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Time-integrated quantities such as work and heat increase incessantly in time during nonequilibrium processes
near steady states. In the long-time limit, the average values of work and heat become asymptotically equivalent to
each other, since they only differ by a finite energy change in average. However, the fluctuation theorem (FT) for
the heat is found not to hold with the equilibrium initial ensemble, while the FT for the work holds. This reveals
an intriguing effect of everlasting initial memory stored in rare events. We revisit the problem of a Brownian
particle in a harmonic potential dragged with a constant velocity, which is in contact with a thermal reservoir. The
heat and work fluctuations are investigated with initial Boltzmann ensembles at temperatures generally different
from the reservoir temperature. We find that, in the infinite-time limit, the FT for the work is fully recovered for
arbitrary initial temperatures, while the heat fluctuations significantly deviate from the FT characteristics except
for the infinite initial-temperature limit (a uniform initial ensemble). Furthermore, we succeed in calculating
finite-time corrections to the heat and work distributions analytically, using the modified saddle point integral
method recently developed by us. Interestingly, we find noncommutativity between the infinite-time limit and
the infinite-initial-temperature limit for the probability distribution function (PDF) of the heat.
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I. INTRODUCTION

The fluctuation theorem (FT) has been regarded as a
fundamental principle in nonequilibrium statistical mechanics.
It concerns time-integrated quantities such as heat and work
in nonequilibrium processes. The FT provides a rigorous rule
for the thermal fluctuations of such quantities, independent of
any detailed dynamics. The first form of the FT was found
for entropy production piled in a heat bath for a deterministic
thermostated system [1–3], given as P (s)/P (−s) → eτs as
τ → ∞, where τ is the measuring time and s is the entropy
production rate in the unit of the Boltzmann constant kB . It is
termed as a steady-state detailed FT in literature.

Later, the FT was found to hold in stochastic systems
[4–6]. In particular, Crooks showed that the (transient) FT
rigorously holds at all times (finite τ ) for the work W produced
in nonequilibrium systems starting from equilibrium distribu-
tions. Furthermore, it can be expressed in a more detailed form,
termed as a detailed FT, regarding the probability distribution
function (PDF) of work fluctuations, given as

PF (W )

PR(−W )
= eβ(W−�F ), (1)

where β is the inverse temperature of the heat bath and �F

the free energy difference between the initial and final times
due to the change in a time-dependent protocol such as a
volume, an external field, or a potential shape. PF denotes
the PDF for the forward (F ) process, while PR denotes that
for the reverse (R) process where the protocol varies in time
reversely to the forward process. The symmetry of the PDF
such as in Eq. (1) is known, in general, as the Gallavotti-Cohen
symmetry [3]. The Jarzynski equality 〈e−βW 〉 = e−β�F [7]
is nothing but the integral FT corresponding to the Crooks
detailed FT. The discovery of the FT, which is expected to be
valid in general stochastic systems, has resulted in extensive

studies on unprecedented nonequilibrium phenomena. Many
experimental evidences have also been reported [8–12].

The choice of an initial ensemble is critical for the validity
of the FT. For example, the transient detailed FT’s for any finite
τ hold and so do the integral FT’s, only with the equilibrium
Boltzmann distribution as the initial ensemble for the work
or with the uniform (infinite-temperature) distributions for the
heat [13–15] (see also Sec. III C). The total entropy production
satisfies the transient integral FT with an arbitrary initial
ensemble [16], though its detailed FT is valid only in the
steady state. In fact, the detailed FT guarantees the integral
FT, but the converse is true only if the initial distributions
for the forward and reverse paths are involutory to each
other [17].

A natural question arises: “What happens to the FT when
other types of initial ensembles are taken?” It is clear that
the transient FT for a time-integrated quantity does not hold
without a proper initial ensemble, but not clear whether or
not it holds in the τ → ∞ limit. If not, how can the initial
memory persist in the long-time limit? In order to answer
these questions, we investigate the effect of initial ensembles
on the detailed FT for the heat and work, in particular for
large τ .

It is a formidable task to calculate the PDF exactly for
finite τ , so we restrict ourselves only to its large deviation
function and corrections in the large τ limit. The PDF for a
time-integrated quantity A for a long period of time τ can be
written in a scaling form

P (A) ∼ e−τh(A/τ ) for large τ, (2)

where A is usually scaled dimensionless and h(A/τ ) is called
a large deviation function (LDF) [18,19]. Many interesting
properties on the LDF were found on such as the current
fluctuations [20,21], the (non-Gaussian) exponential tail [22],
the everlasting initial memory threshold [14,23], and so on. If
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the detailed FT holds, the Gallavotti-Cohen (GC) symmetry is
expressed in terms of the LDF’s as

− hF (A/τ ) + hR(−A/τ ) = A/τ, (3)

where hF (hR) is the LDF for the forward (reverse) process.
When A = βW , Eq. (1) leads to the above symmetry in the
large τ limit [24].

The thermodynamic first law reads �E = W − Q for the
energy change �E. We define Q as the heat transferred into
the heat bath. In nonequilibrium close to the steady state,
〈W 〉 and 〈Q〉 grow linearly in τ , but 〈�E〉 remains finite.
Thus, one might expect that both quantities approximately
have the identical PDF’s for large τ as the difference �E may
become negligible. Starting with the equilibrium Boltzmann
ensemble, the detailed FT for W is satisfied even at finite τ ,
and thus is expected to be valid also for Q at least in the
infinite τ limit. However, the reality is against the expectation.
The detailed FT for the heat was examined analytically for
the motion of a particle in a harmonic potential dragged
with a constant velocity, which is one of the experimental
prototypes [8,9,25,26]. It was found in the infinite τ limit that
ln PF (Q)/PR(−Q) � βQ only in the central region around
Q = 0 [27], while it approaches a plateau for large |Q|,
which is the origin of the extended FT [28,29]. Recently, the
modification of the detailed FT for the heat has been proposed
for general systems in terms of correlations between �E and
Q [15].

