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An active environment is a reservoir containing active materials, such as bacteria and Janus particles. Given
the self-propelled motion of these materials, powered by chemical energy, an active environment has unique,
nonequilibrium environmental noise. Recently, studies on engines that harvest energy from active environments
have attracted a great deal of attention because the theoretical and experimental findings indicate that these
engines outperform conventional ones. Studies have explored the features of active environments essential for
outperformance, such as the non-Gaussian or non-Markovian nature of the active noise. We systematically study
the effects of the non-Gaussianity and non-Markovianity of active noise on engine performance. We show that
non-Gaussianity is irrelevant to the performance of an engine driven by any linear force (including a harmonic
trap) regardless of time dependency, whereas non-Markovianity is relevant. However, for a system driven by
a general nonlinear force, both non-Gaussianity and non-Markovianity enhance engine performance. Also, the
memory effect of an active reservoir should be considered when fabricating a cyclic engine.
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I. INTRODUCTION

Thermodynamics is the study of open systems, i.e., sys-
tems that are not isolated, but instead interact with the
environment. Thus, the dynamics of an open system are sig-
nificantly affected by the characteristics of the environment.
For conventional thermodynamic problems, the environment
has been assumed to be in thermal equilibrium. In such
a single equilibrium environment, fluctuations of the sys-
tem observable and energy dissipation are regulated by
the fluctuation-dissipation theorem (FDT) [1]. Using the
Langevin terminology, for simplicity the equilibrium noise
is assumed to be Gaussian and typically Markovian. Recent
important discoveries in thermodynamics, such as fluctuation
theorems [2–8] and thermodynamic uncertainty relationships
[9–15], were made with the environment assumed to be in
equilibrium.

Over the last two decades, thermodynamics has been re-
visited using active environments, i.e., reservoirs containing
active particles such as bacteria and Janus particles [16–20].
As the active particles are self-propelled by chemical energy,
an active reservoir is intrinsically in a nonequilibrium state. In
an active environment, injection and dissipation of energy are
uncorrelated because the former is supplied by the conversion
of some form of stored energy, while the latter results from
the friction with the surrounding medium [21]. Consequently,
fluctuation and dissipation are not constrained by the conven-
tional FDT. Usually, the noise can be either non-Gaussian or
non-Markovian with the FDT violation [16,19,22,23]. This
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has provoked vigorous debate on how to establish the thermo-
dynamics of a system in contact with an active environment; it
is necessary to appropriately define key thermodynamic quan-
tities including heat, entropy, and temperature [20,21,24,25].

The nonequilibrium characteristics of an active environ-
ment make it possible to design novel microscopic motors or
engines. As an example, the autonomous engine operates in
the absence of an external driving force. When an asymmetric
passive (i.e., not self-propelled) object interacts with an active
reservoir, a directional current is generated by the asymmetric
passive object or active particles [26–30]. This is unprece-
dented; the unidirectional motion can be exploited to design
a microscopic motor that works in an active environment.
Recently, it was shown that the reverse was also possible:
an asymmetric active particle immersed in an equilibrium
reservoir can produce a unidirectional current [31–33].

The next example, which is our main focus in this study, is
an engine operated by an external driving force. In Ref. [19],
a microscopic Stirling engine was realized in a bacterial reser-
voir experimentally. The performance was better than that of a
conventional engine working in an equilibrium reservoir. This
discovery prompted several studies on the cause of the outper-
formance. It was suggested in Ref. [19] that the non-Gaussian
nature of the active noise might explain the performance en-
hancement, but it was later shown that non-Gaussianity per
se did not affect the performance of the Stirling engine [34].
It was also shown that the efficiency of a Brownian heat
engine was enhanced by non-Markovian but Gaussian active
noise [35].

These studies raise an obvious question: which features of
active noise are relevant to engine performance enhancement
in a general setting? We systematically study the effect of
the non-Markovianity and non-Gaussianity of general active
environmental noise on engine performance within active
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reservoirs. It is easy to show that non-Gaussianity is irrelevant
to engine performance in a system driven by any linear force
(including a harmonic trap) regardless of time dependency.
This is consistent with the result of Ref. [34]; thus, non-
Markovianity explains the outperformance noted in Ref. [19].
If there is a nonharmonic potential (or nonlinear external
force), non-Gaussianity also affects engine performance. We
calculated the work and heat of an engine driven by general
external forces with various types of active noise. We also
studied cyclic engines within active reservoirs that change
periodically, and found that the memory effect of an active
reservoir should be considered when investigating engine per-
formance.

This paper is organized as follows. In Sec. II, we review the
various active-noise models; these include shot noise, colored-
Poisson noise, the active Ornstein-Uhlenbeck process, and
active Brownian particle models. In Sec. III, we discuss the
first law of thermodynamics for active systems. In Sec. IV, the
effects of non-Markovianity and non-Gaussianity on engine
performance are discussed when the engine is driven by a
linear force (a harmonic potential). In Sec. V, we study the
effect of a nonlinear force. We conclude the paper in Sec. VI.

II. VARIOUS MODELS FOR ACTIVE NOISE

We consider a N-dimensional Brownian particle (or one-
dimensional N particles) immersed in active reservoirs. The
stochastic motion of the Brownian particle is induced by the
interaction with the active reservoirs. This stochastic motion
and the interaction can be phenomenologically described by
the following overdamped Langevin equation [21,24,34,35]:

γiẋi = fi(x, t ) + γiζi (i = 1, . . . , N ), (1)

where x = (x1, . . . , xN )T is the position of the particle, γi is a
dissipation coefficient, fi(x, t ) is an external force at time t ,
and ζi describes a random noise from an active reservoir.

Depending on the statistics of ζi, various “active-noise”
models exist [16,21,24,34–38]. One common feature of the
models is that the autocorrelation function of the noise ex-
hibits an exponentially decaying behavior in time difference
as follows:

〈ζi(t )ζ j (t
′)〉 = δi jγ

−2
i

Di

τi
e− |t−t ′ |

τi , (2)

where τi is the persistence time, the average noise is given
by 〈ζi(t )〉 = 0, and Di is the noise strength. Note that the
diffusion constant corresponds to γ −2

i Di in this notation. Non-
Markovianity is quantified by finite τi and the δ-correlated
white noise is obtained in the τi → 0 limit. Note that the
FDT is not satisfied for finite τi in Eq. (1), in contrast to
the standard generalized Langevin equation, thus yielding a
nonequilibrium steady state.

Nonequilibrium noise is characterized not only by non-
Markovianity, but also by non-Gaussianity. Non-Gaussianity
of a noise can be simply checked from nonzero higher-
order (more than second-order) cumulants of a noise. In the
following sections, we introduce four different active-noise
models: shot noise, colored-Poisson noise, active Ornstein-
Uhlenbeck process (AOUP), and active Brownian particle
(ABP) noise models, which exhibit distinct features in terms

of non-Markovianity and non-Gaussianity. For example, the
AOUP noise is Gaussian, while the ABP is non-Gaussian. The
colored-Poisson noise is neither Gaussian nor Markovian, but
their nonequilibrium features can be controlled systematically
by varying noise parameters. The shot noise is obtained in the
zero-persistence time limit of the colored-Poisson noise.

It is worthwhile to mention that there may be addi-
tional noises originated from passive particles such as water
molecules in the surrounding medium. In this more realistic
situation, one should add a Gaussian white noise to Eq. (1),
as done in Refs. [25,36]. However, such an addition does not
change our main conclusion, thus here we focus on the case
with only an active noise for simplicity.

In the following sections, we present models for active
noise, and we assume that the noise does not depend on the
system state.

