffusion, forL=32, . . . ,512from bottom to top. The
sites change by one unit simultaneously. This implies constraight line has slope @zy=1/2. (b) Effective values ofa for
servation of the anti-Bragds= 7, Fourier component of the with (O) and without ) diffusion.

surface height

The finite size corrections to scaling are again very large.
_ 1 L , The exponents are slightly larger than in E8), but, within
hkzﬁ |21 e “h,. (9)  the current numerical accuracy we cannot distinguish one
- from the other.
We conclude that dissociative dimer equilibrium dynam-

In other words, the dynamics is not ergodic; surface configuics represents a new universality class for interface rough-
rations with different values df,_ . are dynamically discon- ness. Surface diffusion within terraces is irrelevant and this
nected. Therefore the scaling properties may depend on theew universality class is characterized by the topological
initial condition. Such types of effects are studied in Ref.constraint caused by the mod 2 conservation of the number
[15] in the context of dissociativ-mer growth in body- of particles at every height level.
centered solid-on-solid-type modelg,—h, ;= *1.

I1l. EVEN-VISITING RANDOM WALKS
D. Surface diffusion

. . A. The model
In our model the particles do not diffuse along the sur-

face. In actual experimental settings, surface diffusion cannot The above numerical study of dissociative-dimer-type dy-
be ignored. Thé=  broken ergodicity is restored by diffu- namics clearly indicates that the equilibrium scaling proper-
sion, but the mod 2 conservation is preserved as long aes of the interface belong to a different universality class
diffusion across steps is forbidden. Such jumps to higher anf@n conventional monomer-type dynamics. We also identi-
lower levels are suppressed by so-called Schwoebel barriefigd the most likely origin of this: the constraint that the
[17]. This means that the anomalous surface roughness di§imber of particles at each height level must be preserved
cussed here can be observed at time scales smaller than #f@dulo 2 in a global nonlocal manner. The exact value of
characteristic time associated with jumps across steps, préd€ exponent is difficult to pinpoint from the MC results,
vided the other time scales are shdrigh surface deposition due to strong corrections to scaling. To resolve this, we in-
rates. vestigate in this section the properties of a random walk with
To test the robustness of anomalous dimer roughness at@e constraint that it needs to visit every site an even number
to verify the essential role of the global mod 2 particle con-Of times before it terminates. This is the so-called EVRW.
servation at each height level, we add to the dimer growth Consider a random walker on a 1D lattice, which is re-
model diffusion of surface atoms within terraces. The surfacélUired to jump during each time step one site to the left or
is again described by integer height variabiigs subject to  the right with equal probabilityp;. . ;=ny*1. n;; denotes
the RSOS constraint and periodic boundary conditions. Théhe position of the walker at timt. The walker is demanded
dynamic rule is as follows. Select at random a bohd ( to visit every siten an even number of times aftértime
+1), and attempt with equal probability: a dimer depositionSt€ps. _ _ _
or evaporation just like above; or a monomer jump from site We focus our presentation on the EVRW in one dimen-
| to one of its nearest neighbor sites. The move is rejected $ion. The generalization @w>1 is straightforward and men-
it would result in a violation of the RSOS constraint. Sincetioned when appropriate. Moreover, it is natural to expand
the RSOS condition is imposed at every stage, jumps acrod§e EVRW into a QVRW with the constraint that each site
steps are automatically forbidden. must be visited a multiple o times. We obtained numeri-
Starting from a flat surface &t 0, the surface widths are cal results forQ=3, but since we did not detect any differ-
measured fol.=25, ..., 2. The results are shown in Fig. ences from the scaling behaviorsQt 2 [18], we limit this
3(a). They are qualitatively the same as in the absence dpresentation to EVRW. o
diffusion. The exponents and are determined in the same ~ The connection with dimer surface dynamics is self-

way as in Eqs(6) and(7), see Fig. &): evid.e:-nt: The probapility distribytion of EVRW represents the
equilibrium Gibbs distribution, i.e., the equilibrium state of a
«=0.31(3), pB=0.1185). (10 surface where all configurations that satisfy the mod 2 con-
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FIG. 5. Exact enumeration of the total number of EVRW®.
FIG. 4. EVRW (solid ling) and corresponding surfaddotted  |nz0yst, (b) u(t) vs 1t, and(c) log-log plot of —In[2~'Z°] vst.
line) configurations.

where the prime in the second summation denotes the con-
straint are equally likely. There is one minor difference be-straint that=43;s;, and the superscript ii° represents the
tween our RSOS dimer model and the above EVRW. In theeturn-to-origin condition.
latter the particle is required to make a hop during every time  Although analytically exact, this formula still involves in-
step,An= =1, while in the RSOS dimer dynamics it is al- finite sums. Therefore we must resort to numerical enumera-
lowed to stay at the same sitan=0,%=1. Figure 4 shows tions to determine the scaling properties. This has to be a
examples of both. This so-called body-centered solid-onfinite-size-scaling-type analysis because of the numerical up-
solid version of the EVRW is more compact and numericallyper limit for t.
converges faster. In Fig. 5a), we plot Z°(t) as a function of time fott
=140. The linear dependence in this semilog plot indicates
an exponential fornZ°(t) ~ u'. Next, we define an effective

The number of possible space-time configurations of 61;|n|te size exponent as

normal 1D random walker is equal fx(t) =2'. The even-
visiting constraint excludes most of those walks. It is of in-
terest to know whether the total number of EVRW's still The corrections to scaling in Fig.(l) are strong, but a
scales exponentially a&(t)~ u!, and if so, whethe. re-  Neville-type extrapolation analysj0] yields
mains equal to 2. For that purpose, we enumerate all
EVRW's that start and return to the origim€0) aftert
time steps, using the exaldut not closed formexpressions,
Egs.(11) and(12) below, which were developed in R¢1.9]
in the following manner.