The violation of the FT is due to a rare but non-negligible
chance of �E having an extremely large value, which causes
the FT modified in the tail region of the PDF [14]. The
probability to find the initial system with an extremely large
energy is exponentially small, but it will almost always
dissipate the most of its energy into the reservoir in the
long-time limit. Thus, this event becomes relevant to the tail
part of the heat PDF which also decays exponentially for
large |Q|. Even for very large τ and |Q|, there is always
an exponentially small probability to find the event with the
corresponding large energy in the initial Boltzmann ensemble.
Therefore, this effect cannot go away even in the long-time
limit. This so-called “boundary effect” recognized in many
references [30–33] is observed for an unbounded energy
distribution in the initial ensemble, but obviously not observed
when the initial energy is bounded.

As the initial ensemble plays a crucial role in the FT
violation, we study its effect on the work and heat fluctuations
more systematically in this paper. As an initial ensemble, we
take the Boltzmann distribution at a temperature generally
different from that of the heat reservoir. In this case, the FT’s
for both W and Q do not hold for finite τ . However, it is not
obvious whether the FT will hold or not in the large τ limit.
The validity may depend on the quantity of interest and also
on the temperature of the initial ensemble. In fact, it is already
reported that the injected and dissipated PDF’s of heat in an
equilibration process show phase transitions at two different
finite initial temperatures, respectively, below which the LDF
is not affected, while above which the LDF is significantly
modified by the boundary term [14,30].

In this paper, we revisit the problem of a Brownian particle
in a harmonic potential dragged with a constant velocity, which
is in contact with the thermal reservoir. We then investigate

the PDF’s of the work and heat for a long period of τ . For the
heat PDF, we find the singularities due to the boundary terms,
which vary with the temperature of the initial ensemble and
break the GC symmetry of the PDF. As the initial temperature
approaches the infinity in the infinite-τ limit, the GC symmetry
is restored. We also calculated a finite-τ correction for the
heat PDF, where the singularity structure becomes more
complicated. Using the modified saddle point integral method
recently developed by us [23], we exactly obtained the LDF of
the heat up to O(τ−1) and thus the FT violation is measured up
to the same order. Interestingly, the finite-τ correction of the
FT violation does not vanish in the infinite initial-temperature
limit, which implies the noncommutativity between the two
limits of the infinite τ and the infinite initial temperature.
However, we can show that the transient FT is satisfied for any
τ if one takes a proper infinite initial-temperature limit before
taking the infinite-τ limit.

In contrast, the work PDF turns out to be free of any
singularity even at any initial temperature. Furthermore, the
work PDF can be calculated exactly at any finite τ and any
initial temperature. We can show that the transient FT does
not hold except when the initial temperature is identical to the
temperature of the reservoir. However, in the infinite-τ limit,
the FT is fully restored, regardless of the initial temperature.
The difference between the FT violations for the heat and work
comes from the presence of �E, which induces everlasting
initial memory in the heat PDF.

The remainder of this paper is organized as follows. In
Sec. II, we introduce a model and theoretical formalism
to obtain the PDF’s of the heat and work. The generating
functions for the heat and work PDF’s are derived. In
Sec. III, we present the LDF and the FT violation for the
heat fluctuations in the long-time limit and their finite-time
corrections. The restoration of the FT for the heat in the
infinite initial-temperature limit is also discussed. In Sec.
IV, we repeat the calculations for the work fluctuations.
Finally, in Sec. V, we summarize our study and discuss
the physical origin of the everlasting initial memory in
the time-accumulated quantities. In the Appendix, the exact
generating functions for the heat and work are given at
finite τ .

II. MODEL AND GENERATING FUNCTIONS

A. Model

The Brownian motion of a particle in a moving harmonic
potential with a constant velocity v∗ [28] is described by an
overdamped Langevin equation as

ẋt = −τ−1
r (xt − x∗

t ) + α−1ζ t , (4)

where xt is the position of the particle at time t , τr is the
relaxation time, x∗

t = v∗t is the moving center of the harmonic
potential, and α is the Stokes friction of the particle in a fluid.
The relaxation time is given by τr = α/k, where k is the force
constant of the harmonic potential. ζ t is a fluctuating white
noise given as

〈
ζ a
t

〉 = 0,
〈
ζ a
t ζ a′

t ′
〉 = 2αkBT δaa′δ(t − t ′), (5)
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where the superscripts a and a′ denote component indices
(a,a′ = 1, . . . ,d) for a d-dimensional motion and T is the
temperature of the heat bath. The particle and the center of
the harmonic potential are initially positioned at the origin:
x0 = x∗

0 = 0.
For convenience, we first find out the deterministic part y∗

t

of the solution to Eq. (4) as

y∗
t = v∗t − v∗τr (1 − e−t/τr ), (6)

satisfying the deterministic equation ẏ∗
t = −τ−1

r (y∗
t − x∗

t ) with
an initial condition y∗

0 = 0. If we look at the relative motion of
the particle as

Xt = xt − y∗
t , (7)

then it satisfies a simpler equation of motion as

Ẋt = −τ−1
r Xt + α−1ζ t . (8)

The harmonic potential energy Ut = k
2 (xt − x∗

t )2 has an
explicit time dependence. As recognized by Jarzynski [7], the
work is transferred into the system by the rate of ∂Ut/∂t . It
is performed by an external agent (experimental device) to
change the protocol x∗

t . Then, the work Wτ delivered into the
system can be expressed along a given trajectory [xt ]τ0 for
0 � t � τ as

Wτ = −k

∫ τ

0
dt(xt − x∗

t ) · v∗

= −k

∫ τ

0
dt[v∗ · Xt + v∗ · (y∗

t − x∗
t )]. (9)

The heat Qτ going into the fluid along the same trajectory
[xt ]τ0 is given by

Qτ = Wτ − �Uτ , (10)

where �Uτ = Uτ − U0 is the potential energy change. Note
that only the potential energy change is considered in the
overdamped limit.

The PDF for the work or heat can be obtained by
considering all the possible trajectories. For convenience,
we scale the heat and work by the temperature of the heat
bath to get dimensionless quantities as βQ and βW with
β = 1/(kBT ). The finite-τ PDF for a quantity Aτ (=βQτ or
βWτ ) can be written as

Pτ (A) = 〈δ(A − Aτ )〉

=
∫ +i∞

−i∞

dλ

2πi
eλA〈e−λAτ 〉, (11)

where Aτ is the trajectory-dependent fluctuating quantity and
〈· · · 〉 denotes an average over all the possible trajectories and
the initial distribution.

