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An engine producing a finite power at the ideal (Carnot) efficiency is a dream engine which is not prohibited
by the thermodynamic second law. Some years ago, a two-terminal heat engine with asymmetric Onsager
coefficients in the linear response regime was suggested by Benenti et al. [Phys. Rev. Lett. 106, 230602 (2011)],
as a prototypical system to make such a dream come true with nondivergent system parameter values. However,
such a system has never been realized, in spite of many trials. Here, we introduce an exactly solvable two-terminal
Brownian heat engine with the asymmetric Onsager coefficients in the presence of a Lorenz (magnetic) force.
Nevertheless, we show that the dream engine regime cannot be accessible, even with the asymmetric Onsager
coefficients, due to an instability keeping the engine from reaching its steady state. This is consistent with recent
tradeoff relations between the engine power and efficiency, where the (cyclic) steady-state condition is implicitly
presumed. We conclude that the inaccessibility to the dream engine originates from the steady-state constraint
on the engine.
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I. INTRODUCTION

Is it possible to attain the theoretically maximum effi-
ciency, i.e., the Carnot efficiency ηC, at a finite power? As well
known from textbooks [1], ηC is attainable in a reversible or
quasistatic process. However, the power of such a reversible
engine vanishes, as it takes an infinite time to complete one
engine cycle. If we operate the engine in a finite-time cycle,
we can have a finite power but usually with irreversible heat
dissipation; thus the efficiency should be lower than ηC. This
is why there has been a widespread belief that the dream
engine is impossible, i.e., it is impossible to achieve ηC and
a finite power simultaneously, even though there has been no
rigorous proof for a long time.

In this context, the recent claim by Benenti, Saito, and
Casati (BSC) [2] was surprising. They showed in the frame-
work of the linear irreversible thermodynamics that the dream
engine is possible in a two-terminal thermoelectric device in
the presence of a magnetic field breaking the microscopic ir-
reversibility. They considered a thermodynamic system where
two currents J1 and J2 are generated by two thermodynamic
forces X1 and X2 in the linear response regime as follows:

J1(B) = L11(B)X1 + L12(B)X2,

J2(B) = L21(B)X1 + L22(B)X2, (1)

where Li j is an element of the Onsager matrix L and a function
of the magnetic field B. In the case of B = 0, the Onsager
matrix is proven to be symmetric due to the microreversibility
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or the detailed balance [3]. However, it can be asymmetric
with nonzero B, only satisfying the Onsager-Casimir relation
[4] as L(B) = LT(−B), with T denoting the transpose. We
note that the fluctuation-dissipation relation is still satisfied
with nonzero B, while the Onsager symmetry is broken [5].

BSC [2] showed that Carnot efficiency at a finite power is
attainable when the following conditions are satisfied:

L ≡ 4 det L − (L12 − L21)2 = 0 and

∣∣∣∣s ≡ L12

L21

∣∣∣∣ > 1, (2)

where det denotes the determinant, and s is called the sym-
metry factor. The first equation represents the maximum
efficiency condition for given s. This result is presented in
Fig. 1 as the solid curve, which is the curve of the maximum
efficiency as a function of s constrained by the thermodynamic
second law. One can see that ηC is accessible for |s| � 1,
where the power (proportional to s2 − 1) is finite except for
the symmetric case (s = 1). This suggests that the dream
engine could be possible with a symmetry breaking induced
by the magnetic field.

This study triggered a flurry of subsequent discussions
on developing engine mechanisms achieving the Carnot ef-
ficiency at a finite power or in an irreversible process [6–16].
From these studies, several mechanisms have been suggested
to realize the dream engine, for example, by approaching
the criticality of the engine system [9], an infinitely fast
process [11], and cycling in the diverging damping coefficient
(or vanishing-relaxation-time) limit [12]. More importantly,
several tradeoff relations between the power and the efficiency
have been found for various situations [10,13,14,17], such as

P � �(ηC − η), (3)
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FIG. 1. Efficiency as a function of s. The (blue) solid curve is the
maximum efficiency obtained by Benenti et al. [2], the region below
which is allowed by the thermodynamic second law. Scattered (red)
points denote the calculated maximum efficiencies of our model at
various parameter values subject to the stable steady-state condition.
The blueish region above the scattered points is unstable in our
model.

where P is the power, η is the efficiency, and � is a system-
dependent positive constant. This relation sets a constraint that
the power should vanish to attain ηC unless � diverges. All
these findings strongly assert that some diverging limits are
necessary to attain the dream engine.