A. Shot- (white-Poisson) noise model

First, we consider the “shot”-noise or “white Poisson”-
noise model [16,34]. In this model, ζi(t ) is given by

ζi(t ) =
∑

n

ci,nδ(t − ti,n), (3)

where ci,n is the noise magnitude determined by a given dis-
tribution pi(c), and ti,n is the nth event time of the Poisson
process with rate λi. Note that the time interval of successive
Poisson events (�ti,n = ti,n+1 − ti,n) obeys the distribution
P(�t ) = λe−λ�t . The δ-function-type impulse of this noise
describes a sequence of microscopic discrete events such as
random collisions of bacteria [16,36] without any memory in
the first approximation [34]. Thus, this shot noise is Marko-
vian with τi → 0 in Eq. (2) and its autocorrelation function is
given by [16,34]

〈ζi(t )ζ j (t
′)〉 = δi jλi〈c2〉piδ(t − t ′), (4)

where 〈·〉pi denotes the average over the distribution pi(c)
with 〈ci,n〉pi = 0. Though Eq. (4) shows the same δ-correlated
property as that of the equilibrium white noise, the shot noise
leads to a nonequilibrium steady state, as shown in Fig. 1(b),
due to the discrete nature of the noise. The equilibrium (Gaus-
sian white) limit is obtained by taking the λi → ∞ limit while
keeping the noise strength constant as λi〈c2〉pi = 2Di/γ

2
i [16].

In this limit, we can infer an effective temperature from the
noise strength as Di/γi ≡ Ti in the Boltzmann constant unit
by setting kB = 1. For finite λi and 〈c2〉pi , the shot noise is
Markovian, but non-Gaussian, which can be checked from the
nonzero fourth cumulant of the noise [34].

B. Colored-Poisson noise model

The colored-Poisson noise is a generalized version of the
white-Poisson noise [36]. In this model, ζi(t ) is given by

ζi(t ) =
∑

n

ci,n

τi
H (t − ti,n)e− t−ti,n

τi , (5)

where ci,n and ti,n are defined in Eq. (3), and H (t ) is the Heavi-
side step function: H (t ) = 1 for t > 0, 0 for t < 0, and 1/2 at
t = 0. With this noise, each nth impulse from the collision
at time ti,n exponentially decays with the finite persistence

024130-2



EFFECTS OF THE NON-MARKOVIANITY AND … PHYSICAL REVIEW E 105, 024130 (2022)

10-3

10-2

10-1

100

−2 0 2

P
(x

)

x

(a) Equilibrium

−2 0 2
x

(b) Shot

−2 0 2
x

(c) colored Poisson

−2 0 2
x

(d) AOUP

−2 0 2
x

(e) ABP

FIG. 1. Steady-state distributions of a one-dimensional particle trapped in a harmonic potential for various environmental noises. For all
distributions, 〈x2〉 = 1/4. The solid curve denotes the Gaussian distribution. The distributions are non-Gaussian except for the equilibrium and
the AOUP noise.

time τi. Thus, this noise is non-Markovian and the Markovian
white-Poisson noise is obtained in the τi → 0 limit. The noise
autocorrelation function is

〈ζi(t )ζ j (t
′)〉 = δi j

λi〈c2〉pi

2τi
e− |t−t ′ |

τi , (6)

which is explicitly derived in Appendix A 1. By comparing
Eq. (6) with Eq. (2), we can identify Di = γ 2

i λi〈c2〉pi/2.
The non-Gaussianity of this noise can be checked from the

calculation of the fourth cumulant of the noise. For a Pois-
son noise ζ (t ) with the form ζ (t ) = ∑

n cnH (t − tn)h(t − tn),
where h(t ) is an arbitrary function of time, its fourth cumulant
is given by [39]

〈〈ζ (t )4〉〉 = λ〈c4〉p

∫ t

0
dt ′ [h(t − t ′)]4, (7)

where 〈〈·〉〉 stands for the cumulant average. Thus, the fourth
cumulant of the colored-Poisson noise with h(t ) = e−t/τ /τ is
given by λ〈c4〉pi/(4τ 3), which may serve as a measure for
the non-Gaussianity of the noise. Hence, the colored-Poisson
noise model provides a systematic way to study the effect of
the non-Markovianity and the non-Gaussianity of an active
noise by controlling the two parameters, λ and τ .

C. Active Ornstein-Uhlenbeck process (AOUP) model

In this model, the noise ζi(t ) satisfies the following
Ornstein-Uhlenbeck process:

τiζ̇i = −ζi +
√

2Di/γ
2
i ξi, (8)

where ξi is a Gaussian white noise with zero mean and unit
variance. It is straightforward to see that the steady-state dis-
tribution of ζi is Gaussian from Eq. (8). Thus, the AOUP noise
is Gaussian. Using the general solution of Eq. (8), ζi(t ) =
e−t/τiζi(0) +

√
2Di/γ

2
i τ−1

i

∫ t
0 e−(t−s)/τiξi(s)ds, the noise auto-

correlation can be calculated as

〈ζi(t )ζ j (t
′)〉 = e

− t
τi

− t ′
τ j ζi(0)ζ j (0)

+ δi jγ
−2
i

Di

τi
(e− |t−t ′ |

τi − e− t+t ′
τi ). (9)

In the steady state where t, t ′ 	 τi, τ j , the autocorrelation
function takes the same form in Eq. (2). Thus, the AOUP noise

is non-Markovian, but Gaussian. The Gaussian white noise is
obtained in the τi → 0 limit.

D. Active Brownian particle (ABP) model

Consider a self-propelled particle moving in a two-
dimensional space. The ABP model describes the motion of
the active particle with the self-propulsion speed v0 [37,38].
Its motion can be described by the following overdamped
Langevin equation:

γ ẋ = γ v0eθ + f (x, t ) +
√

2γ T ξ, θ̇ =
√

2Dθ ξθ , (10)

where eθ = (cos θ, sin θ )T is the unit self-propulsion vector,
ξ = (ξ1, ξ2)T and ξθ are the Gaussian white noises with zero
mean and unit variance, f (x, t ) = [ f1(x, t ), f2(x, t )]T is an
external force, and Dθ is the noise strength for the rotational
angle θ . If we ignore the equilibrium noise

√
2γ T ξ, regard the

self-propulsion term as an active noise ζ ≡ v0eθ , and integrate
the angular dynamics, we obtain the same equation as Eq. (1).
Then the noise autocorrelation function becomes [37]

〈ζi(t )ζ j (t
′)〉θ = δi j

v2
0

2
e− |t2−t1 |

τ , (11)

where τ = 1/Dθ and 〈·〉θ denotes an average over the θ vari-
able. By comparing Eq. (11) with Eq. (2), we can identify
D = γ 2v2

0τ/2. For completeness, we present the derivation of
Eq. (11) in Appendix A 2. Note that the noise autocorrelation
can also be calculated in three dimensions [38].

E. Steady states of various active-noise models

Different active-noise models yield different steady states.
To illustrate the difference, we perform numerical simula-
tions of the one-dimensional Brownian motion trapped in
a harmonic potential, f (x) = −kx, with k = 1 and γ = 1,
described by Eq. (1). From the simulations, we obtain the
steady-state probability distribution of x for various noise
models from 106 data, which are shown in Fig. 1. For all these
simulations, we set the parameters for the second moment of
x as 〈x2〉 = 1/4. Parameters used for these simulations are as
follows: λ = 1/2 and 〈c2〉p = 1 are used for the shot-noise
model, τ = 1, λ = 1, and 〈c2〉p = 1 are used for the colored-
Poisson noise model, D = 1/2 and τ = 1 are used for the
AOUP model, and v0 = 1 and τ = 1 are used for the ABP
model.
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Figure 1(a) shows the steady-state distribution when ζ is
an equilibrium noise, i.e., the Gaussian white noise satisfying
〈ζ (t )ζ (t ′)〉 = 2Dδ(t − t ′) with temperature T = D/γ = 1/4.
As expected, the distribution is exactly Gaussian. The steady-
state distribution of the shot-noise model is evidently deviated
from the Gaussian, as shown in Fig. 1(b), even though the
noise autocorrelation function and the second moment of x
are the same as those of the equilibrium noise. Figure 1(c)
shows the steady-state distribution of the colored-Poisson
noise model, which is also non-Gaussian. Different from the
other active-noise models, the AOUP model results in the
Gaussian distribution, as shown in Fig. 1(d), which is due to
the Gaussianity of the noise. Finally, Fig. 1(e) is the steady-
state distribution of the two-dimensional ABP model along
the x direction. The distribution has two symmetric peaks,
which have usually been observed in the ABP systems [40].