It is convenient to introduce a generating function defined
as

gA(λ) ≡ 〈e−λAτ 〉 =
∫ +∞

−∞
dA Pτ (A)e−λA. (12)

Then, the PDF is simply a Fourier transform of the generating
function as in Eq. (11). The GS symmetry in terms of the
generating function can be obtained, using Eq. (3), as

gA(λ) = gA(1 − λ), (13)

where the process indices, F and R, are dropped because the
generating functions for the forward and reverse processes are
equivalent to each other in our constantly moving harmonic
potential. Any energetic quantity like heat or work does not
depend on the sign of the velocity v∗ of the moving harmonic
potential. Furthermore, the free energy difference in Eq. (1) is
always zero (�F = 0), since the shape of the potential energy
does not change except for a translation.

In order to study the influence of an initial condition, we
assume that the particle initially has an equilibrium distribution
at the initial inverse temperature β ′ as

ρin(X0) =
(

β ′k
2π

)d/2

e−(β ′k/2)X2
0 . (14)

B. Generating function for heat

The generating function gQ(λ) for the heat is written as

gQ(λ) = 〈e−λβQτ 〉 = 〈e−λβ(Wτ −�Uτ )〉

=
∫

dXτ e
(λβk/2)(Xτ +�y∗

τ )2
∫

dX0ρin(X0)e−(λβk/2)X2
0

×
∫

D[Xt ]e
∫ τ

0 dtLeλβk
∫ τ

0 dt(v∗·Xt+v∗·�y∗
t ), (15)

where �y∗
t = y∗

t − x∗
t = −v∗τr (1 − e−t/τr ) from Eq. (6) and∫

D[Xt ] denotes the path integral over all the trajectories
connecting X0 and Xτ , with proper normalizations. The
Lagrangian L is given in a prepoint (Ito) representation for
the time discretization [34] as

L = − 1

4D

(
Ẋt + τ−1

r Xt

)2
(16)

for D = (βα)−1.
Noting that L is quadratic in Xt , the generating function is

in fact a succession of a multivariate Gaussian integral over
Xj at discretized times tj = jτ/N (j = 0,1, . . . ,N) with a
large N . We can compute the integral in the N → ∞ limit by
using the method in our previous work [35]. It is convenient
to rewrite the generating function in terms of normalized
Gaussian integrations over {Xj } (0 � j � N ) as

gQ(λ) = cN 〈eλβk(�y∗
τ ·Xτ +v∗·∫ τ

0 dtXt )〉{Xj }, (17)

where the average is defined as

〈O〉{Xj } = 1

N

∫
dXNe(λβk/2)X2

N

∫
dX0ρin(X0)e−(λβk/2)X2

0

×
∫ ∏

j

dXj e
∫ τ

0 dtL O, (18)

with the normalization constant N obtained from 〈1〉{Xj } = 1.
The nonfluctuating deterministic part yields

c = e(λβk/2)(�y∗
τ )2+λβkv∗·∫ τ

0 dt�y∗
t . (19)

As the distribution in the above average is a simple
Gaussian, it is sufficient to consider the cumulants only up
to the second order. It is then straightforward to find

gQ(λ) = cN e[(λβk)2/2]|v∗|2 ∫ τ

0 dt
∫ τ

0 dt ′C(t,t ′)

× e[(λβk)2/2][|�y∗
τ |2C(τ,τ )+2�y∗

τ ·v∗ ∫ τ

0 dtC(τ,t)], (20)
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where C(t,t ′) is a correlation function given by〈
Xa

t X
a′
t ′
〉
{Xi } = δaa′C(t,t ′). (21)

The integrations at the initial and final points in Eq. (18)
include the extra boundary factors e−λβkX2

0/2 and eλβkX2
N /2,

respectively, which modify N and C(t,t ′) significantly. After
some algebra with the initial Boltzmann condition with the
inverse temperature β ′ in Eq. (14), we find

N =
(

β ′

β ′ + λβ

)d/2 (
1

1 − λβkA−1
τ

)d/2

(22)

and

C(t,t ′) = e−(t−t ′)/τr A−1
t ′

1 − λβka−1
τ−t

1 − λβkA−1
τ

for t � t ′, (23)

where

A−1
t = (βk)−1(1 − e−2t/τr ) + (β ′k + λβk)−1e−2t/τr ,

(24)
a−1

τ−t = (βk)−1(1 − e−2(τ−t)/τr ).

Note that At is the Gaussian kernel at time t during the
path integral. Without any extra term, N = 1 and C(t,t ′) =
e−(t−t ′)/τr A−1

t ′ with A−1
t ′ = (βk)−1.

For simplicity, we adopt the same parameter values and
notations in Ref. [29] as

β = 1, k = 1, τr = 1, and |v∗|2 = w. (25)

In these units, w is equal to the average work rate in the
steady state: w = limτ→∞〈Wτ 〉/τ . Putting all together into
Eq. (20), we find the exact expression for gQ(λ), which is quite
complicated and is shown in the Appendix. In the following,
we will evaluate the LDF up to the order of τ−1, so here we
ignore all the exponentially decaying terms like e−τ in gQ(λ).
Then, we get a rather simple form as

gQ(λ) = β ′d/2e−w{τλ(1−λ)−(3/2)λ+(λ2/2)[4−1/(β ′+λ)]}

[(β ′ + λ)(1 − λ)]d/2
. (26)

Note that the GC symmetry in Eq. (13) seems to be preserved
at the level of the large deviation function (exponent) in the
τ → ∞ limit. However, the singular property of the prefactor
coming from the boundary terms does not uphold the GC
symmetry, which causes a significant violation of the GC
symmetry in the heat PDF, even in the τ → ∞ limit.