On the other hand, the BSC formulation [2] does not
require any divergence of parameters for achieving ηC at a
finite power. In other words, if we have the model described by
Eq. (1) with s �= 1 and find a set of parameters with moderate
values satisfying Eq. (2), the dream engine should be realized.
In this sense, the BSC theory [2] and all the subsequent
studies look contradictory. Therefore, it is important to study
a concrete two-terminal model with asymmetric Onsager
coefficients for investigating the possibility of attaining the
Carnot efficiency at a finite power in a realistic situation with
moderate parameters.

However, nobody has succeeded in finding such a two-
terminal engine with s �= 1. In a purely coherent two-terminal
system, for example, the off-diagonal elements of the Onsager
matrix turn out to be even functions of the magnetic field;
thus, they are always symmetric and no reversible currents
responsible for the dream engine are possible [6,18]. Inelastic
scatterings and interactions are suggested to break the symme-
try, but no explicit cases are reported. To detour this problem,
some studies introduced a third terminal (or more terminals)
with a specific condition for mimicking a two-terminal engine
[6,19], a time-averaged Onsager matrix for a periodically
driven system [8], and the Nernst effect [20]. However,
they are not exactly matched to the two-terminal system
described by Eq. (1), and no dream engine was realized in the
steady state.

In this study we introduce an exactly solvable stochastic
model which manifests the symmetry breaking of the Onsager
matrix in the presence of a magnetic field. We find that
many sets of parameters with moderate values satisfy the
dream engine condition in Eq. (2). Nevertheless, this does not
guarantee the existence of the dream engine alone, because
one should check the stability of the steady state for such a

FIG. 2. The two-terminal Brownian engine in the three-
dimensional space. (Inset) This model can be interpreted as a three-
particle system in the one-dimensional space with one particle out-
side of the heat reservoirs.

set of parameters. It turns out that there is no stable steady
state in all those sets of parameters satisfying the dream
engine condition. Our finding stresses the importance of the
boundary condition or intrinsic constraint imposed for an
engine problem, which is the steady-state or periodic-cycle
condition, inevitably required for steady production of work
from an engine. We conclude that this constraint plays the
most crucial role in forbidding the dream engine realized,
rather than the symmetry breaking of the Onsager matrix,
which is a necessary condition.

II. MODEL

We consider an underdamped Brownian dynamics of a
charged particle with mass m in the three-dimensional space
as illustrated in Fig. 2. Its position and velocity are denoted by

r = (x, y, z)T and v = (vx, vy, vz )T, respectively. The particle

moves in a magnetic field B = (Bx, By, Bz )T and is confined
in a harmonic potential with stiffness k(> 0). Its dynamics
along the y and z axis are affected by heat reservoirs with dif-
ferent temperatures Ty and Tz, respectively, while the dynam-
ics along the x axis is not affected by any heat reservoir and
is thus deterministic [21]. A linear external nonconservative
force (torque), fnc = εyx̂ + δxŷ, is applied to extract work out
of the engine.

The Langevin equation for this particle can be written as

v = ṙ, mv̇ = −kr + Fncr + v × B − �v + ξ with

Fnc =
⎛
⎝0 ε 0

δ 0 0
0 0 0

⎞
⎠, � =

⎛
⎝0 0 0

0 γ 0
0 0 γ

⎞
⎠, and ξ =

⎛
⎝0

ξy

ξz

⎞
⎠,

(4)

where ξi (i = y, z) is a white Gaussian noise satisfying
〈ξi(t )ξ j (t ′)〉 = 2γ Tiδi jδ(t − t ′) in the Boltzmann unit (kB =
1) and v × B is the Lorentz force. Note that fnc(= Fncr)
becomes conservative when ε = δ, is otherwise nonconserva-
tive, then drives the system out of equilibrium. In addition, the
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temperature difference between Ty and Tz is another driving
force. Thus, there are two thermodynamic forces driving the
system into a nonequilibrium state, such as