Denote the number of steps to the rigleft) from siten
ton+1 (n—1) byr, (I,). The number of visits of sita is
equal tov,=r,+1, and the sum of all visits is equal to total

B. Exact enumerations

p(H)=[Z°(t)/Z%(t—4)]" (13

©=2.00q2). (14)

Despite the severe global constraint, the total number of
EVRW'’s scales asymptotically in the same way as that of
normal random walks withe=2.

Figures %a) and 3b) indicate the presence of strong cor-
rections to scaling. They are of an exponential form

number of time steps=ZX,v,,. The return-to-origin condi- 04y ota—at?
tion implies thatr,=I,.q, i.e., v,=rp+ro_1=la1+1,, Z(t)~2e (15)
and thatl, and r, must be even for alh, such thatt 45 shown in Fig. &). The slope vields
=2 wa=22,r, is a multiple of 4 instead of 2.
Every walk can be specified by the left boundary of the 0=0.342). (16)

walk n.,, and m positive integer variablegs;, ... ,Syn].

The excursiomm is defined by the distance between the rightIn Sec. V, we will argue that the expone#itis a universal

and left boundaries of the walk. The number of steps fronfquantity, and equal to the inverse of the dynamic expoment

siten to n+1 is equal tor,=2s,_, ;1 with the under-  of the EVRW; 6=1/z.

standing thas,, =0 for n’<0 andn’>m. The number of We also performed an exact enumeration of the finite size
scaling of the width of the EVRW. All configurations

walks with the same set of positive integgss, . . . ,Sp] can ; o
be readily evaluated and is equal[t®] counted in Eq(11) have the same number of visiig up to
a constant shift im. Hence, they all have the same width,
ot Ml (254254, 1)! " W[{si}]=(n?—n?)*2, with
Sty sl 25051 (2540)! (25— 1)! ()

m

2
=T > (2i+1)s;
for m=2 and is equal t§s ;=2 for m=1. The total num- =1

ber of the EVRW'’s is given by the sum

m

Pzé > [i24+(i+1)2]s; .

t/4 ’ =1

Z2°()=2 > Ss,....s

m=1 {s;}

: (12
The ensemble averaged surface width
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FIG. 6. Exact enumeration of the EVRWA) Surface widthw. FIG. 7. Monte Carlo results for the 1D EVRW&) Probability
(b) Effective values of the roughness exponent distribution P(n,t) at t=32 (O), 64 (O), 128 (A), and

256 (V). (b) Scaling of the spreadingn.
t/4 ’
WZ:% > > \/\/[{Si}]ZS[Sl ,,,,, s; (17 subsection. Itis also consistent with a direct evaluation of the
Z5(t=L) m=1 {s} second moment of the distribution function data, which

is evaluated numerically and plotted in Figap The rough- yields that
ness exponent, W~L¢, is estimated from an effective ex- 211/
ponent An=|> n?P(n,t)—| >, nP(n,t)) } (22)
n n
L/ W(L)
ab)=7 W(L—4) —1) 18 scales assn~t2, with z=3.3 as shown in Fig. (B).

The functional form of the scaling functiof is a sur-
see Fig. ). Again, the convergence is slow, but the prise. It is of the form ofF(u)=Ae BlY"  as shown in Fig.
Neville-type extrapolation yields 8, with A=1.98. This means that the probability distribution

is Gaussian in nature,
@=0.3279). (19

. , , _ , _ P(n,t)=At"Y2exg —B(n/t*?)?]. 23
Within the numerical accuracy, this result is consistent with (n.t i Bl ] @3

those in the two dimer growth mode{&ith/without mono-
mer diffusion of the previous section, see E¢8) and(10).

The surface roughness exponenis simply related to the
dynamic exponent of the EVRW asz=1/a. So the above
numerical result implies that

This is surprising, because in other models with anomalous
surface roughness, such as Levi flights, the probability dis-
tribution is certainly not Gaussidr2].

Gaussian distributions with=2 are characteristic of un-
correlated random processes. The appearance of a Gaussian
shaped scaling function in the EVRW problem suggests us to
search for an effective representation of the EVRW in which
the correlation effects somehow transform away, with the
possibility for an exact derivation of the EVRW dynamic
exponent, possiblg= 3. This is the topic of the next section.

z=3.068). (20)

All the results of this section are checked numerically for
Q=3,4,5 in the QVRW model. We find nQ dependence of
the values of scaling exponentss].

o 10°
C. Gaussian distributions

We performed Monte Carlo simulations to determine the
probability distributionP(n,t) for the EVRW, i.e., the prob- 107 ¢
ability to start at sitem=0 and end after timeat siten. This
was done by brute force. We simply generated an ensemble
of normal random walks and trashed the ones that did not
satisfy the EVRW condition. The ratio decreases rapidly. For
example, out of a total of 2 10° normal random walks only
about 600 walks satisfy the constrainttat500.