C. Generating function for work

The generating function gW (λ) for the work is given as

gW (λ) = 〈e−βλWτ 〉
=

∫
dXτ

∫
dX0ρin(X0)

∫
D[Xt ] e

∫ τ

0 dtL

× eλβk
∫ τ

0 dt(v∗·Xt+v∗·�y∗
t ). (27)

Similarly, we get

gW (λ) = eλβkv∗·∫ τ

0 dt�y∗
t e[(λβk)2/2]|v∗|2e

∫ τ

0 dt
∫ τ

0 dt ′C(t,t ′), (28)

with the correlation function

C(t,t ′) = e−(t−t ′)/τr A−1
t ′ for t > t ′, (29)

where

A−1
t = (βk)−1(1 − e−2t/τr ) + (β ′k)−1e−2t/τr . (30)

Using the same convention (β = 1, k = 1, τr = 1, and
|v∗|2 = w) and neglecting the exponentially decaying terms
like e−τ (see the full solution in the Appendix), we find

gW (λ) = e−w[τλ(1−λ)−λ+(λ2/2)(3−1/β ′)]. (31)

The GC symmetry is satisfied only in the τ = ∞ limit, but for
an arbitrary β ′. At β ′ = 1, it holds for any finite τ as expected,
even when the exponentially decaying terms are included in
gW (λ) (see the Appendix).

III. LDF AND FT FOR HEAT

A. Long-time limit

As τ → ∞ in Eq. (26), the generating function gQ(λ)
exhibits the large deviation behavior as

gQ(λ) ∼ e−wτe(λ) (32)

with

e(λ) =
{
λ(1 − λ) for −β ′ < λ < 1,

−∞ otherwise, (33)

where the divergence is evident as λ → 1 from below and −β ′
from above. Each of them is due to the boundary term at the
final and initial points, respectively.

As the PDF Pτ (Q) is given by the Fourier transformation
of gQ(λ) as in Eq. (11), we expect for large τ

Pτ (Q) ∼ e−wτh(p) with p ≡ Q/(wτ ), (34)

where p is a properly scaled variable for the heat. Then, the
LDF h(p) is simply given by the Legendre transform of e(λ),
given by

h(p) = max
λ

[e(λ) − λp]. (35)

We find

h(p) =
⎧⎨
⎩

−p for p < −1,

(p − 1)2/4 for − 1 � p � 2β ′ + 1,

β ′p − β ′(1 + β ′) for p > 2β ′ + 1.

(36)

Note that the nonanalytic behavior of the LDF h(p) originates
from the divergence of e(λ) due to the prefactor singularity in
gQ(λ).

The detailed FT for the heat is examined by

fτ (p) = 1

ωτ
ln

[
Pτ (wτp)

Pτ (−wτp)

]
, (37)

where fτ (−p) = −fτ (p). If the transient detailed FT is
satisfied, then fτ (p) = p for any τ . In the τ → ∞ limit, we
can easily find f∞(p) = −h(p) + h(−p), yielding

f∞(p) =
⎧⎨
⎩

p for 0 � p < 1,

p − (p − 1)2/4 for 1 � p < 2β ′ + 1,

(1 − β ′)p + β ′(1 + β ′) for p � 2β ′ + 1.

(38)
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FIG. 1. (Color online) f∞(p) as in Eq. (38) is plotted as a
function of p and β ′.

Indeed, the detailed FT for the heat holds only for |p| � 1
(region I), outside of which f∞(p) deviates significantly
from the FT relation. Its deviation depends on the initial
temperature β ′ and differs in 1 � |p| < 2β ′ + 1 (region II)
and in |p| � 2β ′ + 1 (region III), as seen in Figs. 1 and 2. It is
interesting to note that the FT is restored for all p in the β ′ = 0
(infinite initial-temperature) limit, where region II disappears
and f∞(p) approaches p in region III. We will be back to this
limit later in this section. The extended FT discussed by van
Zon and Cohen [28,29] is a special case at β ′ = β = 1.

B. Finite-time corrections

It is difficult to compare the results in the τ → ∞ limit with
those in the simulations or experiments, due to huge sampling
errors in the PDF tail representing rare events. In particular,
the FT violation appears in this tail region. It is thus desirable
to estimate finite-time corrections analytically. We want to
evaluate the LDF up to O(τ−1).
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FIG. 2. (Color online) f∞(p) for β ′ = 0, 1/2, 1, and 2.

From Eq. (11), the PDF for the heat Q (=wτp) is written
as

Pτ (wτp) =
∫ +i∞

−i∞
dλφ(λ)e−wτH (λ,p), (39)

with the prefactor

φ(λ) = β ′d/2

2πi[(β ′ + λ)(1 − λ)]d/2
ew[3λ/2−2λ2+λ2/2(β ′+λ)], (40)

and

H (λ,p) = −λp + λ(1 − λ). (41)

The prefactor shows singularities at λ = λ1 = 1 and λ2 = −β ′,
which are simple poles for d = 2, but branch points for
d = 1,3. Later, we choose a branch cut on the real axis of
λ for λ > λ1 and λ < λ2 when d �= 2. In addition, there is an
essential singularity at λ = λ2, which will cause a little more
complication in the following integration.

The integral for large τ can be approximated by the integral
along the steepest descent path passing through a saddle point
in the complex plane of λ. In the conventional saddle-point
approximation, a saddle point λ∗

0(p) is chosen by extremizing
H (λ,p) such as dH/dλ|λ∗

0
= 0, yielding λ∗

0 = (1 − p)/2.
However, the integral may diverge due to the prefactor φ(λ)
when the saddle point approaches one of its singularities.

In this study, we adopt the modified saddle point integral
method [23] and search for the modified saddle points λ∗(p)
by extremizing

S(λ,p) ≡ H (λ,p) − (wτ )−1 ln φ(λ), (42)

with

dS

dλ

∣∣∣∣
λ=λ∗

= 0. (43)

There are multiple saddle points for a given p. However, it
can be shown that there always exists a saddle point λ∗(p)
on the real-λ axis between the two singularities, i.e., λ2 <

λ∗(p) < λ1. This saddle point is τ dependent and sometimes
approaches the singularities asymptotically for large τ . For
−1 < p < 2β ′ + 1, λ∗ approaches the conventional saddle
point λ∗

0, otherwise one of the singularities such as λ1 for
p < −1 and λ2 for p > 2β ′ + 1, respectively.

When the modified saddle point λ∗ is nearby the singu-
larities, the integral along the steepest descent path should
be performed with special care, because it becomes a non-
Gaussian integral, described in detail in the Appendix of
Ref. [23].

Now we present the results for different regions of p as
follows.