X1 ≡ δ − ε and X2 ≡ 1/Ty − 1/Tz (Ty < Tz ) . (5)

Note that the Carnot efficiency is given as ηC = TyX2.
The two-dimensional version has been studied in various

contexts with and without a magnetic field [22–27], and the
Onsager coefficients turn out to be symmetric even in the
presence of a magnetic field (see Appendix A). This is why
we resort to a more complicated three-dimensional version,
still keeping only two terminals. Equation (4) can be also
interpreted as a three-particle system in the one-dimensional
space, each of which is confined in a harmonic potential and
interacts to each other through fnc and the Lorenz force, as
illustrated in inset of Fig. 2. Two particles are in contact with
two different heat reservoirs, respectively, and the remaining
one particle is outside of the reservoirs. The two-dimensional
version does not carry this extra particle with the y-z exchange
(left-right) symmetry.

In our model, we calculate the heat transferred from the
i-axis reservoir into the particle Qi(t ) and the work extrac-
tion due to the nonconservative force W (t ) by the standard
stochastic energetics [23,28]. During an infinitesimal time
interval [t, t + dt], their incrementals can be written as

dQi(t ) = vi(t ) ◦ [−γ vi(t )dt + d	i(t )], (6)

dW (t ) = −fnc · dr = −[εvx(t )y(t ) + δx(t )vy(t )]dt, (7)

where ◦ denotes the Stratonovich multiplication [28]
and d	i(t ) ≡ ∫ t+dt

t dt ′ξi(t ′), satisfying 〈d	i(t )〉 = 0 and
〈d	i(t )d	 j (t )〉 = 2γ Tiδi jdt . From the thermodynamic first
law, dE (t ) = dQy(t ) + dQz(t ) − dW (t ), where dE (t ) is the
internal energy change during [t, t + dt]. We consider the
steady-state average only, denoted by 〈· · · 〉s. As 〈dE〉s =
0, we have two independent energy currents. From the
Stratonovich algebra, 〈vi ◦ d	i(t )〉s = γ Tidt/m, the rates of
the heat and work are given by

qi ≡ 〈Q̇i〉s = γ

m
(Ti − m〈v2

i 〉s), (8)

P ≡ 〈P〉s = (ε − δ)〈xvy〉s, (9)

where Q̇i = dQi/dt , P = dW/dt , and the second equation is
obtained by using the steady-state property as d

dt 〈x(t )y(t )〉s =
〈vx(t )y(t )〉s + 〈x(t )vy(t )〉s = 0.

III. ONSAGER COEFFICIENTS

We define two currents J1 and J2 as follows:

J1 ≡ 〈xvy〉s

Ty
, J2 ≡ qz, (10)

where qz is the heat current out of the high-temperature reser-
voir and the work current (power) is given byP = −J1X1Ty, as
in the standard linear irreversible thermodynamics [3]. Then,
the total entropy production (EP) rate 〈Ṡtot〉s can be written as

〈Ṡtot〉s = −qy

Ty
− qz

Tz
= J1X1 + J2X2, (11)

and the thermodynamic second law puts a constraint on the
Onsager matrix as

L = 4 det L − (L12 − L21)2 � 0 for L11, L22 > 0 . (12)

Note that in the so-called tight-coupling case with det L = 0
[29], the Onsager symmetry (s = 1) is required by the above
constraint.

We now calculate J1 and J2 explicitly, i.e., 〈xvy〉s and
〈v2

z 〉s, by following the standard procedure for solving a
multivariate Ornstein-Uhlenbeck process [30,31]. Introduce

a state vector z ≡ (x, y, z, vx, vy, vz )T and a noise vector

d	(t ) ≡ (d	1(t ), d	2(t ), . . . , d	6(t ))T with 〈d	(t )〉 = 0
and 〈d	(t )d	T(t )〉 = 2Ddt , where D is a 6 × 6 symmetric
diffusion matrix. Then the equation of motion, Eq. (4), can be
written in the form of the Ornstein-Uhlenbeck process as

dz = −Azdt + d	, (13)

where

A = 1

m

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −m 0 0
0 0 0 0 −m 0
0 0 0 0 0 −m
k −ε 0 0 −Bz By

−δ k 0 Bz γ −Bx

0 0 k −By Bx γ

⎞
⎟⎟⎟⎟⎟⎠, (14)

and Di j = 0 for all elements except D55 = γ Ty/m2 and D66 =
γ Tz/m2.