The distribution function is shown in Fig(& and can be
assumed to obey the scaling form 10%

102 ¢

P(ny) t1'*

10% ¢

-4 2 0 2 4
1 n it t?
P(n,t)=—-F(n/t'?) (21)
t+2 FIG. 8. Scaling ofP(n,t) for the 1D EVRW att=32 (O),
64 (O), 128 (A), and 256 /) according to Eq(21). The best
with z the dynamic exponent. The best data collapse is obeollapse is obtained with 4#0.32. The scaling function is as-
tained for 12=0.32, as shown in Fig. 8. This value ofis  sumed to be of the forn#(u)=Ae BlU". A least square fitting
consistent with the exact enumeration results of the previougields A=0.88, B=0.62, andA =1.98.
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IV. RANDOM WALKS COUPLED TO ISING SPINS We conclude thaz=d+2 in all dimensions. The valug
=3 in 1D, is consistent with the numerical studies of the
previous sections. This derivation is far from rigorous, but
The even-visiting constraint is nonlocal in time. To keephas the merit of being simpler than the ones in the following
track of this constraint in a local way, we can add an Isingsections.
field to a normal conventional random walk, i.e., a marker The separation of into two distinct time scales;e, and
Sp= =1 to each site, that keeps track of the visits in the pasty, __is artificial. Consider the average over all possible start-
Initially at time t’=0, all spins are prepared in the spin-up ing positions of the random walker and all possible spin
state.S, flips each time the random walker visits siteThe  configurations with periodic boundary conditions in the time
requirement that all spins are pointing uptatt, represents  direction (full trace). Then, the system becomes translation-
the EVRW constraint. The generalized distribution ally invariant in the time direction and the two distinct time
P({S};n), contains all the information we neexlis the lo-  domains should disappear. Howeveg, is still the natural
cation of the random walker at tinteand{S the spin con-  crossover time scale in the problem. Consider the EVRW
figuration. P({ + };n), is the EVRW distribution. over time intervalt. Measure the width of the walk in a
Each down spin at intermediate time<@’ <t represents smaller time windowt’ insidet. For very small windows,
a defect, which needs to be healed at a later time. The defegt<t, the even-visiting constraint is invisible, and the width
area spreads in exactly the same way as the width of thecales in the same manner as for a normal conventional ran-

conventional random walky~t*/2. We confirmed numeri-  dom walk. This implies the following crossover scaling form
cally that the defect distribution inside this cone is uniformfor the width ¢ of the EVRW,

in 1D and 2D. This allows us to build the following healing
time argument for the value of the EVRW dynamic expo-
nent. £t 1) =b&(b~mt! b7 =t""G(t /7hed),  (27)

A. Defect spreading

B. Defect healing time argument . . .
g g with b an arbitrary scale factor amgj,,=2. G is the cross-

Divide the time intervalt into two segmentsryee and  over scaling function andr,e=t>v'? the crossover time
Theal- FOrt’ <tpee the random walker does not feel the con- g¢gle.

straint, diffuses freely, and leaves defects behind that are This crossover is important from a surface science per-

uniformly spread over a region of size- ri. In order to  spective. The time scalecorresponds to the characteristic

satisfy the defect-free constraint at tirhethe walker stops length scale between impurities or other surface defects that
spreading and starts to heal defects during the second part géts as an effective lattice cutoff. Depending on the experi-
the walk,t"> 7¢.. The typical distance it needs to travel to mental setup, such as an x-ray beam width or STM scanning
heal a specific defect is of ordér and the time it takes the window that might be larger or smaller than this, one may
random walker to do that is of ordef~ ¢2. The total num- measure the true asymptotic surface width scaling with
ber of defectd\ is of order¢? (d is the spatial dimension = 1/(d+2), or the unconstrained value=1/2.

Therefore, the healing time scales@gs,~Ngr,~ £972. Put- To illustrate the existence of this crossover time scale, we
ting this all together yields a relation between the final timemeasure the spreading of the EVRW's,

and the width¢ of the EVRW.

U= Theet Theaf\”§2+§d+2- (24 Atnt/z[«nf,))t—((nt,>)t2]1’2, (28
Theat diverges faster thamgee, SO we conclude that

_tli(d+2 _ where((- - -)); denotes the ensemble average over the walks
¢~ and z=d+2. (25) that s:fl'gisfy>t>he even-visiting constraint at tiheNote that

The argument is more subtle @2 due to the fact that the Anin Eq.(22) is equal toAn,. The spreading must obey the
number of defects after timey.. cannot be larger than the Same type of crossover scaling form as in EZj),
total number of time steps, while the volume of the spreading
cone, &4~ 792 diverges faster than that. This implies that in
d>2 the density of defects inside the spreading cone does
not reach a constant. The number of defects ingftis only

proportional toNq~ £ instead of¢”. The time to heal one  \onte Carlo simulations confirm this. We generate EVRW's
defectr;, however, changes as weth is proportional to the  gyer a given time intervat subject to the return-to-origin
time it takes to travel across the spreading congmes the  constraint, and record the time trajectories fort0<t/2.
probability to hit a defect while doing so, which is propor- rigyre 9 shows the spreading (@ d=1 and(b) d=2. The
tional to §¥/Ngy. The end result is that the healing time still crossover behavior is clearly visible in Figgcpand 9d).

Atntr=tl/(d+2)g(t’/t2/(d+2)), (29)

scales the same as th<2, The data for different collapse very well. As expected from
£ Eq. (29), the scaling functiorg(u) increases as'? in the
Thear~ Ng71~ Ny ( §2N_d) ~gdt2, (26) ﬁrrrl]?trt time region and saturates to a constant in the opposite
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as|P)..1=T|P); with the time evolution operator

An
W b wvo
>
An

.~ 1 - R R
T=32 (eoptNlaanataa, ] (3

10° 10! 10? 10° 10° 10! 10? The x components of the Pauli spin operatcﬁré, represent
Y r the spin flips, and the fermion annihilation/creation operators
" @ a anda' represent the random walker. We have only one
' fermion in the energy band.