III. EXTENDED THERMODYNAMIC FIRST LAW

To investigate the thermodynamic properties of active sys-
tems, it is important to understand the thermodynamic laws
governing the dynamics. In this section, we discuss the ther-
modynamic first law of active systems, which is essentially the
energy conservation relation between work, heat, and system
energy. Before going into active systems, we first briefly re-
view the thermodynamic first law for stochastic systems with
equilibrium baths.

Consider an overdamped Brownian particle driven by
a nonconservative force fnc(x) and a conservative force
−∇U (x, λ), where λ = λ(t ) denotes a time-dependent proto-
col. The ith degree of freedom of the particle is in contact with
the equilibrium bath with temperature Ti. Then, its equation of
motion is


ẋ = −∇U (x, λ) + fnc(x) + 
ζ, (12)

where the dissipation matrix 
i j = δi jγi and ζ is Gaussian
white noise satisfying 〈ζi(t )ζ j (t ′)〉 = δi j2Tiγ

−1
i δ(t − t ′). Mul-

tiplying ẋdt to Eq. (12) and using the chain rule dU = ∇U ◦
ẋdt + ∂λU λ̇dt , we obtain the following thermodynamic first
law [41]:

dU = dW p + dW nc +
∑

i

dQi, (13)

where heat dQi from bath i, work done by the protocol dW p

(called as Jarzynski work [3]), and work done by the noncon-
servative force dW nc are defined as

dQi = (−γiẋi + γiζi ) ◦ ẋidt, (14a)

dW p = ∂λU λ̇dt, (14b)

dW nc = ẋT ◦ fnc(x)dt . (14c)

Here, ◦ denotes the Stratonovich product.
For the thermodynamic first law of active systems being

set up, the work, heat, and system energy should be identified
first. Defining the system energy and work are straightfor-
ward: The same definitions, Eqs. (13), (14b), and (14c), are
acceptable for an active system without ambiguity. The stan-
dard definition for “heat” is simply given by Eq. (14a), even
for the active noise [34,35,42], which represents the work
done by the general environment (energy transfer from the

active reservoir). One may also consider the “housekeeping”
heat for maintaining the nonequilibrium steady state of an
active bath and thus introduce an extra dynamics of active
particles in the active bath to calculate the housekeeping heat
dissipation [43]. Though this approach can deal with some
part of the dissipation of active particles, full dissipation
produced from complicated chemical and mechanical oper-
ations occurring inside and around active particles still cannot
be taken into consideration. Moreover, the simple thermody-
namic first law in Eq. (13) is not applicable to this approach.
Here, we take the standard definition of heat in Eq. (14a)
for simplicity and generality. Note that the thermodynamic
second law does not need to hold for this standard definition
of heat since full dissipation is not taken into consideration.

IV. ENGINE WITH A LINEAR FORCE

A. Work and heat for a linear system

First, we consider the case where the total mechanical force
is given as a linear force in position such as

f (x) = −
A(t ) x, (15)

where A(t ) is a time-dependent force matrix. Then, Eq. (1)
can be written as

ẋ = −A(t ) x + ζ, (16)

where ζ = (ζ1, . . . , ζN )T. Note that the force matrix can be
divided into the conservative and nonconservative parts as
A(t ) = Ac(t ) + Anc(t ). The general solution of Eq. (16) is

x(t ) = K(t,0)x(0) +
∫ t

0
ds K(t,s)ζ(s), (17)

with the propagator K(b,a) = exp[− ∫ b
a dt A(t )]. As the active

noise ζ is non-Markovian in general, we should be careful
in preparing the initial condition. Here we consider the sit-
uation that the system is prepared independently from the
environment with an arbitrary distribution for t < 0, and then
the system is affected by the environmental noise for t � 0.
Therefore, there exists no correlation between the initial posi-
tion x(0) and the initial noise ζ(0), i.e., 〈xT(0)ζ(0)〉 = 0, and
then, obviously, 〈xT(0)ζ(t )〉 = 0 for t > 0 with the assump-
tion that ζ is independent of position.

The covariance (correlation) matrix of xi(t ) and x j (t ′) can
be calculated, using Eq. (17), as

〈xi(t )x j (t
′)〉 =

∑
kl

K(t,0)
ik K(t ′,0)

jl 〈xk (0)xl (0)〉

+
∑

kl

∫ t

0
ds

∫ t ′

0
ds′K(t,s)

ik K(t ′,s′ )
jl 〈ζk (s)ζl (s

′)〉,

(18)

and the covariance matrix of xi(t ) and ζ j (t ′) becomes

〈xi(t )ζ j (t
′)〉 =

∑
k

∫ t

0
ds K(t,s)

ik 〈ζk (s)ζ j (t
′)〉. (19)

Equations (18) and (19) show that the covariance function
depends only on the two-point correlation function of noise,
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i.e., 〈ζi(t )ζ j (t ′)〉, but not on the higher-order multipoint corre-
lations. This means that the covariance function will remain
the same even for different active-noise models, as long as
their two-point correlations are the same.

We now calculate the average work and heat generated
by a linear force in the overdamped dynamics. First, from
Eq. (14c), the work done by the nonconservative force can
be written as

〈W nc(t )〉 = −
∫ t

0
ds 〈ẋT(s) ◦ 
Anc(s)x(s)〉

= −
∫ t

0
ds 〈(−A(s)x(s) + ζ(s))T ◦ 
Anc(s)x(s)〉

=
∫ t

0
ds

⎛
⎝∑

i, j,k

AT
i j (s)γ jAnc

jk (s)〈xi(s)xk (s)〉

−
∑

i j

γiAnc
i j (s)〈ζi(s) ◦ x j (s)〉

)
. (20)

Note that the Stratonovich product between state variables
such as xi can be replaced by the Ito product (no extra
symbol), but cannot be ignored when the δ-correlated noise
ζi is involved. For example, in case of the shot noise in
Eq. (4), we can easily find that 〈ζi(s) ◦ x j (s)〉 = 〈ζi(s)x j (s)〉 +
δi jλi〈c2〉pi/2. For the non-Markovian noise with a finite per-
sistence time τ and without including a δ-correlated noise, the
Stratonovich product is the same as the Ito product.

Second, for the Jarzynski work, we define the potential as
U (x, λ) = xTUx satisfying 
Ac(t )x = ∇U (x, λ). Then, from
Eq. (14b), the Jarzynski work is given by

〈W p(t )〉 =
∫ t

0
dsλ̇〈∂λU 〉 =

∫ t

0
ds λ̇

∑
i j

∂λUi j (λ)〈xi(s)x j (s)〉.

(21)

Finally, from Eq. (14a), the heat is expressed as

〈Qi(t )〉 =
∫ t

0
ds 〈ẋi(s) ◦ γiAi j (s)x j (s)〉

=
∫ t

0
ds

⎛
⎝−

∑
j,k

γiAik (s)Ai j (s)〈x j (s)xk (s)〉

+
∑

j

γiAi j (s)〈ζi(s) ◦ x j (s)〉
)

. (22)

As shown in Eqs. (20)–(22), the average work and heat are
fully determined by the covariance matrices, and thus by the
two-point correlation function 〈ζi(t )ζ j (t ′)〉 only. Therefore,
for a linear system, the engine performance is not affected by
the non-Gaussianity of a noise which is embedded in higher-
order multipoint (more than two) correlation functions, while
it depends on the non-Markovianity characterized by the per-
sistence time τ defining the two-point correlation function.
We finally note that though average values of work and heat
are independent of model specifics as long as the two-point
correlations of noises are the same, higher-order quantities
such as skewness of the distribution and fluctuation of work
and heat are model dependent [44].

B. Constant reservoirs

In this section, we study an engine driven by a linear force
in contact with the (active) reservoirs, of which the noises
have the same noise-autocorrelation form in Eq. (2) with two
constant parameters: noise strength Di and persistence time τi.
Various noises in Sec. II are considered with the same values
of Di and τi with the same initial state of the engine. Thus,
we expect the same values for work and heat, independent of
models from Eqs. (20)–(22).