The covariant matrix 
 is defined as 
 ≡ 〈zzT〉s = 
T,
which satisfies

A
 + 
AT = 2D (15)

from the steady-state condition d
 = 0 [30,31]. It is straight-
forward to solve Eq. (15), in general, but its solution for 


is quite complicated. In order to calculate the Onsager coef-
ficients in Eq. (1), it is convenient to employ a perturbation
expansion near the steady state (equilibrium) when δ = ε and
Tz = Ty, instead. Up to the lowest order in the thermodynamic
forces X1 and X2 in Eq. (5), we expand the matrices as

A = A0 + A1X1, D = D0 + D2X2,


 = 
0 + 
1X1 + 
2X2, (16)

where the unperturbed ones A0 = A|δ=ε and D0 = D|Tz=Ty ,
and the fist-order corrections [A1]i j = 0 except [A1]51 =
−1/m and [D2]i j = 0 except [D2]66 = γ T 2

y /m2 for all i
and j.

The covariant matrix expansion with 
0, 
1, and 
2 can
be obtained by a series of equations derived from Eq. (15) as

A0
0 + 
0AT
0 = 2D0,

A0
1 + 
1AT
0 = −A1
0 − 
0AT

1 , (17)

A0
2 + 
2AT
0 = 2D2 .
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First, we find


0 = Ty

⎛
⎜⎜⎜⎜⎜⎝

k/K ε/K 0 0 0 0
ε/K k/K 0 0 0 0

0 0 1/k 0 0 0
0 0 0 1/m 0 0
0 0 0 0 1/m 0
0 0 0 0 0 1/m

⎞
⎟⎟⎟⎟⎟⎠, (18)

with K = k2 − ε2. The stability of the unperturbed steady
state is guaranteed by the positivity of all eigenvalues [30,31],
which gives

K = k2 − ε2 > 0 (stability condition) . (19)

We can also find 
1 and 
2 from Eqs. (17) and (18).
From Eqs. (1) and (10), we express the Onsager matrix L

by the elements of the covariant matrix 
 as

L =
(

[
1]15/Ty [
2]15/Ty

−γ [
1]66 γ
(
T 2

y /m − [
2]66
)) . (20)

For simplicity, we set Bx = 0 as an example. Then we get

L11 = 1

γG
[
(2k2 − ε2)γ 2C0C2 + kB2

z (C1 + mε2)C2

+ mε2
(
mε2B2

z + 2kγ 2B2
y

)]
,

L22 = γ T 2
y B2

y

mG
[
(2k2 − ε2)

(
2γ 2C3 + mε2B2

y

)
+ 2k

(
C2

3 + k2B2
yB2

z

)]
,

L12 = εTyB2
y

G
[(2k2 − ε2)γC2 + 2kγ mε2 − εBzC1],

L21 = εTyB2
y

G
[(2k2 − ε2)γC2 + 2kγ mε2 + εBzC1], (21)

where C0, C1, C2, C3, and G are given as

C0 = B2
y + B2

z ,C1 = kC0 + mε2,C2 = C0 + 2γ 2,

C3 = kB2
z + mε2,

G = [{(2k2 − ε2)γ 2 + k(C1 + mε2)}C2 + (mε2)2]C1. (22)

Note that all Ci’s (i = 0, 1, 2, 3) are positive and the even
functions of By and Bz. The odd function in terms of the
magnetic field appears only in the last term of the off-diagonal
elements, L12 and L21.

As expected, the Onsager-Casimir relation [3,4] is satisfied
as L(B) = LT(−B), but the Onsager symmetry is broken;
L(B) �= LT(B), seen in Eq. (21). In contrast to the two-
dimensional case, we find indeed a two-terminal model with
the asymmetric Onsager matrix, i.e., s �= 1 for the three-
dimensional version.

It is interesting to note that the Onsager matrix becomes
symmetric (s = 1) when Bz = 0 with By �= 0 in Eq. (21).
Moreover, L = 4det(L) = 0 (tight coupling), implying that
the reversible process is possible with 〈Ṡtot〉s = 0 in Eq. (11)
at X1 = −εTyX2 and thus the efficiency η can reach the Carnot
efficiency ηC.