1. Central region of the PDF

Sufficiently deep inside of the interval of −1 < p < 2β ′ +
1, the saddle point λ∗ is given by

λ∗ = 1 − p

2
+ O(τ−1), (44)

which approaches λ∗
0 for large τ and is far enough from the

singularities at λ1 and λ2. Thus, one can apply the conventional
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saddle point approximation [see Eq. (A.20) in Ref. [23]], which
yields

Pτ (wτp) = i

[
2π

wτ |H ′′(λ∗
0)|

]1/2

φ(λ∗
0)e−wτH (λ∗

0)

=
√

β ′d

πwτ

2d−1

[(1 + p)(2β ′ + 1 − p)]d/2

× e−wτ [(1−p)2/4]+(3/4)w(1−p)

× e−w(1−p)2[2(1−p)+4β ′−1]/4(2β ′+1−p). (45)

This result is exact up to O(τ−1) for the τ -dependent LDF
defined as

hτ (p) ≡ − 1

wτ
ln Pτ (wτp)

= hc(p) + ln τ

2wτ
− rc(p)

wτ
, (46)

where hc(p) = (1 − p)2/4 and rc(p) is the logarithm of the
O(1) terms in the multiplicative factor and also in the exponent
in Eq. (45). The usual asymptotic LDF in Eq. (36) is obtained
as h(p) = limτ→∞ hτ (p).

2. Left wing of the PDF

The saddle point λ∗ approaches the singularity at λ = λ1

(= 1) from below, in the left side of the central region (p �
−1). Let us write δλ1 = λ∗ − λ1 (<0). For small δλ1 and large
τ , the saddle-point equation (43) is expanded in δλ1 as

−2δλ1 − (p + 1) + d

2wτδλ1
≈ 0. (47)

Its proper solution is

δλ1 = 1

4

[
− (p + 1) −

√
(p + 1)2 + 4d

wτ

]
. (48)

For (p + 1)τ 1/2  −1, Eq. (48) becomes

δλ1 ≈ d

2w(p + 1)
τ−1, (49)

which determines the PDF in the region of p < −1. Note that
the saddle point is already very close to λ1 with a distance of
O(τ−1).

For |p + 1|τ 1/2  1, Eq. (48) becomes

δλ1 ≈ −1

2

√
d

w
τ−1/2, (50)

which determines the PDF in a narrow region around p = −1.
This region vanishes in the τ → ∞ limit. In this case, the
distance between the saddle point and λ1 shrinks more slowly
with a distance of O(τ−1/2).

The steepest descent integration passing through the saddle
point near the singularity becomes problematic, mainly be-
cause the singular prefactor cannot be expanded around the
singularity. However, the integration can be still performed
only with the expansion of the exponent H (λ,p) around the
saddle point. The price to pay is that one should perform
a non-Gaussian integration along the steepest descent path.
The integration results are explicitly given in the Appendix of

Ref. [23] for general power-law singularities. Here, we just
briefly sketch the integration method.

We expand H (λ,p) in powers of δλ1 and use a new variable
v defined as v = 1 + (λ − λ∗)/δλ1. Then, Eq. (39) can be
written as

Pτ (wτp) = C1

∫ 1+i∞

1−i∞
dv

ewτ [(p+1)δλ1v+δλ2
1v

2]

vd/2
, (51)

where

C1 = 1

2πi

β ′d/2(−δλ1)1−d/2

(1 + β ′)d/2
ew[τp−β ′/2(β ′+1)]. (52)

This integral can be simplified by modifying the integral
contour [1 − i∞,1 + i∞] into a composite of two straight
lines of [−i∞, − iε] and [+iε, + i∞] and a semicircle with
an infinitesimally small radius ε to avoid the singular point at
the origin (v = 0). By changing the variable to y as v = iy, the
integration along the two straight lines becomes a real-valued
integral and the contribution from the semicircle contour can be
also done, using the polar coordinate representation. Summing
up these contributions, one can finally come up with a single
real-valued integral expression as in Eq. (A16) of Ref. [23].
Then, it is possible to integrate even the tail part of the PDF
numerically with very high precision.

In this paper, we just present the results only in the two
scaling regimes of (p + 1)τ 1/2  −1 and |p + 1|τ 1/2  1.
In addition, we restrict ourselves to the case of 1 � d < 4 for
simplicity. For (p + 1)τ 1/2  −1, we find

Pτ (wτp) = 2β ′d/2(wτ |p + 1|)(d−2)/2

π (1 + β ′)d/2
�(2 − d/2)

× sin dπ
2

2 − d
ew[τp−β ′/2(β ′+1)], (53)

where the term sin(dπ/2)/(2 − d) goes to π/2 as d → 2. The
τ -dependent LDF is given as

hτ (p) = hl(p) − d − 2

2wτ
ln τ − rl(p)

wτ
, (54)

where hl(p) = −p and rl(p) comes from the O(1) terms.
For |p + 1|τ 1/2  1 (a narrow scaling region between the

center and the left wing), we find

Pτ (wτp) = 2β ′d/2(wτ )(d−2)/4

π (1 + β ′)d/2
�(3/2 − d/4)

× cos dπ
4

2 − d
ew[τp−β ′/2(β ′+1)], (55)

where the term cos(dπ/4)/(2 − d) goes to π/4 as d → 2. The
τ -dependent LDF is

hτ (p) = hl(p) − d − 2

4wτ
ln τ − rl,c(p)

wτ
, (56)

where hl(p) is the same as that in Eq. (54) and rl,c(p) also
comes from the O(1) terms.

3. Right wing of the PDF

In the right side of the central region (p � 2β ′ + 1), the
saddle point approaches the singularity at λ = λ2 (= −β ′).
In this case, we have an additional complication due to the

032117-6



HEAT FLUCTUATIONS AND INITIAL ENSEMBLES PHYSICAL REVIEW E 90, 032117 (2014)

essential singularity in the prefactor. Let us write δλ2 = λ∗ −
λ2 (> 0). The saddle-point equation (43) is expanded in terms
of δλ2 as

−2δλ2 − (p − 1 − 2β ′) + d

2wτδλ2
+ β ′2

2τδλ2
2

≈ 0. (57)

Compared to Eq. (47), it contains a more divergent (fourth)
term for finite β ′ and leads to different scaling behavior of
δλ2. [The case for β ′  (δλ2)1/2 will be discussed in the next
subsection].