First, we consider a two-dimensional Brownian particle
trapped in a harmonic potential and driven by a nonconser-
vative rotational force. This setup is a variant of the Brownian
gyrator [45]. The dynamics is described by Eq. (16) with 


and time-independent Ac and Anc given by


 =
(

γ1 0
0 γ2

)
, Ac = 
−1

(
k 0
0 k

)
,

Anc = 
−1

(
0 −ε

−δ 0

)
. (23)

The position coordinates x1 and x2 are connected to reservoirs
1 and 2 with noises ζ1 and ζ2, respectively. In this example,
we take reservoir 1 as an equilibrium reservoir with temper-
ature T1, thus 〈ζ1(t )ζ1(t ′)〉 = 2T1γ

−1
1 δ(t − t ′). Reservoir 2 is

an active reservoir of which the noise satisfies 〈ζ2(t )ζ2(t ′)〉 =
D2τ

−1
2 γ −2

2 exp(−|t − t ′|/τ2). Note that reservoir 2 can also be
an equilibrium reservoir in the τ2 → 0 limit with temperature
T2 = D2/γ2. In this setup, we can obtain the analytic expres-
sions for the average rates of the work and heat in the steady
state from Eqs. (20) and (22). The results are [35]

Ẇ = (δ − ε)〈x1ẋ2〉ss, Q̇1 = ε〈x1ẋ2〉ss, Q̇2 = −δ〈x1ẋ2〉ss,

(24)

where 〈·〉ss denotes the steady-state average and 〈x1ẋ2〉ss is
given by

〈x1ẋ2〉ss = 1

k(γ1 + γ2)

(
δT1 − εD2

G2B

)
, (25)

with B = 1 + kγ2τ2/(γ1G2) + (k2 − δε)τ 2
2 /(γ1G2) and

G2 = γ2 + kτ2.
Figure 2 shows the average rates of work and heat in the

steady state for various models as a function of D2 for τ2 = 0,
0.5, and 1.0. For these simulations, we set k = γ1 = γ2 = 1,
T1 = 2, ε = 0.5, and δ = 0.4. Other parameters used for these
simulations are as follows: λ2 is varied from 0.2 to 4 with
〈c2〉p2 = 2 for the shot and the colored-Poisson noise model,
D2 is varied from 0.2 to 4 for the AOUP model, and α is varied
from 0.2 to 4 with the relation α = v2

0τ/2 for the ABP model.
Solid curves denote the analytic results in Eqs. (24) and (25)
and dots are simulation results obtained by averaging over 106

samples in the steady state. The τ2 = 0 case corresponds to
the δ-correlated noise for reservoir 2, which can be either an
equilibrium or shot-noise reservoir. The results of these two
models coincide with each other and are exactly fitted by the
analytic curve for Ẇ , Q̇1, and Q̇2, as shown in Figs. 2(a), 2(b),
and 2(c), respectively. The colored-Poisson, the AOUP, and
the ABP models belong to the case with finite τ . As seen
in Figs. 2(a)–2(c), data points of three different models with
the same finite τ2 coincide with each other and are perfectly
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FIG. 2. Steady-state rate of the (a) work and (b), (c) heat produced from the system trapped in a harmonic potential and driven by a
rotational force. © and × symbols denote data for the equilibrium and the shot noises (τ2 = 0), respectively. +, �, and ♦ symbols denote data
for the colored-Poisson, the AOUP, and the ABP model, respectively. Gray solid lines represent the analytic results from Eqs. (24) and (25),
which are perfectly matched with the numerical data. The same values of τ2 and D2 lead to the same rate regardless of noise models.

matched to a single analytic curve. This clearly demonstrates
that the work and heat are determined solely by the two-point
noise-correlation function, regardless of other details of the
noise statistics. We note that negative signs of work and heat
denote work extraction and heat dissipation, respectively. Due
to the activeness of the reservoir, work can be extracted for
some finite τ even at D2 = 2, which apparently corresponds
to the equilibrium situation.

The second example is a one-dimensional Brownian parti-
cle trapped in a breathing harmonic potential. The motion is
described by the following equation:

ẋ = −k(t )x/γ + ζ , (26)

where k(t ) is the time-dependent stiffness, with period Tp

given by

k(t ) =
{

kmin + ωt, 0 � t < Tp/2
kmin + ω(Tp − t ). Tp/2 � t < Tp,

(27)

where the noise autocorrelation function is given by
〈ζ (t )ζ (t ′)〉 = Dτ−1γ −2 exp(−|t − t ′|/τ ). For this simulation,
kmin = γ = D = ω = 1 and Tp = 8 are used, and the initial
state is set to be x(0) = 0. With these conditions, we nu-
merically calculate the accumulated Jarzynski work W from
Eq. (21) and the accumulated heat Q from Eq. (22).

Figure 3 shows W and Q as a function of time. Similar
to the previous example, the τ = 0 case corresponds to the
equilibrium and the shot-noise model. Here, T = 1 is used
for the equilibrium noise and λ = 1 and 〈c2〉p = 2 are used
for the shot noise. As expected, the two results are exactly
matched to each other. Simulations for the colored-Poisson,
the AOUP, and the ABP models are also performed for finite
τ = 0.5, 1.0. In this calculation, λ = 1, D = 1, and α = 1 are
used. As the figure shows, the same values of τ and D lead to
the same amount of work and heat, regardless of noise models.
This again demonstrates that the engine performance for a
linear system is affected only by the non-Markovianity, but
not by the non-Gaussianity, even for a system driven by an
arbitrary time-dependent protocol.

C. Temporal reservoirs and memory effects

The cyclic protocol of conventional heat engines such as
Carnot and Stirling engines is usually accompanied by tem-
poral changes of heat reservoirs. Here, we consider the same
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FIG. 3. Accumulated (a) work and (b) heat produced from the
system driven by a periodically changing harmonic force. © and ×
symbols denote data for the equilibrium and the shot noises (τ =
0), respectively. +, �, and ♦ symbols denote data for the colored-
Poisson, the AOUP, and the ABP model, respectively. The same
values of τ and D lead to the same value for work and heat, regardless
of noise models.
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4

FIG. 4. Schematic of the cycle of the Stirling engine. (i) Iso-
choric process 1 → 2: D is suddenly switched from Dh to Dc with
fixed k = kmin at t = 0. (ii) Isoactive (isothermal) process 2 → 3: k
is smoothly changed from kmin to kmax = kmin + Tpω/2 with fixed
D = Dc during 0 < t < Tp/2. (iii) Isochoric process 3 → 4: D is
abruptly changed from Dc to Dh with fixed k = kmax at t = Tp/2.
(iv) Isoactive (isothermal) process 4 → 1: k is smoothly changed
from kmax to kmin with fixed D = Dh during Tp/2 < t < Tp.

temporal changes of active reservoirs. In the recent experi-
ment on the Stirling engine with a bacterial active reservoir
[19], the effective temperature of the active reservoir was
varied by changing the activity of the bacteria by controlling
the ambient temperature. As the active particles (bacteria)
tend to maintain their motion within a given persistence time,
the noise statistics of the active reservoir will not be changed
abruptly when external control parameters are changed, but
instead have some memory effect originated from its past
state. Thus, this reservoir-memory effect should be taken into
consideration when an active reservoir changes in time.

To investigate the memory effect on the engine per-
formance, we consider the Stirling engine with an active
reservoir. A one-dimensional Brownian particle is trapped
in a time-dependent harmonic potential with stiffness k(t )
and in contact with a temporal active reservoir with con-
stant persistence time τ and time-varying noise strength D(t ).
For simplicity, we take the time-dependent protocol given by
Eqs. (26) and (27). The cyclic engine protocol consists of
four steps, which are shown in Fig. 4: (i) Isochoric process
1 → 2: D is suddenly switched from Dh to Dc with fixed
k = kmin at t = 0. This process corresponds to the sudden
temperature change of the heat bath with fixed volume of the
conventional Stirling engine. (ii) Isoactive process 2 → 3: k
changes linearly from kmin to kmax ≡ kmin + Tpω/2 with fixed
D = Dc during 0 < t < Tp/2. This process corresponds to the
isothermal compression process of the conventional engine.
(iii) Isochoric process 3 → 4: D changes abruptly from Dc

to Dh with fixed k = kmax at t = Tp/2. (iv) Isoactive pro-
cess 4 → 1: k changes linearly from kmax to kmin with fixed
D = Dh during Tp/2 < t < Tp. This process corresponds to
the isothermal expansion process of the conventional engine.