The spin part off is easily diagonalized since the* do
not couple to each other directly. Perform a rotation in spinor
. space to the eigenvectors, /(| +)+|—)), of 0%, and de-

I Wt W ! note the eigenvalues ag= *+1. In the rotated spinor basis,

o o the operators}’; becomec numbersc,, and the time evolu-

FIG. 9. Crossover scaling in the EVRWA) and (b) Spreading  tion operator reads

of the EVRW ind=1 andd=2. (c¢) and (d) Scaling of the data
according to Eq(29). The broken lines have slope 1/2.

[An]
[An e #

3
omO %X +

R 1 nin npn
R | T{eh=5 2 (et hHlaanitajan1l. (32
C. Stochastic spin flip dynamics n
Consider a generalization of the EVRW in which the ran-
dom walker flips the spin only probabilistically during each

visit. The spin flips with probabilitye or is left unchanged Eachc, is either+1 or —1 at random and does not evolve

with probability f=1—e. I . :
. S . in time. The fermion(random walker hops on a 1D lattice
As in the deterministic EVRW problem, we require that atwith randomly placed defects, the.=—1 sites. The spin

time t aII_splns return to 'ghe Spin-up position. A more ?Iegantdegrees of freedom transform into quenched random noise in
and equivalent formulation of this is to require timelike pe-

riodic boundary conditions, because it suffices to deman e hopping probabilities. The time-periodic boundary con-

that all spins at time return to the same state as at time zero ftions for the original spin variables translate into a
. P . 'quenched average over all defect configurations distributed
irrespective of what that state might be, and the trace over a

oo o AR niformly. The wave function(probability distribution is
igﬁrc]itligl::sl conditions leads to periodic timelike boundarymultiplied by a factor (-e+f) each time the fermion visits

We call this model the stochastic even-visiting random® defect. Notice that the probability distribution can be nega-

walk (SEVRW). The deterministic EVRW corresponds to t'vgrﬁvehegﬁ:r;ﬁ;tf:rft%?v?;{ﬁft f:r?(;grl:\rexfll?ss'is straight-
(e,f)=(1,0) and the conventional RW tef)=(0,1). 9 9 9

: PR forward. The eigenvalues become complexg,
The purpose of this generalization is twofold. On the one_ exp(2mi/Q) with j=1,... Q, and Q—1) different kinds

hand, it allows us to address the robustness of anomalouo§ defects appear with different random hoobind probabili-
EVRW diffusion. On the other hand, and more importantly, bp bping p

there is an exactly solvable “decoupling pointg= f = 1/2, ties. This type of generalization does not lead to any new

e . ._scaling behavior of the probability distribution of the random
where we can evaluate the anomalous diffusion scaling rig- . SR
orously, see Sec. V walker in the asymptotic I|m|[18]._

' C The time evolution operator in Eq32) resembles the

Hamiltonian for an electron in a random medium. One fun-

damental difference is that is non-Hermitian. The hopping
The master equation for the probability distribution readsprobability fromn to n+ 1 is not Hermitian conjugate to that
from n+1 to n. Non-Hermitian random Hamiltonians arise
P({S};n)t+lzg[7)({s’};n+ 1)+ P{S'in—1),] in various areas of physics. _Stochastic processes, Iike_ ran-
2 dom walks in disordered environments, have non-Hermitian
f time evolution operators. Equilibrium systems with
+ =[P{SHn+1)+P{Sn—1),], guenched disorder, IiI§e vortex line pinning in o!irty supercon-
2 ductors[10] are described in the transfer matrix formulation
(30) by a non-Hermitian random Hamiltonian. Delocalization
transitions for such non-Hermitian types of disorder are dif-
where configurationgS'} and {S} are related a§,=—S, ferent in nature from those in Hermitian systems, see, e.g.,
andS;,=S,, for m#n. This can be cast in state vector nota- Ref. [11].

The initial all-spin up configuration becomes in the rotated
spinor basis the linear superposition over all poss{lolg-.

D. Non-Hermitian quenched randomness

tion, This relation between non-Hermitian random Hamilto-
nians and the EVRW is not new. It is presented as typically
Py = PUSE:Nn),|{Sh:n, starting from the no_n—Herm|t|an perspective. Our d_e_rlvat|on

P %n ({SEmd{Skm) presented above using the reverse route(lmasur opinion
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the advantage of being more transparent. To be precise, Ci-

cutaet al.[19] recently considered a “roots of unity” model
with Hamiltonian

H:; (BanJrl"’XnB;anl)u (33

whereb, b is a fermion operator ang,= *+ 1 is the random
variable with a uniform distribution. They relate this non-
Hermitian random Hamiltonian to the deterministic EVRW.
The disordered average of the trace l#f generates the
EVRW configurations[19]. Alternatively, the similarity

transformatiore,, = £,b,, with | £,|>=1 maps the time evolu-
tion operator in Eq(32) onto Eq.(33) with c,=¢,/{,+, and
Xn=CnCp—1-

E. Polymers in random media

In the spin diagonalized form of E¢32), the single fer-
mion is equivalent to a walkdfermion) in a quenched ran-
dom environment. With probability 1/2 each sit® is occu-
pied by a defectc,=—1, or not,c,=+1. The probability
distribution satisfies the recursion relation

P{chn)=z(ec+HIP{chn+1)+P({chn—1)].
(34

During each time ste? is multiplied by a factog and with
an additional factorf —e each time the walker lands on a
defect site(recall thatf+e=1). This equation of motion

does not preserve probability, and therefore we cannot inter-

PHYSICAL REVIEW BE54 046131

P(n,t)= >,

walks

27T [3(1+e #m) (36)

with the product now running over all lattice sitese Ng.