For [p − (2β ′ + 1)]τ 1/3 � 1, we get

δλ2 ≈ β ′
√

2[p − (2β ′ + 1)]
τ−1/2, (58)

which determines the PDF in the region of p > 2β ′ + 1.
For |p − (2β ′ + 1)|τ 1/3  1, we get

δλ2 ≈
(

β ′2

4

)1/3

τ−1/3, (59)

which determines the PDF in a narrow region around p =
2β ′ + 1 between the center and the right wing of the PDF.

Similar to the left wing, by expanding H (λ,p) in powers of
δλ2 and using a new variable v = 1 + (λ − λ∗)/δλ2, we find

Pτ (wτp) = C2

∫ 1+i∞

1−i∞
dv

ewτ [(p−2β ′−1)δλ2v+δλ2
2v

2]

vd/2

× ewβ ′2/(2δλ2v), (60)

where

C2 = 1

2πi

β ′d/2δλ
1−d/2
2

(1 + β ′)d/2
ewτ [β ′(1+β ′)−β ′p]e−w[(5/2)β ′+2β ′2]. (61)

Note that the integrand in Eq. (60) has an exponentially
diverging term near v = 0, which makes useless the previous
contour deformation in the left wing in this case. This makes it
difficult to evaluate the integral systematically. Thus, we try to
employ again the saddle point method to evaluate this integral
up to O(τ−1).

First, for [p − (2β ′ + 1)]τ 1/3 � 1, we plug δλ2 given in
Eq. (58) into the integrand of Eq. (60). Then, the integral
without the multiplicative constant C2 can be written as

Ia =
∫ 1+i∞

1−i∞
dv

ewβ ′√τ (p−2β ′−1)/2(v+1/v)+[wβ ′2/2(p−2β ′−1)]v2

vd/2
.

(62)

Since
√

τ (p − 2β ′ − 1) � τ 1/3, one can use the saddle-point
approximation for the integral. The saddle point is approx-
imately determined from d

dv
(v + 1/v) = 0 (the second term

in the exponent is much smaller than the first one), yielding
v∗ ≈ 1. This saddle point is far from the singularity at v = 0,
so the conventional saddle point integral is sufficient. The
curvature proportional to d2

d2v
(v + 1/v)|v=1 = 2 is positive,

so the steepest descent path is coincident with the original
contour. As a result, we find

Ia = i21/4√πewβ ′√2τ (p−2β ′−1)+wβ ′2/2(p−2β ′−1)

(wβ ′)1/2[τ (p − 2β ′ − 1)]1/4
. (63)

Multiplying it by C2, we get

Pτ (wτp) =
√

β ′

πw

2(d−5)/4e−wβ ′[τ (p−β ′−1)−√
2τ (p−2β ′−1)]

(1 + β ′)d/2[τ (p − 2β ′ − 1)](3−d)/4

× e−(wβ ′/2)[5+4β ′−β ′/(p−2β ′−1)]. (64)

The τ -dependent LDF is given as

hτ (p) = hr (p) − β ′√2(p − 2β ′ − 1)√
τ

− d − 3

4wτ
ln τ − rr (p)

wτ
,

(65)

where hr (p) = β ′p − β ′(1 + β ′) and rr (p) comes from the
O(1) terms.

Next, for |p − 2β ′ − 1|τ 1/3  1, δλ2 ∼ τ−1/3 as in
Eq. (59). Again, by the power counting, one can easily simplify
the integral in Eq. (60) without C2 as

Ib =
∫ 1+i∞

1−i∞
dv

ewτδλ2
2v

2+wβ ′2/(2δλ2v)

vd/2
. (66)

A nuisance comes in when we calculate the LDF exactly up to
O(τ−1) [or ln Pτ up to O(1)] because higher-order expansions
are needed for δλ2 in a very narrow region like |p − 2β ′ −
1| ∼ τ−α with 1/3 � α � 2/3. In fact, we need to divide this
region into infinitely many intervals in order to calculate the
finite-time correction to the LDF exactly up to O(τ−1). This
can be done with a straightforward calculation in principle,
but requires a lengthy one, involving high-order calculations
of δλ2 from Eq. (57).

In this paper, we consider only the simplest case of |p −
2β ′ − 1|τ 2/3  1. Then, both terms in the exponent of Eq. (66)
scale as ∼τ 1/3 and the saddle point is determined by d

dv
(v2 +

2/v) = 0, which gives v∗ ≈ 1. The curvature is also positive,
so the steepest path is again coincident with the original. As a
result, we get

Ib = i

√
24/3π

3wτ 1/3β ′4/3
e3wτ 1/3(β ′/2)4/3

. (67)

Multiplying it by C2, we obtain

Pτ (wτp) = 2(d−3)/3τ (d−3)/6β ′d/6

√
3πw(1 + β ′)d/2

e−wβ ′τ (p−β ′−1)

× e3wτ 1/3(β ′/2)4/3−(wβ ′/2)(5+4β ′). (68)

The τ -dependent LDF is

hτ (p) = hr (p) − 3

τ 2/3

(
β ′

2

)4/3

− d − 3

6wτ
ln τ − rr,c(p)

wτ
,

(69)

where hr (p) is the same as that in Eq. (65) and rr,c(p) also
comes from theO(1) terms. An extension to higher dimensions
(d � 4) is straightforward.

4. FT violations

We examine the detailed FT for the heat by varying the
initial temperature β ′. We present fτ (p) defined in Eq. (37)
such that fτ (p) = −hτ (p) + hτ (−p). All the results in this

032117-7



KWANGMOO KIM, CHULAN KWON, AND HYUNGGYU PARK PHYSICAL REVIEW E 90, 032117 (2014)

subsection are summarized into

fτ (p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p + 1
τ

[ 2β ′2p
(2β ′+1−p)(2β ′+1+p) + d

2w
ln (1−p)(2β ′+1+p)

(1+p)(2β ′+1−p)

]
for 0 � p < 1,

p − (1−p)2

4 − d
4wτ

ln τ + rc(p)−rl,c(−p)
wτ

for |p − 1|  τ−1/2,

p − (1−p)2

4 − d−1
2wτ

ln τ + rc(p)−rl (−p)
wτ

for 1 < p < 2β ′ + 1,

(1 − β ′)p + β ′(1 + β ′) + 3
τ 2/3

(
β ′
2

)4/3 − 2d−3
6wτ

ln τ + rr,c(p)−rl (−p)
wτ

for |p − 2β ′ − 1|  τ−2/3,

(1 − β ′)p + β ′(1 + β ′) + β ′
√

2(p−2β ′−1)
τ

− d−1
4wτ

ln τ + rr (p)−rl (−p)
wτ

for p − 2β ′ − 1 � τ−1/3,

(70)

which converge to Eq. (38) for large τ with various finite-time
corrections.