Figure 5 shows the accumulated work and heat of this
Stirling engine for different noise models and different τ . For
this simulation, we set the protocol parameters as ω = 0.2,
Tp = 10, and kmin = 1 (thus, kmax = 2) with the reservoir pa-
rameters as γ = 1, Dh = 2, and Dc = 1. Note that the data for
the equilibrium noise and the shot noise (both τ = 0) coincide
with each other for W and Q. In contrast to these cases, W
and Q data points of the colored-Poisson, the AOUP, and the
ABP models with finite τ do not agree with the others, even
though they have the same τ and the same sequence of D. This
discrepancy is due to the distinct memory effect for different
models, which becomes smaller as the persistence time τ
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FIG. 5. Accumulated (a), (c), (e) work and (b), (d), (f) heat produced from the Stirling engine for various τ . +, �, and © symbols denote
data for the colored-Poisson, the AOUP, and the ABP model with finite persistence time τ , respectively. Solid curves are the numerical
results for the equilibrium noise as a reference. × symbols denote data for the shot noise, which exactly match the equilibrium curve. The
colored-Poisson, the AOUP, and the ABP data approach the equilibrium curve as τ goes to zero.
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FIG. 6. Accumulated (a), (c), (e) work and (b), (d), (f) heat produced from the Stirling engine for various protocol speed ω. +, �, and ©
symbols denote data for the colored-Poisson, the AOUP, and the ABP model with finite persistence time τ = 0.5, respectively. Solid curves are
the numerical results for the equilibrium noise as a reference. × symbols denote data for the shot noise, which exactly match the equilibrium
curve. As ω goes to zero, the colored-Poisson, the AOUP, and the ABP data collapse on each other, but not on the equilibrium curve.

decreases, as shown in Fig. 5. All data eventually collapse on
the equilibrium curve in the τ → 0 limit.

In Appendix B, we explicitly calculate the noise autocor-
relation functions for various active models when τ and D
are changed abruptly at a certain time tc. In most cases, the
noise-autocorrelation function involving a later time than tc
does not maintain the simple exponential form in Eq. (2)
and becomes more complicated with the memory effect for
finite τ , which depends on the details of the model. This
model-dependent memory effect leads to the difference of W
and Q for the different active-noise models in Fig. 5. As this
difference lasts for several persistence times until a noise is
relaxed, the discrepancy gets smaller when τ gets smaller.

One may consider a speed variation of the time-dependent
protocol, i.e., varying ω and Tp while keeping the values of
kmin and kmax. For a very slow process (small ω or large Tp),
the memory effect can be ignored for τ  Tp/2. We confirm
this by numerical simulations. Figure 6 shows the plots of W
and Q for various protocol speed ω = 0.2, 0.08, 0.02. For rel-
atively high speed (ω = 0.2), W and Q of the colored-Poisson,
the AOUP, and the ABP models are different from the others,
while they almost coincide with each other for a very slow
process (ω = 0.02). Note that these results cannot match the
equilibrium data even in the quasistatic limit (ω → 0), due to
the finite persistent time τ .

V. ENGINE WITH A NONLINEAR FORCE

A. Effect of non-Gaussianity on work and heat when a system
is confined in an anharmonic potential

When the total mechanical force is nonlinear in position,
the work and heat cannot be simply expressed by the two-
point noise-correlation functions as discussed in Sec. IV, but
higher-order correlation functions are necessary in general.

Therefore, in this nonlinear case, the non-Gaussianity of a
noise should contribute to the work and heat in general.

To investigate the non-Gaussian effect explicitly, we con-
sider a similar steady-state engine studied in Sec. IV B, i.e., a
two-dimensional Brownian particle trapped by an anharmonic
potential U (x1, x2) = k

q (xq
1 + xq

2 ), where q is an even inte-

ger, and driven by a linear nonconservative force f nc(x)T =
(εx2, δx1). Thus, the equation of motion can be written as

γ1ẋ1 = −kxq−1
1 + εx2 + γ1ζ1,

γ2ẋ2 = −kxq−1
2 + δx1 + γ2ζ2, (28)

where ζ1 is the equilibrium noise satisfying 〈ζ1(t )ζ1(t ′)〉 =
2γ −1

1 T1δ(t − t ′) and ζ2 is the active noise satisfying
〈ζ2(t )ζ2(t ′)〉 = D2τ

−1
2 γ −2

2 exp(−|t − t ′|/τ2).
We perform numerical simulations for q = 4 with the same

parameter values used in Sec. IV B. Figure 7 shows the aver-
age rates of the work and heat in the steady state as a function
of D2 for various values of τ2. Notice a clear distinction
between the data for the equilibrium noise and the shot noise
(both τ2 = 0), which should be due to the non-Gaussianity
of the shot noise for nonlinear systems. For the other active
models with the same τ2, the simulation data differ from each
other as expected.

B. Quasistatic process of the Stirling engine with the shot noise

It is interesting to study the very slow process (ω → 0 limit
for the cycle depicted in Fig. 4) of the Stirling engine with
the shot noise, subject to the breathing anharmonic potential
U (x) = k(t )

q xq in one dimension. We will call this slow process
the “quasistatic” process of the Stirling engine, even though
abrupt temperature changes still remain in the process. The
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FIG. 7. Steady-state rate of the (a) work and (b), (c) heat produced from the system trapped in an anharmonic potential with q = 4 and
driven by a rotational force. © and × symbols denote data for the equilibrium and the shot noises (τ2 = 0), respectively. +, �, and ♦ symbols
denote data for the colored-Poisson, the AOUP, and the ABP model, respectively. Different from the system with a linear force, the same values
of τ2 and D2 do not yield the same rates.

equation of motion is given as

ẋ = −k(t )

γ
xq−1 + ζ , (29)

where the stiffness protocol is given by Eq. (27) and ζ (t ) is
the shot noise.

Due to the nonlinearity of the mechanical force (q > 2),
we expect that the non-Gaussianity of the shot noise should
contribute to the work and heat as found in the steady-state
engine in Sec. V A. For example, the Jarzynski work during
the process 2 → 3 is given from Eq. (14b) as

〈W2→3〉 =
∫ kmax

kmin

dk ∂k〈U 〉 =
∫ kmax

kmin

dk
〈xq〉

q
. (30)

As the system internal energy is given by 〈U 〉 = k(t )
q 〈xq〉, the

thermodynamic first law guarantees that the heat also depends
on 〈xq〉. Hence, the work and heat obviously include the
higher-order correlation functions for q > 2.

However, in the quasistatic limit, the average 〈xq〉 is
reduced to a constant independent of the higher-order noise-
correlation functions, and thus the non-Gaussianity of the
shot noise does not come into play. In this section, we show
this interesting result analytically and also perform numerical
simulations for q = 4 and 6 with various protocol speeds ω.

First, consider the evolution equation of the probability
distribution P(x, t ), corresponding to Eq. (29) as [34]

∂

∂t
P(x, t ) = ∂

∂x

(
k(t )

γ
xq−1P(x, t )

)

+ λ

∫
dcp(c)P(x − c, t ) − λP(x, t ), (31)

where p(c) is the distribution function of the shot-noise mag-
nitude c as explained in Sec. II A. Multiplying x2 to Eq. (31)
and integrating it over x, one can easily find

∂

∂t
〈x2〉 = −2k(t )

γ
〈xq〉 + λ〈c2〉p. (32)

In the quasistatic process, the system is almost always in a
steady state with the instant value of k(t ) at that moment. In

this instant steady state at time t , we obtain, by setting both
sides of Eq. (32) zero,

2k(t )〈xq〉ss = γ λ〈c2〉p, (33)

which clearly shows that the average 〈xq〉 does not depend on
the higher-order noise correlations in the quasistatic process.