This leads us back into familiar territory. The SEVRW prob-
lem is now reformulated as a trace over normal uncon-
strained RW'’s, but with Gibbs-type weights giving each
walk a different probability depending on the number of vis-
its v,, to every site. We could have started this way, because
ate #=—1 Eq.(36) counts naturally only the EVRW, and
ate” #=1 it counts all RW. For other values of the walks

are weighted in a more complicated way, exceptaff, as

we will discuss next.

V. THE EXACTLY SOLVABLE POINT
A. Reflective walls

At point e=f the SEVRW is exactly solvable. Here the
properties of the walk simplify in a manner different than at
the EVRW pointe=1, and the normal RW poinf=1. The
generating function representation of Eg§6) reduces to

P(nt)= >, 27t N

walks

(37)

with N, the number of distinct sites visited by that particular
random walk. The total number of walks is equal to

S e,

walks

Z(t)=2>, P(n,t)= (39)

pret it as a master equation. The random walk nature of the
problem is only restored after taking the quenched averag@ith h=In 2, and the summation running now over all walks

over thec,, randomness.

irrespective of their end pointN, is also equal to the dis-

Instead, we can interpret this equation of motion as theance between the two extremal points reached by the RW. It

transfer matrix of a polymer wanderirigut not back bend-
ing) on a 2D (,t) lattice with defect linegat specificn
along thet direction. The partition function is equal to

P(n,t)=2"N> > 2texp(—MZ un,> (35)

{c} walks

with Ng the number of lattice sites,, the number of times
the polymer visits sit@ in the specific walk under consider-
ation, andu= —In(f—e) the energy associated with hitting a
defect line. The prime im’ represents that we only sum
inside the exponential over defect sites.

is as if an energy is being assigned to each RW proportional
to its space-time width.

In the formulation of Eq(35) the polymer is not allowed
to cross defect linesy diverges, i.e., the problem factorizes
in random sets of polymers on strips with finite widths. Simi-
larly, the fermion time evolution operator reduces to

~ 1 ~pn apn
T=72 (et Dlaanataga, 1] (39

The hopping probability to cross defect siteg=—1, is
zero. The defects act asard core walls. The fermion is

The SEVRW interpolates between the normal randomntrapped and localized between two neighboring defects.

walk and the EVRW. At the random walk pointe£0,

These reflective walls are randomly distributed with a prob-

f=1), the defects decouple from the polymer. At the EVRWability 1/2 to find one at every site without any spatial cor-

point, (e=1, f=0), the summand in the partition function
changes sign each time the polymer hits a defect line.

relations.
The probability to find in the quenched average the fer-

Next, we can integrate out the defects altogether, becaussion within a blocked line segment of lengthis propor-
the order of the two summations, the one over all polymetional to £2~¢; because the probability to randomly place the
walks and the one over all possible defect line configurafermion on a line segment of lengthis proportional tog,

tions,{c}, can be interchangedFrom the polymer perspec-
tive, the disorder is annealed, not quenchdthe trace over
all defect configurations leaves us with

and the probability that such a line segment exists in the
quenched average is proportional t02 This allows us to
calculate several quantities analytically in 1D.
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B. Total number of walks We use the method of steepest descent for Igrgad again

The total number of SEVRW walks can be reformulated:Ehe maximum contribution comes frog,~t"%. This leads
0
as

An(t)~t*3, (46)

Z(t)~ 27EZ(& 1), 40
B §§: ¢ (& “0 i.e., z=3 [since An(t)~t%?], or after taking the crossover
scaling into account,
where Z(&,t) is the number of possible normal random
walks within a line segment of siz&with reflective bound- An(t)=t"g(t"). (47)
ary conditions. A heuristic evaluation &f(¢,t) runs as fol-

The crossover scaling dies out very slowly at latgsuch

lows. ; :
that the corrections to scaling are large.

For t<&?, Z grows asZ~2' just like normal random
walks, but after this typical time scale the random walker o
begins to hit the boundary. It can only bounce back instead D. Exponent identity
of having two possible futureopping directions So com- We just established that the width scalestas~t'# with
pared to a walk in infinite space without reflective walls, thez=3, see Eq(46), and that the total number of walks has a
total number of walks is reduced by a definite factor eactcorrection factor exp-bt?] with §=1/3, see Eqs(43) and
time the walker hits the wall. During timg the random  (44). We will demonstrate now that= 1/z.
walker hits the boundary-t/£> times on average. So one  The total number of constrained walk&(t), at the de-
expects coupling point is given by E(38). The average width of the

random walk is equal to
Z(&1)~2"exd —at/€?], (42)
J
with a being a constant o®(1). Thetotal number of con- (N,[h])=— %In Z[h]. (48)
figurations then scales as
Integrating this equation leads to the formal relation