Inside of the region I (|p| < 1), the detailed FT is violated
for finite τ by the amount of O(1/τ ), and the FT is restored
(f∞(p) = p) in the infinite-τ limit. In all other regions, the
FT is violated even in the infinite-τ limit. We present the
figures for fτ (p), Fig. 3 for β ′ = 0.1 and Fig. 4 for β ′ = 2.
They show similar trends to f∞(p) as in Fig. 2. The FT holds
approximately well only in the central region (I).

C. FT in the β ′ → 0 limit

In this subsection, we establish the transient detailed FT
for the heat in general, from the standard stochastic thermody-
namics where the time-integrated quantities are defined at the
level of dynamic trajectories [16,17,36].

A trajectory starting from t = 0 to τ , is denoted by q(t) ≡
{qt ; t ∈ [0,τ ]} with a set of state variables qt . The probability
to find a trajectory q in a given dynamic process can be written
as

P (q) = P0(q0)�(q|q0), (71)

where P0(q0) is the probability distribution of the initial state
q0 and �(q|q0) is the conditional probability for the trajectory
q starting from q0.

We also define the time-reverse trajectory q† with q†(t) =
εq(τ − t) with εq representing the mirrored trajectory with a
parity ε for each state variable [37,38]. This trajectory starts
at the mirrored state of the final state of the original trajectory:
q
†
0 = εqτ . The trajectory probability for q† is similarly

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

f τ
(p

)

p

FIG. 3. (Color online) fτ (p) = 1
wτ

ln Pτ (wτp)
Pτ (−wτp) is drawn for β ′ =

0.1, τ = 20, and d = 3.

written as

P (q†) = P0(q†
0) �(q†|q†

0). (72)

It is well known [16,17] that the heat production for a given
trajectory q is identical to the logarithm of the ratio of two
conditional probabilities as

βQτ [q] = ln
�(q|q0)

�(q†|q†
0)

, (73)

where β is the inverse temperature of the heat bath.
By choosing various initial ensembles for the original

and the time-reverse processes [P0(q0) and P0(q†
0)], one

can derive FT’s for different thermodynamic quantities. For
example, when one chooses the initial distribution of the
time-reverse process as the final distribution of the original
process [P0(q†

0) = Pτ (qτ )], then the total entropy production
summing the change of the Shannon entropy in the system
and the heat production in the heat bath becomes simply a
logarithm of the ratio of two trajectory probabilities such that
�Stotal = ln[P (q)/P (q†)]. Since the �Stotal is written as the
logarithm of the two normalized probability distributions (a
typical property of the relative entropy), the integral FT should
hold for �Stotal for any finite τ and any initial ensemble with
P0(q0) [16,17]. For the transient detailed FT, we need the
so-called involution condition, which requires the steady-state
initial ensemble.

It is also well known that the choice of the equilibrium
Boltzmann ensembles as the initial ensembles for both the
original and time-reverse processes yields the transient integral

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-8 -6 -4 -2  0  2  4  6  8

f τ
(p

)

p

FIG. 4. (Color online) fτ (p) is drawn for β ′ = 2, τ = 20, and
d = 3.
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and detailed FT’s for the work, where the involution condition
is automatically satisfied with this choice.

We can also derive the FT for the heat in a similar manner by
choosing the uniform (state-independent) distributions as the
initial distributions for both processes. Then, the logarithm
of the ratio of trajectory probabilities is simply the heat
production as in Eq. (73), due to the cancellation of P0(q0)
and P0(q†

0). Since these initial distributions are obviously
involutory to each other, not only the integral but also the
detailed FT should hold for any finite τ . Even though the
uniform distribution cannot be realized in the infinite-state
space, one may consider it as the infinite-temperature (β ′ → 0)
limit of the Boltzmann distribution.

In the τ → ∞ limit, we have already shown that the
detailed FT is satisfied by taking the β ′ → 0 limit as in Eq.
(38). However, the finite-time corrections in Eq. (70) seem to
indicate that the β ′ → 0 limit does not restore the FT for finite
τ . This suggests the noncommutativity between the τ → ∞
limit and the β ′ → 0 limit, which indeed turns out to be true.

All the complications come from the calculation of the PDF
in the right wing. The saddle point equation in Eq. (57) has
the β ′-dependent divergent (fourth) term. In the case that β ′ is
small and approaches zero for large τ such that β ′  (δλ2)1/2,
this fourth term can be ignored with respect to the third term.
Then, all the subsequent calculations are very similar to those
for the left wing of the PDF. The results are summarized below.

For (p − 1)τ 1/2 � 1, δλ2 ≈ d
2w(p−1)τ

−1 and

hτ (p) = hr (p) − d − 2

2wτ
ln τ − r̃r (p)

wτ
, (74)

with hr (p) = β ′p − β ′(1 + β ′). Note that r̃r (p) = rl(−p) in
Eq. (54) for β ′  (δλ2)1/2.

For |p − 1|τ 1/2  1, δλ2 ≈ 1
2

√
d/w τ−1/2 and

hτ (p) = hr (p) − d − 2

4wτ
ln τ − r̃r,c(p)

wτ
, (75)

where r̃r,c is a p-independent constant and equal to rl,c in
Eq. (56) for β ′  (δλ2)1/2. In both cases, δλ2 decays with τ ;
so does β ′.

In the calculation of fτ = −hτ (p) + hτ (−p), nice cancel-
lations occur between the finite-time correction terms up to
O(τ−1), and the FT is fully restored in the region I (|p| < 1).
However, in the other regions, we still have an extra term such
as in fτ (p) = −hr (p) + hl(−p) ≈ p + β ′(1 − p). This extra
term may still be bigger than O(τ−1) with the τ -dependent β ′,
satisfying the condition β ′  (δλ2)1/2. Therefore, the full FT
for finite τ should be restored only in the β ′ → 0 limit before
any large-τ limit is taken.