For later use, we define effective temperatures of the
system with the shot-noise reservoir. From the equipartition
relation similar to that in equilibrium, it is reasonable to de-
fine, for fixed k,

T E ≡ k〈xq〉ss = γ λ

2
〈c2〉p, (34)

which converges to the conventional temperature T in the
equilibrium limit discussed in Sec. II A, i.e., λ〈c2〉p = 2T/γ

fixed in the λ → ∞ limit. One may define another effective
temperature from the diffusive behavior of a particle without
any trapping potential (k = 0) as

T D ≡ γ

2
〈x2〉/t = γ λ

2
〈c2〉p, (35)

where Eq. (32) is used for k = 0. Notice that these two effec-
tive temperatures are the same for the shot noise, whereas they
are different for other active noises in general.

We take the Stirling engine protocol in Fig. 4 with the
anharmonic potential. For simplicity, we use the temperature
notation for the two shot-noise reservoirs with T E

c and T E
h .

Then, in the quasistatic process, using Eqs. (30) and (34), we
find

〈W2→3〉ss = T E
c

q
ln

kmax

kmin
, (36)

which is exactly the same form as the work, given by
Eq. (C2), of the equilibrium-reservoir counterpart explained in
Appendix C by matching T E

c with Tc. Works and heats for
other quasistatic-process segments are also the same as those
presented in Eqs. (C3) and (C4), respectively, also by match-
ing T E

h with Th.
We define the efficiency of the shot-noise Stirling engine in

the conventional way as the ratio of the extracted work versus
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FIG. 8. Work, heat, and efficiency of the Stirling engine driven
by the time-dependent anharmonic potential. © and × denote data
for the equilibrium and the shot noises, respectively. (a), (b) The
one-cycle accumulated work and heat, respectively, for a very slow
(almost quasistatic) process with ω = 0.01 for q = 4. (c) Plot of the
normalized efficiency η̃C and η̃E as a function of ω for q = 4. The
efficiency data for the equilibrium and the shot noises coincide with
each other for small ω and show a discrepancy for ω � 1. (d)–(f) Data
for q = 6.

the heat energy flow from the high-temperature reservoir,

η = −〈W2→3〉 + 〈W4→1〉
〈Q3→4〉 + 〈Q4→1〉 . (37)

Then, in the quasistatic process, we obtain

ηStir
E = ηE

1 + ηE/ ln kmax
kmin

with ηE ≡ 1 − T E
c

T E
h

, (38)

which is the same as that of the equilibrium Stirling engine
ηStir

C by replacing T E with T ; see Eq. (C5). Note that ηE

is the effective Carnot efficiency defined from the effective
temperature T E. In the same way, we can define another effec-
tive Carnot efficiency ηD ≡ 1 − T D

c /T D
h from T D defined in

Eq. (35). More discussions on the efficiency of active engines
are presented in Sec. V C.

Figure 8 shows the numerical results with various values
of the protocol speed ω for the equilibrium and the shot
noises. Accumulated work and heat for q = 4 are presented
in Figs. 8(a) and 8(b), respectively. For these simulations, we
set the protocol speed very small as ω = 0.01. Solid curves
and data points denote analytic and numerical results, respec-
tively, and they are exactly matched. Figure 8(c) shows the
plots of the normalized efficiency η̃ as a function of ω with

η̃C ≡ η/ηStir
C for the equilibrium noise and with η̃E ≡ η/ηStir

E
for the shot noise. As expected, the two efficiencies are almost
identical for small ω, but show a discrepancy for ω � 1. We
find similar results for q = 6 in Figs. 8(d)–8(f). Note that
the efficiency of the shot-noise engine is higher than that
of the equilibrium engine with a fast protocol speed. This
indicates that the efficiency can be enhanced solely by the
non-Gaussianity of a noise without any non-Markovianity.

C. Effect of non-Gaussianity on efficiency when a system
is confined in an anharmonic potential

We investigate the nonlinear effect on the efficiency of
the steady-state active engine introduced in Sec. V A, where
the energy-supplying bath is in equilibrium with temperature
T1 and the energy-dissipating bath is an active bath with
D2 and τ2 (effectively low-temperature bath). The efficiency
is defined in the conventional way as the ratio of the to-
tal work extraction rate and the heat flow rate out of the
(high-temperature) equilibrium reservoir. We note that special
care is necessary for the efficiency definition with an active
reservoir, as heat may also be extracted from the “cold” active
reservoir [35]. If such an abnormal behavior happens, another
definition of the absorbed heat can be used for evaluating the
efficiency as explained in Eq. (7) of Ref. [42].

In our previous study [35], we investigated the same
steady-state active engine model with q = 2 (linear force)
and the AOUP noise. From the study, it was shown that the
efficiency can overcome the two effective Carnot efficiencies
ηD and ηE when the persistence times of the two reservoirs are
different. Note that surpassing the effective Carnot efficiency
in an active engine does not mean the violation of the thermo-
dynamic second law since the dissipation into nonequilibrium
reservoirs does not account for the full entropy production
in general [35]. For the linear engine, the work and heat
are not affected by the non-Gaussianity, thus we expect the
same efficiency for other types of active reservoirs as long as
the two-point noise-correlation functions are identical. That
is, surpassing the effective Carnot efficiency can be achieved
solely by the non-Markovianity.

However, it is clear that for a system with a nonlinear force,
the non-Gaussianity can also give an additional contribution in
enhancing the efficiency. We perform numerical simulations
for the steady-state engine described by Eq. (28) for q = 4
with T1 = 2. We use the same values of other parameters as
for the linear engine in Sec. IV B, i.e., k = γ1 = γ2 = 1.

Figures 9(a) and 9(b) show the simulation results when the
reservoir 2 is also in equilibrium with temperature T2 = 1. The
yellow dots in Fig. 9(a) are plotted on the ε − δ plane when the
model system works as an engine, that is, the engine condition
W < 0 (positive work extraction) and Q1 > 0 (heat flow out
of the reservoir 1) is satisfied. As expected, the yellow-dotted
engine area is restricted in between the two lines: (i) the
η = 0 line (δ = ε) and (ii) the η = ηC line [δ = (T2/T1)ε] with
the Carnot efficiency ηC = 1 − T2/T1. Thus, the efficiency is
bounded from above by ηC, as explicitly shown in Fig. 9(b),
which is the plot for the efficiency and the normalized power
P̃ ≡ P/Pmax

eq as a function of ε with fixed δ = 0.3. The global
maximum power is given by Pmax

eq = kT1η
2
CA/(γ1 + γ2) with

ηCA = 1 − √
T2/T1 [35].
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FIG. 9. (a) Engine area (yellow-dotted area) on the ε − δ plane
of the steady-state engine with an anharmonic potential (q = 4)
and equilibrium reservoirs. The brown line indicates the Carnot-
efficiency (ηC) line. (b) Plot for the efficiency η and the normalized
power P̃ as a function of ε with fixed δ = 0.3. The yellow-shaded
area denotes the region satisfying the engine condition. The max-
imum efficiency is ηC. (c) Engine area (yellow-dotted area) of the
steady-state engine (q = 4) with one equilibrium and one shot-noise
reservoir. Note that the engine area is extended over the effective
Carnot-efficiency (ηE) line. (d) Plot for η and P̃ as a function of ε

with fixed δ = 0.3. The maximum efficiency surpasses ηE.

Figure 9(c) shows the engine area when the noise of the
reservoir 2 is the shot noise with D2 = 1 (λ = 1 and 〈c2〉p =
2), leading to T E

2 = 1. Clearly distinct from Fig. 9(a), the en-
gine area is extended over the effective Carnot-efficiency line
(η = ηE line). This leads to surpassing the effective Carnot
efficiency ηE as presented in Fig. 9(d). This definitely mani-
fests the non-Gaussian effect on engine efficiency through a
nonlinear force without any non-Markovianity.