IV. EFFICIENCY, POWER, AND EP RATE

The engine efficiency η in converting the heat flowing from
the high-temperature reservoir into the power is defined as

η = P
qz

= −J1X1Ty

J2
= −TyX1(L11X1 + L12X2)

L21X1 + L22X2
, (23)

which is maximized for a given temperature gradient X2 at

X1 = X ∗
1 = −L22

L21

⎛
⎝1 −

√
det L

L11L22

⎞
⎠X2, (24)

with the maximum efficiency for given L,

η∗ = η(X ∗
1 ) = ηC

L11L22

L2
21

⎛
⎝1 −

√
det L

L11L22

⎞
⎠

2

, (25)

where X2 is replaced by ηC = TyX2.
It is rather convenient to rewrite η∗ in terms ofL in Eq. (12)

as

η∗ = ηC

4
[
√
Y + (s + 1)2 −

√
Y + (s − 1)2]2 (Y = L/L2

21),

(26)

withY � 0 by the thermodynamic constraint in Eq. (12). One
can easily find that η∗ is a monotonically decreasing function
of Y for fixed s, so η∗ can reach its highest value ηmax at Y =
0 as

ηmax =
{
ηC for |s| � 1

s2ηC for |s| < 1
, (27)

which is shown as the blue solid curve in Fig. 1 [2]. Note
that in the symmetric case (s = 1), the Carnot efficiency is
achieved in the tight-coupling limit (det L = 0).

The power and the EP rate at the maximum efficiency η∗
are given as

P∗ = P(X ∗
1 ) = L22

√
Y + (s − 1)2

Y + (s + 1)2
η∗X2, (28)

〈Ṡtot〉∗s = L22

√
Y + (s − 1)2

Y + (s + 1)2

(
1 − η∗

ηC

)
X 2

2 . (29)

Along the highest efficiency curve in Eq. (27), the power Pm

and the EP rate 〈Ṡtot〉m
s are obtained as

Pm = L22η
2
C

Ty

{∣∣ s−1
s+1

∣∣ for |s| � 1

s2
(

1−s
1+s

)
for |s| < 1

, (30)

〈Ṡtot〉m
s = L22η

2
C

T 2
y

{
0 for |s| � 1
(1 − s)2 for |s| < 1

. (31)

For |s| > 1, we find that the efficiency can reach ηC in
Eq. (27) with nonzero power Pm in Eq. (30) (dream engine)
and vanishing EP in Eq. (31), which was the main result of
BSC [2].

V. STABILITY

As in Eqs. (18) and (19), the unperturbed steady state
(equilibrium) is stable only for K = k2 − ε2 > 0. Thus, we
should examine the results of the last section within the
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FIG. 3. Plots of L as a function of Bz when (a) k > |ε| and
(b) 0 < k < |ε|, respectively. For both cases, L = 0 at Bz = 0 and
L→ 0+ in |Bz| → ∞ limit.

stability condition. It is easy to see that L11, L22 > 0 and
G > 0 for k2 > ε2 in Eqs. (21) and (22). We need to check
whether the dream engine condition, i.e., L = 0 for |s| > 1 in
Eq. (2), is possible for k2 > ε2.

We rewrite L explicitly, using Eq. (21), as

L = 4T 2
y B2

y

mG2

{
[l11][l22]−mε2B2

yγ
2[(2k2−ε2)C2 + 2kmε2]2

}
,

(32)

where [l11] and [l22] are the expressions inside of the [··] of L11

and L22, respectively, in Eq. (21). First, L = 0 and s = 1 for
Bz = 0 pointed out in Sec. III. Second, L is the even function
of Bz. Thus, L can be written in a power series of B2

z as

L = 4T 2
y B2

y

mG2

5∑
n=1

a2nB2n
z , (33)

where the coefficient a2n is a function of m, k, ε2, γ 2, and B2
y .