- t _ 2_
Z(t) f dé2'¢exp —at/és—£In2). (42 Z[h]=Z[0]exp{—fh<NU[h’])dh’} 49
0

The integral can be evaluated from the method of steepest. . .
descent ?n the limit of large P with Z[0]=2". It is reasonable to presume th,[h']) is

continuous as a function ¢f' . Then, according to the mean

Z(t)~2'tY2exp — bt?) (43) value theorem, the integral in the exponent is proportional to
h(N,[h¢]) for 0<hg=<h. By settinghj=In2, we obtain
with #=1/3 andb a constant. The maximum contribution Z(t)~ 2t ex —a(N,)]. (50)
comes fromé,,~t*3 and the power-law correction term fol- v
lows in second order. N, is equal to the excursion width of the walks, and propor-

The total number of walks returning to the origié(t), tional to An. Therefore
can be calculated in a similar way. The return-to-origin con-

straint reducesZ(&,t) by a factor ofé. We obtain Z(t)~2'exd —aAn(t)]. (51
Z%t)~ 2tY8exp — bt?). (44y ~ Hence we conclude that the exponential factor in the parti-
tion function originates from the spreading of the walks and
that 6= 1/z.

C. Spreading exponent

The spreadingAn(t), of the walker can be evaluated as E. Universality
well. First consider widtiw(é,t) of a random walker trapped oy numerical results for the EVRW model of the previ-
on a line segment of length Initially, for t<£°, the random 5 sections agree with all the above exact results at the

walker diffuses normally withw(&,t) ~tY2, until it realizes it reflective wall point; see Eq€15), (16), (19), and(20). This
is trapped. Sev(¢,t) saturates t@, and the spreading scales s actually somewnhat surprising.

as w(£,t) = £g(t7€) with g(x)~x for small x and g(x) It is relatively easy to argue that the scaling properties in
constant for largex. The total spreading is the average of ihe direct vicinity of the decoupling poiré=f should be
this: robust and universal, with the decoupling point acting as
stable “fixed point” in the sense of renormalization transfor-
f dé Z(£,1)E278wW(&,1) mations. At the decoupling point the fermion is deflected by
An(t)=(W(£1)= . (45 the de.fect_s, while ae;tf.n can tunnel through them. This
f dE Z(£1) 2 f[unnelmg is an exponen'_ually s.mall effect, see B#$). Pass-
’ ing through two defects is equivalent to passing through only
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one at a much smaller value bf- e, which means that under statesp(E) of these edge states exhibits an essential singu-
a rescaling of the spatial resolution the renormalized larity, known as a Lifshitz tai[12]. We review here an in-
decreases towards zero. tuitive argument for the existence of Lifshitz tails and extend
The normal random walk, &t=1, and the deterministic it to the non-Hermitian random SEVRW model.
EVRW, ate=1 mark the natural horizons of the basin of
attraction of thise=f fixed point. At these pointe™* be- B. Lifshitz tails
comes equal tat 1, respectively. So it remains surprising . . I . .
that the scaling properties of the deterministic EVRW are thederConS|der a 1D free fermion Hamiltonian with bond disor-
same as in the reflective wall model. ’
The following intuitive derivation of Eq(51) sheds some
light on this. We expect that the total number of walks in H=-
every type of SEVRW is proportional to the total number of n.m
normal random walks 2times the probability that the Ising . .
spin configuration satisfies the global constraint. At the . mn are ra_”d"!“ h_opplng _a_tmphtude; be_tv_veen
= f point, the Ising spins flip randomly when their sites areSitesn andm. This Hamiltonian is Hermitian. F.or simplicity,
visited. Therefore all spins inside the spreading cone are raSsume thf"‘t the,  are nonzero only for pairs of nearest
domized completely and lack any spatial correlations. Thiéw_"ghbor sites anc_i_take only the values 1 anf)<b<1)
means that the probability to find all Ising spins pointing upW'th gqual pr.obablllty. . .
is proportional to exp—aAn], which confirms Eq(51). _ W|thout d|sorder,_W|th f"‘”t”vm: 1.’ the energy band is
The extension of this argument to general SEVRW ancanal, E=—cos!<, with uniformly distributed wave num-
the EVRW point in particular, requires that the distribution ers,ok=2m/L, in the range ¢ m<k<m). The states near
of down spins is still uniform and that the spin-spin correla-th€ lower band edgek=0 describe the large length scale
tions are short ranged in the largémit. b<_ahaV|or, an.d_ the density of_ states diverges as a power-law
At the EVRW point, the random walker flips the spin at with the familiar van Hove singularity
every visit. For largd, it is very likely that the number of (E)~|AE| 12 (54)
visits to every site inside the spreading region is even or odd P '
with equal probability; we checked this numerically. Spin-;n tarms of AE=E—E doe.
spin correlations are the strongest at the EVRW point, but e ejgenstates become localized in the presence of dis-
T can develop 1ong range Order of any ype. wie mumericrscr The probabilty 0 find a pure domain ¢, a conneced
cally measure the spin-spin correlation functié,Sy.),  The crucial feature behind Lifshitz tails is that the states
and find exponential decay in the spatial direction; the coreytending across the boundaries of pure domains do not con-
relathn length saturate_s to a finite value for Iat@a?S]. This  tipute to the density of states near the edge, even in the
explains why Eq(51) still holds at the EVRW point presence of small tunneling probabilities>0). In that

case, the energy leveE, in each segment are similar to
VI LIFSHITZ TAILS IN RANDOM HAMILTONIANS those of a free particle in a box of size i.e., AE=E(k)
A. Density of states —Eeqge=k?2, with wave number spacingk=2/£; or,

o , phrased in terms of the domain sige |AE, |~ (/1&)? for
Let us return to the fermion time evolution operator Eq'low—lying eigenstates with'=1,2, . . ..