We also perform similar simulations when the reservoir
2 generates the colored-Poisson, the AOUP, or the ABP
noise with D2 = 1 and τ2 = 0.5. The results are presented in
Fig. 10, which show that the efficiency of all active engines
with finite τ2 can overcome both ηD and ηE. Among these
three models, only the AOUP noise is Gaussian. Therefore,
one can also conclude that the effective Carnot efficiencies
can be overcome solely by the non-Markovian noise without
any non-Gaussianity.

VI. CONCLUSIONS

We investigated the effects of the nonequilibrium fea-
tures of active noise on engine performance using various
active-noise models. We focused on the non-Gaussianity and
non-Markovianity of active noise, and found that the effects
could be categorized according to the nature of the me-
chanical (external) force. First, when the force is linear, the
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FIG. 10. Engine area (yellow-dotted area) on the ε − δ plane of
the steady-state engine with an anharmonic potential (q = 4) with
one equilibrium and one (a) colored-Poisson, (c) AOUP, and (e) ABP
reservoir. Note that the engine area is extended over both effective
Carnot-efficiency (ηD and ηE) lines. (b), (d), (f) The corresponding
plots for the efficiency η and the normalized power P̃ as a function
of ε with fixed δ = 0.3. The yellow shaded area denotes the region
satisfying the engine condition. The maximum efficiency surpasses
both ηD and ηE.

average work and heat are determined only by the two-point
noise-correlation function. Thus, noise non-Gaussianity is ir-
relevant to engine performance in such a system. However,
non-Markovianity plays an important role in enhancing the
engine performance, with the efficiency surpassing the ef-
fective Carnot efficiency. Furthermore, for a cyclic engine,
performance is also affected by the non-Markovian memory
of a temporally changing engine environment. Second, when
the force is nonlinear, the average work and heat generally de-
pend on higher-order (more than two-point) noise-correlation
functions, such that non-Gaussianity obviously contributes
to engine performance. Thus, non-Gaussianity can enhance
engine performance in a nonlinear system. This effect was not
well documented in previous studies; it is relatively difficult to
analyze a nonlinear system. We expect that more interesting
results might be obtained by studying a general nonlinear
system with an active reservoir.
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Our analysis is based on the assumption that the active
noise is independent of the system state. However, the motion
of active particles in an active reservoir can depend on the
position of the system, as demonstrated by the study on the
long-range effect of boundary [46]. Such a system-dependent
noise might be able to be encoded into the system-dependent
noise strength D(x). In this case, our analysis based on the
linear force is hard to be applicable in general; thus, we expect
that more diverse behaviors could be observed.
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APPENDIX A: AUTOCORRELATION FUNCTION

1. Colored-Poisson noise

We consider a one-dimensional colored-Poisson noise for simplicity, and thus the index i in Eq. (5) is dropped. The
autocorrelation function of the noise, 〈ζ (ta)ζ (tb)〉, for tb � ta, can be written as

〈ζ (ta)ζ (tb)〉 = 1

τ 2

〈∑
n,m

cncmH (ta − tn)H (tb − tm)e− ta−tn
τ e− tb−tm

τ

〉
= 〈c2〉p

τ 2

〈∑
n

H (ta − tn)e− ta+tb
τ

+ 2tn
τ

〉
, (A1)

where we used the noise magnitude correlations as 〈cncm〉p = 〈c2〉p δnm for a given time sequence of shots. The average over
time sequences of shots yields

〈ζ (ta)ζ (tb)〉 = 〈c2〉p

τ 2
e− ta+tb

τ

〈∑
n

H (ta − tn)e
2tn
τ

〉
= 〈c2〉p

τ 2
e− ta+tb

τ

∫ ta

0
e

2t
τ λdt = λ〈c2〉p

2τ
(e− tb−ta

τ − e− tb+ta
τ ). (A2)

The second equality in Eq. (A2) comes from the fact that the probability of observing a Poisson shot during dt is simply λdt .
For large ta/τ , the noise-autocorrelation function becomes the same as Eq. (6).

2. ABP noise

For the ABP model, the self-propulsion force acts as an active noise, i.e., ζ = v0eθ . In order to derive the noise-autocorrelation
function 〈ζi(ta)ζ j (tb)〉θ , it is necessary to calculate 〈cos θta cos θtb〉θ , 〈cos θta sin θtb〉θ , and 〈sin θta sin θtb〉θ , where 〈·〉θ denotes the
average over θ . First, 〈cos θta cos θtb〉θ for tb > ta is

〈
cos θta cos θtb

〉
θ

=
∫ 2π

0
dθ0

∫ ∞

−∞
dθta

∫ ∞

−∞
dθtb cos θtbPtb−ta

(
θtb |θta

)
cos θta Pta

(
θta |θ0

)
Pinit(θ0), (A3)

where θ0 is the initial value of θ at time t = 0, Pt2−t1 (θt2 |θt1 ) is the conditional transition probability observing the processes of
which the final state is θt2 at time t2 and the initial state is θt1 at time t1, and Pinit(θ0) is the initial distribution of θ0. From the
equation of motion of θ in Eq. (10), the conditional probability for t2 > t1 is given by

Pt2−t1

(
θt2 |θt1

) = 1√
4πDθ (t2 − t1)

exp

[
−

(
θt2 − θt1

)2

4πDθ (t2 − t1)

]
. (A4)

For simplicity, we take the uniform initial distribution, i.e., Pinit(θ0) = 1/2π . Then, Eq. (A3) becomes

〈
cos θta cos θtb

〉
θ

=
∫ 2π

0
dθ0

∫ ∞

−∞
dθta

∫ ∞

−∞
dθtb

1

2
Re[ei(θta +θtb ) + ei(θta −θtb )]Ptb−ta

(
θtb |θta

)
Pta

(
θta |θ0

)
Pinit(θ0)

= 1

2

∫ 2π

0
dθ0Pinit(θ0)[e−Dθ |tb−ta| + e2iθ0 e−Dθ (4ta+|tb−ta|)] = 1

2
e−|tb−ta|/τ . (A5)

In a similar way, we can also show that 〈sin θt sin θt ′ 〉 = e−|t ′−t |/τ /2 and 〈cos θt sin θt ′ 〉 = 0. These results lead to Eq. (11).

APPENDIX B: AUTOCORRELATION FUNCTION WITH ABRUPT CHANGES OF τ AND D

We consider the case where τ and D of the one-dimensional active noise is changed abruptly at t = tc as

τ = τ1, D = D1 for t � tc, τ = τ2, D = D2 for t > tc. (B1)

Here we calculate the noise-autocorrelation function 〈ζ (ta)ζ (tb)〉 of various active noises for two cases: The first is ta < tc < tb
and the second is tc < ta < tb.
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1. Colored-Poisson noise

For the colored-Poisson noise, the noise strength is given by D = γ 2λ〈c2〉p/2. We choose λ = λ1 and p(c) = p(1)(c) for
t � tc, and λ = λ2 and p(c) = p(2)(c) for t > tc.

For ta < tc < tb, the noise is written as

ζ (ta) =
∑

n

cn

τ1
H (ta − tn)e− ta−tn

τ1 , ζ (tb) =
∑

n

cn

τ1
H (tc − tn)e− tb−tn

τ1 +
∑

n

cn

τ2
H (tb − tn)H (tn − tc)e− tb−tn

τ2 . (B2)

Then, the noise-autocorrelation function becomes

〈ζ (ta)ζ (tb)〉 = 1

τ 2
1

〈∑
n,m

cncmH (ta − tn)H (tc − tm)e− ta−tn
τ1 e− tb−tm

τ1

〉
+ 1

τ1τ2

〈∑
n,m

cncmH (ta − tn)H (tb − tm)H (tm − tc)e− ta−tn
τ1 e− tb−tm

τ2

〉

= 1

τ 2
1

〈∑
n

c2
nH (ta − tn)e− ta+tb

τ1
+ 2tn

τ1

〉
= λ1〈c2〉p(1)

2τ1
(e− tb−ta

τ1 − e− tb+ta
τ1 ), (B3)

where we used 〈cncm〉p = 〈c2〉p δnm. For large ta/τ1, the noise-autocorrelation function becomes the simple exponential form as
in Eq. (6).