It is straightforward to prove that all coefficients a2n’s
are definitely positive for k2 > ε2 (not shown here), which
implies that the L = 0 condition is satisfied only at Bz = 0,
and thus s = 1. Thus, the dream engine cannot be achieved for
any set of parameters compatible with the stability condition.
In Fig. 3, L versus Bz is plotted for a typical parameter set
when (a) k > |ε| and (b) 0 < k < |ε|. Note that L can vanish
at a nonzero Bz only in the unstable case (b). Our result for
this exactly solvable model clearly shows the key role of the
intrinsically imposed constraint, i.e., the existence of a stable
steady state in an engine problem.

We numerically check the maximum efficiency values in
the stable region. As η∗ is the monotonically decreasing
function of Y for a given s in Eq. (26), the highest possible

efficiency value can be obtained at the smallest possible Y,
subject to the stability condition (k > |ε|).

For this calculation, we vary k (0 � k � 7), Bz (−2500 �
Bz � 2500), m (4 � m � 106), γ (0.01 � γ � 1), 100 �
By � 106, and 1 � T2 � 106 with fixed parameter Bx = 0.
The results are presented in Fig. 1, where the stable region
does not reach the Carnot efficiency line except at s = 1. Note
that the stable region is much smaller for negative s and in
particular, does not exist for s = −1. This is special in our
model with Bx = 0, which can be easily noticed in Eq. (21),
i.e., L12 + L21 ∝ (2k2 − ε2)C1 + 2kmε2 can never be zero for
k2 > ε2.

VI. SUMMARY AND DISCUSSION

In summary, we explicitly showed in an exactly solvable
model that the stability constraint for the steady state is crucial
in prohibiting a dream engine. The asymmetry of the Onsager
matrix L may arise in a two-terminal engine, but the reversible
limit for a dream engine cannot be accessible due to the
stability condition of the unperturbed steady state.

The power-efficiency tradeoff relation derived by Dechant
and Sasa (DS) [13] should be applied to our model, which
includes a nonconservative force in the framework of an
underdamped dynamics. The DS derivation is based on the
entropic bound on general irreversible currents, which is
written as

〈Q̇i〉2 � ζi〈Ṡtot〉, (34)

where 〈· · · 〉 denotes the ensemble average at an arbitrary
time t , a time-dependent coefficient ζi = γ Ti〈v2

i 〉, and 〈Ṡtot〉 =
〈Ṡsys〉 − 〈Q̇y〉/Ty − 〈Q̇z〉/Tz with the Shannon entropy change
rate 〈Ṡsys〉. Note that this entropic bound is valid even with
the Lorentz force. Then, we can show that the instantaneous
power

〈P〉 � ζzη

Ty

[
ηC − η + Ty〈Ṡsys〉 − 〈Ė〉

〈Q̇z〉
]
, (35)

where 〈Ė〉 is the system-energy change rate. In the steady
state with 〈Ṡsys〉 = 〈Ė〉 = 0, Eq. (35) returns back to Eq. (3).
If the system is in a transient state, the power may not
vanish at η = ηC in general. This clearly shows the impor-
tance of the steady-state constraint for the power-efficiency
bound. The above discussion can be extended to a cyclic
engine. The similar bound as in Eq. (3) can be derived in a
cyclic steady state [13], where the Shannon entropy change of
the system over one cycle is zero. In Appendix B, the detailed
derivation for the work extraction per cycle is given for a
cyclic engine.

In conclusion, we show that the steady-state constraint is
the key ingredient keeping a dream engine from being real-
ized, rather than the asymmetry of the Onsager matrix. Thus,
the BSC claim [2] based on the Onsager asymmetry should be
understood as a misleading result caused by overlooking the
importance of the intrinsically imposed boundary condition.
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APPENDIX A: TWO-DIMENSIONAL CASE

Consider the equation of motion, Eq. (4), in the two-
dimensional space with

Fnc =
(

0 ε

δ 0

)
, � =

(
γ 0
0 γ

)
, and ξ =

(
ξx

ξy

)
, (A1)

where ξi (i = x, y) is a white Gaussian noise satisfy-
ing 〈ξi(t )ξi(t ′)〉 = 2γ Tiδ(t − t ′) in the Boltzmann unit and
B = Bẑ in the z direction. The thermodynamic forces are
defined as

X1 ≡ δ − ε and X2 ≡ 1/Tx − 1/Ty (Tx < Ty), (A2)

and the currents are

J1 ≡ 〈xvy〉s

Tx
, J2 ≡ qy = γ

m

(
Ty − m

〈
v2

y

〉
s

)
, (A3)

where qy is the heat current out of the high-temperature
reservoir and the work current is given by w = −J1X1Tx.