(32), and examine the same scaling issues from that perspec-

tive. The number of walk&®(t) returning to the origin after ergyE andE +dE is proportional to the probability to find a
t s_teps (=0) and satisfying the EVRW constraint can be pure domain segment with a size betwegrand é+d¢,
written as which is  py(E)dE~2¢dé.  Therefore, py(E)
~|AE| %2exd —alAE|"Y2]. Similarly, for the /th level,

Zo(t)=212"Ns >} <o|[?({c})]t|o>=2tf dE p(E)E!, p,(E)~/|AE| *2exd —a/|AE|Y2]. The total density of

{c} states is the sum over all levels, but near the band edges, the
(52 contributions from higher levels yield only corrections to

scaling. Hence the density of edge states is of the form

tn m@ram (53

N| =

wheret, =t}

The distribution of first excited statgs (E) between en-

where E is an eigenvalue off and the disorder-averaged
density of states is denoted E). Since the operator is p(E)~|AE|~¥2exd —a|AE| 2. (55)
non-Hermitian,E is a complex number and the integration
runs over the comple¥ plane. Eigenstates near the bandThis exponential factor in the density of states near the band
center are rather well documented for this type of non-edge is known as a Lifshitz tail. Rigorous calculations con-
Hermitian random Hamiltoniansl0,11]. However, we need firm its existence[12]. Moreover, the tails exist also in
to focus on the eigenstates near the band ¢agemall wave  higher dimensions in the form of
numbers since there is only one fermion in the system and
our interests lie with its long time behavior. p(E)~exd —alAE| 9], (56)

The nature of the eigenstates near the band edge is rather g
well known for Hermitian random systems. The density ofbecause, roughly speaking, then scales as 2 .
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C. Hermitian SEVRW model

04y ot -3/2 _ -12_
Let us now generalize this to negative hopping ampli- Z(H)~2 j dE|AE] exf —alAE| tAE[]

tudes. This may not be useful to real fermions in disordered
media, but is helpful to understand SEVRW'’s. Consider a

Hermitian analog of the SEVRW model As expected, we have exactly the same formula as in Eq.
(44) for the non-Hermitian decoupling point. Again, the dy-

~2tY6 exp( — bt'3). (59

1 nin
T=2 (eCn,m_’_f)arJgam' (57)  namic exponent is equal =3 in 1D.
2 m In higher dimensions, the Lifshitz tails are of the form
p(E)~ exy —alAE| %7 (60)

where the sum is over nearest neighbor pairs ead — f

with O<e,f<1. The random variable,, ,=cp,,, can be ei- and therefore the partition function is proportional to
ther +1 or —1 with equal probability. So the hopping am- 0 t di(d+2

plitudet, n=ec, n,+f is either+1 or (—e+f), and can be Z(1)~(2d)" exd —at™@* ). (61)
negative fore>f. The conventional Lifshitz tail argument Recall from Eq.(50) that

applies toe<f.

Similar to our earlier discussions, thg, ,, can be re- Z(t)~Z°%t)~(2d) exd —a(N,)], (62
garded as eigenvalues of Ising-type spin flip opera&ﬁ@.
Unlike before, these Ising spins live on the bonds instead o
the sitese is the spin-flip probability when the walkéfer-
mion) passes through the bond. Poirg, f) =(0,1) corre-
sponds to the normal RW model just like in the SEVRW (N,)~td(d+2) (63)
model. However, there is an important difference between
the Hermitian and the non-Hermitian versions. The Hermit-and that every site is visited*?) times on average. This
ian formulation satisfies a self-duality relation betweerf]  implies that(N,) simply scales with the spreading volume
and (f,e). The following transformation on the creation/ (An)9~t%? Therefore,
annihilation operators

here(N,) is the average number of distinct sites visited by
he constrained random walker afteime steps. Comparing
these two equations yields

Z(t)~Z%t)~(2d)'ex —at¥?], (64)

n—1 with

b,=a,l] c 58

" ”pﬂl Pprt (58 z=d+2. (65)
This is the same result as obtained from the healing time
maps €,f) onto (f,e). Therefore, the two limiting points argument for the EVRW, Eq25).

(e,f)=(0,1) and (1,0) must correspond both to the normal

unconstrained RW. There is an even-visiting condition at D. Lifshitz tails in the EVRW

point (e,f):_(l,O), but it is |mpos_ed_on the bo_nds. Unl_lk_e The Lifshitz tail argument also applies to the SEVRW
the site version, the bond constraint is automatically satisfied luti 5 . A .

by all normal random walks returning to the origin. Considert!me evo ution ope_rator, Eq(3 ) Sm'ce T({C}) IS non-

a simple walk as example: walk ten steps to the left and thehiermitian, the density of states is defined in the e_ntlre com-
all the way back. When the RW tumns around, it leaves &/€ E plane. We focus here on the EVRW poire,{)
defect behind at the extremal point, in the site version but not” (1,0) where the distribution qf s_tat_es has a spec@ Symme-
in the bond version. On its way back it repairs all defects lefttry property [19]. Apply the similarity transformatioray,
behind during the first part of the journey, in both the site=e~'™?%p, to the even sites and leave the odd sites invariant,
and bond versions. So in the bond version, all defects arg —p T({c}) transforms toe "™?T({c'}) with c/=c,
automatically repaired. In the non-Hermitian versithe (_ ¢ y for even(odd n. Note that the disordefc’} and{c}

original SEVRW model the self-duality does not exist and pave 'the same distribution. Therefore, one obtains
(e,f)=(1,0) is the anomalous EVRW problem.