However, for tc < ta < tb, the autocorrelation function has a different form. In this case, the noise is written as

ζ (ta) =
∑

n

cn

τ1
H (tc − tn)e− ta−tn

τ1 +
∑

n

cn

τ2
H (ta − tn)H (tn − tc)e− ta−tn

τ2 ,

ζ (tb) =
∑

n

cn

τ1
H (tc − tn)e− tb−tn

τ1 +
∑

n

cn

τ2
H (tb − tn)H (tn − tc)e− tb−tn

τ2 . (B4)

Then, we have

〈ζ (ta)ζ (tb)〉 = 1

τ 2
1

〈∑
n

c2
nH (tc − tn)e− ta+tb

τ1
+ 2tn

τ1

〉
+ 1

τ 2
2

〈∑
n

c2
nH (ta − tn)H (tb − tn)H (tn − tc)e− ta+tb

τ2
+ 2tn

τ2

〉

= λ1〈c2〉p(1)

2τ1
(e− tb+ta−2tc

τ1 − e− tb+ta
τ1 ) + λ2〈c2〉p(2)

2τ2
(e− tb−ta

τ2 − e− tb+ta−2tc
τ2 ). (B5)

Even for large ta/τ1, the correlation function does not return to the original simple exponential form.

2. AOUP noise

We first consider the case of ta < tc < tb. From Eq. (8), the noises at t = ta and tb are given as

ζ (ta) = e− ta
τ1 ζ (0) +

∫ ta

0
dt ′e− ta−t ′

τ1

√
2D1

τ1γ
ξ (t ′), (B6)

ζ (tb) = e− tb−tc
τ2 ζ (tc) +

∫ tb

tc

dt ′e− tb−t ′
τ2

√
2D2

τ2γ
ξ (t ′). (B7)

Note that ζ (tc) is obtained by substituting ta with tc in Eq. (B6). Multiplying Eqs. (B6) and (B7), we find

〈ζ (ta)ζ (tb)〉 = e− ta+tc
τ1 e− tb−tc

τ2 〈ζ (0)2〉

+ e− tb−tc
τ2

∫ ta

0
dt ′

∫ tc

0
dt ′′e− ta−t ′

τ1 e− tc−t ′′
τ1

2D1

τ 2
1 γ 2

〈ξ (t ′)ξ (t ′′)〉 +
∫ ta

0
dt ′

∫ tb

tc

dt ′′e− ta−t ′
τ1 e− tb−t ′′

τ2
2
√

D1D2

τ1τ2γ 2
〈ξ (t ′)ξ (t ′′)〉.

(B8)

By using 〈ξ (t )ξ (t ′)〉 = δ(t − t ′), Eq. (B8) becomes

〈ζ (ta)ζ (tb)〉 = D1

τ1γ 2
e− tc−ta

τ1
− tb−tc

τ2 +
(

〈ζ (0)2〉 − D1

τ1γ 2

)
e− tc+ta

τ1
− tb−tc

τ2 . (B9)

For large ta/τ1, only the first term on the right-hand side in Eq. (B8) survives, which is different from the simple exponential
form in Eq. (2).

For tc < ta < tb, ζ (ta) is written as

ζ (ta) = e− ta−tc
τ2 ζ (tc) +

∫ ta

tc

dt ′e− ta−t ′
τ2

√
2D2

τ2γ
ξ (t ′), (B10)
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with ζ (tb) in Eq. (B7). Then, the autocorrelation function becomes

〈ζ (ta)ζ (tb)〉 = D1

τ1γ 2
e− tb+ta−2tc

τ2 + D2

τ2γ 2
e− tb−ta

τ2 +
(

〈ζ (0)2〉 − D1

τ1γ 2

)
e− 2tc

τ1
− ta+tb−2tc

τ2 − D2

τ2γ 2
e− tb+ta

τ2 . (B11)

For large tc/τ1, the first two terms survive.

3. ABP noise

The noise strength is given by D = γ 2v2
0τ/2. We choose v0 = v1 and τ = τ1 for t � tc, and v0 = v2 and τ = τ2 for t > tc.

For ta < tc < tb, the noise autocorrelation can be written as〈
v1 cos θtav2 cos θtb

〉
θ

= v1v2

∫ 2π

0
dθ0

∫ ∞

−∞
dθta

∫ ∞

−∞
dθtc

∫ ∞

−∞
dθtb cos θtbPtb−tc

(
θtb |θtc

)
Ptc−ta

(
θtc |θta

)
cos θta Pta

(
θta |θ0

)
Pinit(θ0).

(B12)

Using (A4), we can easily get

〈v1 cos θtav2 cos θtb〉θ = v1v2

2
e− tb−tc

τ2 e− tc−ta
τ1 , (B13)

which is different from Eq. (11). For tc < ta < tb, we find〈
v2 cos θtav2 cos θtb

〉
θ

= v2
2

∫ 2π

0
dθ0

∫ ∞

−∞
dθtc

∫ ∞

−∞
dθta

∫ ∞

−∞
dθtb cos θtbPtb−ta

(
θtb |θta

)
cos θta Pta−tc

(
θta |θtc

)
Ptc

(
θtc |θ0

)
Pinit(θ0)

= v2
2

2
e− t2−t1

τ2 , (B14)

which has the same form as in Eq. (11).

APPENDIX C: STIRLING ENGINE USING AN ANHARMONIC POTENTIAL WITH AN EQUILIBRIUM TEMPORAL BATH

Here, we evaluate the work, the heat, and the efficiency of the one-dimensional Stirling engine using a breathing anharmonic
potential U (x) = k(t )xq/q (q = 2, 4, 6, . . . ) with an equilibrium bath. The equation of motion of this engine during the
isothermal processes is given by

ẋ = −k(t )

γ
xq−1 + ζ , (C1)

where k(t ) is the time-dependent stiffness with period Tp given by Eq. (27) and ζ (t ) is a Gaussian white noise satisfying
〈ζ (t )ζ (t ′)〉 = 2T (t )γ −1δ(t − t ′) with D(t ) = γ T (t ). The reservoir protocol is shown in Fig. 4: T = Tc for 0 � t � Tp/2 and
T = Th for Tp/2 � t � Tp with the condition Th > Tc. Temperature abruptly changes from Th to Tc at t = 0 and from Tc to Th at
t = Tp/2.

For the analytic calculation, we consider a quasistatic process; thus, the engine processes 2 → 3 and 4 → 1 are very slow
(ω → 0 limit) and thus are always in equilibrium steady states. Then, the work done by the protocol k(t ) from 2 to 3 is given by
[see Eq. (14b)]

〈W2→3〉ss =
∫ kmax

kmin

dk ∂k〈U 〉ss =
∫ kmax

kmin

dk
〈xq〉ss

q
= Tc

q
ln

kmax

kmin
, (C2)

where the equipartition relation as k〈xq〉ss = T in equilibrium at temperature T is used. Similarly, we obtain

〈W4→1〉ss = Th

q
ln

kmin

kmax
, 〈W1→2〉ss = 〈W3→4〉ss = 0. (C3)

We evaluate the heat using the thermodynamic first law in Eq. (13). As the system internal energy is simply given by the average
of the potential energy 〈U 〉ss = T/q in equilibrium, we find the average heat for each process as

〈Q1→2〉ss = 〈�U1→2〉ss − 〈W1→2〉ss = 1

q
(Tc − Th), 〈Q2→3〉ss = 〈�U2→3〉ss − 〈W2→3〉ss = −Tc

q
ln

kmax

kmin
,

〈Q3→4〉ss = 〈�U3→4〉ss − 〈W3→4〉ss = 1

q
(Th − Tc), 〈Q4→1〉ss = 〈�U4→1〉ss − 〈W4→1〉ss = −Th

q
ln

kmin

kmax
. (C4)

Then, the efficiency of the quasistatically operating Stirling engine using the anharmonic potential with an equilibrium reservoir
becomes

ηStir
C ≡ −〈W2→3〉ss + 〈W4→1〉ss

〈Q3→4〉ss + 〈Q4→1〉ss
= ηC

1 + ηC/ ln kmax
kmin

, (C5)

with the conventional Carnot efficiency ηC = 1 − Tc/Th. Note that this efficiency is independent of q.
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