IV. LDF AND FT FOR WORK

The generating function gW (λ) for the work is Gaussian
in λ without any singularity. Thus, its Fourier integration in
Eq. (11) can be evaluated exactly. Using a scaled variable for
the work p̃ ≡ W/(wτ ), we find an exact PDF including all the
exponentially decaying terms as

Pτ (wτp̃) = e−w[τ (p̃−1)+1−α]2/2[2τ−3+1/β ′+αb(α)]

{2πw[2τ − 3 + 1/β ′ + αb(α)]}1/2
, (76)

where the exact generating function in Eq. (A7) was integrated
with α = e−τ and b(α) = 2(2 − 1/β ′) − α(1 − 1/β ′).

Then, the τ -dependent LDF is simply given by hτ (p̃) =
−(wτ )−1 ln Pτ (wτp̃) as

hτ (p̃) = hW (p̃) + ln τ

2wτ
− rW (p̃)

wτ
, (77)

where hW (p̃) = (p̃ − 1)2/4 and rW (p̃) comes from the O(1)
terms. The FT-examining function fτ (p̃) becomes

fτ (p̃) = 2p̃(τ − 1 + α)

2τ − 3 + 1/β ′ + αb(α)
. (78)

At β ′ = 1, b(α) = 2 and fτ (p̃) = p̃ exactly for any τ . Thus,
the transient detailed FT holds exactly at β ′ = 1. For β ′ �= 1,
fτ (p̃) ≈ p̃ + O(τ−1) for large τ , so the detailed FT is satisfied
only in the τ → ∞ limit.

V. DISCUSSION

The memory of the initial state is shown not to vanish,
but to remain in the rare events for the time-accumulated
quantities such as heat and work. This interesting phenomenon
is manifested in the form of PDF particularly in the tail region
corresponding to the rare events. The FT for finite τ depends
on the initial ensemble. For example, the work satisfies
the transient detailed FT only with an initial equilibrium
Boltzmann distribution, while the heat does only with an
initial uniform distribution. Common sense suggests that the
heat and work satisfy the detailed FT’s simultaneously in the
long-time limit, since both quantities are equivalent to each
other on average. However, it turns out that the FT’s for the
heat and work in the long-time limit deviate in different ways.
In this limit, the FT for work is satisfied with any initial
ensemble, while the FT for heat is not valid except for the
uniform initial ensemble. This discrepancy originates from
the unboundedness of the (potential) energy fluctuations �U

in the heat Q = W − �U .
In this paper, we investigate the PDF’s for the work and

heat generated in the Brownian motion in a sliding harmonic
potential with a general initial ensemble characterized by
the Boltzmann distribution with the inverse temperature β ′,
generally different from the inverse temperature β of the
reservoir. The heat PDF is calculated analytically up toO(τ−1)
with the measuring time τ and the work PDF is obtained
exactly for any finite τ .

We explicitly show that the transient detailed FT holds for
the work only at β ′ = β, set to unity, and for the heat only
at β ′ = 0, as expected. On the other hand, the detailed FT in
the long-time limit holds at any β ′ for the work, but only at
β ′ = 0 for the heat (one should be careful about the order of the
two limiting procedures of β ′ → 0 and τ → ∞). This is due
to the presence of singularities in the boundary terms for the
heat, which represents the persistence of the initial memory.
Physically, it can be argued that the highly energetic particles
(high U ) in the initial ensemble dominantly contribute to the
events of positive large heat production (Q � 1) by losing its
energy through dissipation [14]. This is why the right wing of
the heat PDF depends strongly on the initial temperature β ′,
but its left wing depends on it only very weakly. It is interesting
to note that there is no threshold value of β ′ for the dominance
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of the initial ensemble, in contrast to other cases where a finite
critical threshold is found [14].

It may be an interesting task to find a systematic deviation
of the FT for time-integrated quantities with an arbitrary
initial ensemble, for example, by generalizing the recent
study on the relation of heat fluctuations in Ref. [15]. It
is also interesting to apply our method to other solvable
nonequilibrium systems, such as a linear diffusion system
with a nonconservative force [35,39] and a motion under a
breathing harmonic potential [40].
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APPENDIX: GENERATING FUNCTIONS

The exact formula for the generating function for the heat
is given by

gQ(λ) =
(

β ′

β ′ + λ

)d/2 1

Cd/2
e−wGQ(λ,τ ) (A1)

with

GQ(λ,τ ) = τλ(1 − λ) − 3

2
λ + λ2

2C
(1 − λ)(4 − B)

+α

[
2λ − 2λ2

C
(1 − λ)(2 − B)

]

+α2

{
−λ

2
+ λ2

2C
[7 − 6B − (4 − 3B)λ]

}

−α3 2λ2

C
(1 − B) + α4 λ2

2C
(1 − B), (A2)

where

B = (β ′ + λ)−1, C = 1 − λ + α2λ(1 − B), α = e−τ .

(A3)

By setting α = 0 (in the long-time limit), we get Eq. (26) in
Sec. II B. At β ′ = β = 1, we find

gQ(λ) = e−wλ(1−λ)[τ+[(1−α)/C̃][2λ2(1−α)−(1/2)(3−α)]]

C̃d/2
, (A4)

with C̃ = 1 − λ2 + λ2α2. Note that our result is slightly
different from that in Ref. [29].

In the limit of β ′ = 0, gQ(λ) vanishes as ∼β ′d/2. However,
note that its amplitude in this limit

gQ(λ) β ′−d/2 = e−wλ(1−λ)[τ−2(1−α)/(1+α)]

[λ(1 − λ)(1 − α2)]d/2
, (A5)

perfectly satisfies the GC symmetry for any α (a finite time).
The generating function for the work is given by

gW (λ) = e−wGW (λ,τ ) (A6)

with

GW (λ,τ ) = τλ(1 − λ) − λ + λ2

2

(
3 − 1

β ′

)

+α

[
λ − λ2

(
2 − 1

β ′

)]
+ α2 λ2

2

(
1 − 1

β ′

)
.

(A7)

By setting α = 0, we get Eq. (31) in Sec. II C. At β ′ = β = 1,
we find

gW (λ) = e−wλ(1−λ)(τ−1+α), (A8)

which agrees with the result in Ref. [29] and satisfies perfectly
the GC symmetry for any α (a finite time).
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