At the decoupling poine=f=1/2, the 1D chain of Eq. p(E)=p(e'™E). (66)
(57) breaks up completely into randomly distributed finite
segments, just like before in the non-Hermitian SEVRW.This symmetry implies that there exist four Lifshitz tails,
The hopping amplitudes, , are either+1 or 0. These dis- along the rays of ar@f)=j /2 with j=0,1,2,3 at|E|=1.
connected sections correspond to the pure domains in tHeach tail contributes equally to the partition functi@f(t)
Lifshitz argument and all states are completely localizedapart from a phase factor exjpft/2) originating from the
within those sections. The Lifshitz tail argument is exact atenergy eigenvalue at each edge.Z(t) is equal to Eq(59)

the decoupling point. multiplied by the constanEjiOeXij mt/2). The latter is
The partition function, Eq(52), is easily evaluated with nonzero only whemis a multiple of 4, which is trivially true
the method of steepest descent as for EVRW's that return to the origin. We conclude that the
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dynamic exponent for the non-Hermitian case is agai8  form of a non-Hermitian random-bond free fermion Hamil-
in 1D andz=d+ 2 in general dimensions. tonian. This leads naturally to the formulation of a generali-

Finally, we can generalize t@-visiting random walks. zation, SEVRW. The master equation for SEVRW can be
The analog of Eq(32) for d-dimensional QVRW's is the reinterpreted as the partition function of a polymer fluctuat-
time evolution operator ing in an environment of randomly placed defect lines, and,

after integrating out the randomness, as the equilibrium par-
. ' nin tition function of a polymer with an ener roportional to
T({chH)= % > > cpalan, (67 the width of the pol@mﬁr configurations. % Prep
nom The SEVRW model has a trivially exactly solvable point,
wheren is a site of ad-dimensional hypercubic lattice and the decoupling point where the polymer cannot cross defect
the primed sum runs over nearest neighbor sites of given lines. At that point we can show rigorously that 3 in 1D.

The random variablec,, takes equally likely the values Moreover, this point acts as a stable fixed point in a
exp(2mj/Q) with j=1,... Q. renormalization-transformation-type sense in the SEVRW as
The density of states has the symmetry properti) a whole, such thaz=3 is valid in general. In the fermion
=p(e'™QE), following the generalized similarity transfor- interpretation, the same asymptotic anomalous diffusive
mation a,=e~'"Qb,, applied to one sublattice and leaving Properties of the EVRW determine the spectral properties of
the non-Hermitian Hamiltonian near the band edge, in terms

of so-called Lifshitz tails. This confirms that=d+2.

The anomalous roughness we observed numerically in 1D
surfaces described by dissociative-dimer-type dynamics was
: 0 o the starting point and motivation of this study. Such inter-
function Z(t) except for the same type of trivial phase fac- aq provide possible experimental realizations of EVRW's,
tors as in the EVRW1(is now a multiple of D). The restof  ¢,0, 55 the roughness of steps on vicinal surfaces where the
the story is the same as for the EVRW, and the results argy namics only allow attachment/detachment in the form of
identical. diatomic molecules.

The scaling we found here are very robust. For example,
VIl. SUMMARY AND DISCUSSION they also apply toQ-mer type growth models. We estab-

In this paper we have investigated the scaling propertieQShed _that the relgt_iqrz=d+2 remains valid for ?" \(alues
of even-visiting random walks. The number of visits to each?f Q |'n the Q-visiting random W"_’"k, generah;atmn of
site by the random walker is required to be a multiple of 2_EVRV\/.s, and that the probability distribution still takes a
This is a global constraint that leads to anomalous diffusivé>aussian form. _ .
motion of a novel type compared to more conventional ones . Random V\_/alks are a generic type of stochastic process. It
such as Levi flights and correlated random walks. Using exWill be Very interesting to search for more novel types of
act enumerations and Monte Carlo simulations, we find thafC@ling originating from RW's subject to global constraints.
the dynamic exponent is equal ¥&=3 in 1D. Surprisingly, During the final stages of preparing this manuscript,
the probability distribution is not a stretched Gaussi@for ~ Bauer, Bernard, and Luck posted a preprint on the cond-mat

; ; _ archive[21] exploring the same type of connections between
?2:? (c\):/rilﬁr ;ﬁpzf]oo;:ﬂ)%rgatjgmsedgesv)%u ;:Visslrgriﬁ E:elleisrfg the EVRW and Lifshitz tails. Their results overlap only par-
time argument which suggests thzatd+ 2 in d dimensions.  tally with the research presented here.
These results are verified numerically in 1D and 2D.

We embed the even-visiting random walk into an Ising-
type environment, with an Ising spin at every site, where the We thank Pil Hun Song and Jysoo Lee for useful discus-
random walker flips the spin at the site where it lands duringsions. This work was supported by Grant No. 2000-2-11200-
each visit. Diagonalizing the spin sector of the master equaB02-3 from the Basic Research Program of KOSEF, and by
tion translates the EVRW into a free fermion problem withthe National Science Foundation under Grant No. DMR-
guenched randomness. The time evolution operator takes ti9985806.

the others unchanged,,=b,,. Through this transformation,

T({c}) picks up a phase facter '™/Q. There are B Lifshitz
tails, along the rays with ar§)=j=/Q for j=0,...,2
—1 at|E|=1. Each tail contributes equally to the partition
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