In order to express the equation of motion in a mul-
tivariate Ornstein-Uhlenbeck form in Eq. (13), we intro-

duce a state vector z = (x, y, vx, vy)T and a noise vector

d	(t ) = [d	1(t ), d	2(t ), d	3(t ), d	4(t )]T, with 〈d	(t )〉 =
0 and 〈d	(t )d	T(t )〉 = 2Ddt , with

A = 1

m

⎛
⎜⎝

0 0 −m 0
0 0 0 −m
k −ε γ −B

−δ k B γ

⎞
⎟⎠,

D = 1

m2

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 γ Tx 0
0 0 0 γ Ty

⎞
⎟⎠ . (A4)

The covariant matrix 
 satisfies Eq. (15) in the steady state,
and its expansion near the equilibrium (δ = ε, Ty = Tx ) can be
obtained through Eqs. (16) and (17) with A0 = A|δ=ε , D0 =
D|Ty=Tx ,

A1 = 1

m

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

−1 0 0 0

⎞
⎟⎠,

and D2 = 1

m2

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 γ T 2

x

⎞
⎟⎠ . (A5)

It is simple to find 
0 from Eq. (17) as


0 = Tx

⎛
⎜⎝

k/K ε/K 0 0
ε/K k/K 0 0

0 0 1/m 0
0 0 0 1/m

⎞
⎟⎠, (A6)

with K = k2 − ε2. The stability condition is given by K > 0.
We can also find 
1 and 
2 as well.

From Eqs. (1) and (10), the Onsager matrix L is given as

L =
(

[
1]14/Tx [
2]14/Tx

−γ [
1]44 γ
(
T 2

x /m − [
2]44
)), (A7)

and finally we get

L11 = B2 + γ 2

γC
, L22 = γ T 2

x (kB2 + mε2)

mC
,

L12 = −εγ Tx

C
= L21, withC = 2(kB2 + mε2 + kγ 2) .

(A8)

As seen in Eq. (A8), the Onsager matrix is an even function of

the magnetic field B and thus is symmetric (L = LT
, s = 1),

like in other two-terminal particle transport systems [6,18].
We also note that L = 4det(L) = 2B2T 2

x /(mC) > 0 (no tight
binding), implying that the reversible process (〈Ṡtot〉s = 0)
is impossible; thus the efficiency η cannot reach the Carnot
efficiency ηC for nonzero B.

APPENDIX B: CYCLIC ENGINE

We consider a cyclic engine with time period τ as follows.
An engine system is in contact with multiple heat reservoirs
with temperature Ti(t ) varying periodically in time t as Ti(t +
τ ) = Ti(t ). We assume that the system is described by a
Langevin dynamics. The average heat energy 〈Qi〉 out of the
ith reservoir during one period is given by

〈Qi〉 ≡
∫ τ

0
dt〈Q̇i〉 �

∫ τ

0
dt |〈Q̇i〉| �

∫ τ

0
dt

√
ζi

√
〈Ṡtot〉

�
√∫ τ

0
dt

√
ζi

√∫ τ

0
dt〈Ṡtot〉, (B1)

where Eq. (34) and the Cauchy-Schwarz inequality are ap-
plied. Then we get the inequality similar to Eq. (34) as

〈Qi〉2 � χi〈�Stot〉, (B2)

with a positive constant χi = ∫ τ

0 dt
√

ζi and the total EP during
one period 〈�Stot〉.

With the two (hot and cold) reservoirs with temperatures
Th and Tc, respectively, we can easily find

〈W 〉 � χhη

Tc

[
ηC − η + Tc〈�Ssys〉 − 〈�E〉

〈Qh〉
]
, (B3)

where 〈W 〉, 〈�Ssys〉, and 〈�E〉 are the work production,
the Shannon entropy change, and the system energy change
during one period, respectively. In the cyclic steady state with
〈�Ssys〉 = 〈�E〉 = 0, the work extraction is impossible at the
Carnot efficiency, even though it is possible in a transient state.
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