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Recently, it has been shown that there is a trade-off relation between thermodynamic cost and current
fluctuations, referred to as the thermodynamic uncertainty relation (TUR). The TUR has been derived for various
processes, such as discrete-time Markov jump processes and overdamped Langevin dynamics. For underdamped
dynamics, it has recently been reported that some modification is necessary for application of the TUR. However,
the previous TUR for underdamped dynamics is not applicable to a system driven by a velocity-dependent force.
In this study, we present a TUR, applicable to a system driven by a velocity-dependent force in the context
of underdamped Langevin dynamics, by extending the theory of Vu and Hasegawa [Phys. Rev. E 100, 032130
(2019)]. We show that our TUR accurately describes the trade-off properties of a molecular refrigerator (cold
damping), Brownian dynamics in a magnetic field, and an active particle system.
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I. INTRODUCTION

The thermodynamic uncertainty relation (TUR) is a trade-
off relation between current fluctuations and entropy produc-
tion (EP) [1,2]. Generally, for an accumulated current � over
a given time period T, such as work, displacement, etc., the
TUR states that the relative fluctuation multiplied by the EP is
always larger than or equal to 2kB in the steady state; that is,
the original TUR can be written as

Qori(�) ≡ Var[�]

〈�〉2
s

σsT � 2kB, (1)

where 〈· · · 〉s denotes a steady-state average, Var[�] =
〈�2〉s − 〈�〉2

s is the variance in �, σs is the steady-state EP
rate, and kB is the Boltzmann constant. Note that we use the
subscript “ori” to distinguish the original TUR from other
modified TURs. This relation implies that it costs a large
amount of EP (heat dissipation) to achieve high accuracy (low
relative fluctuation) with a stochastic motion.

The TUR was first discovered in a biological network [1].
It has since been derived for a continuous-time Markov jump
process over a finite time [3–5], as well as in the long-time
limit [2], and for an overdamped Langevin system [4,6,7].
It has also been shown that the TUR should be modified for
discrete-time Markov jump processes [8], linear-response sys-
tems [9], and periodically driven systems [10–12]. Moreover,
the TUR was utilized in [13] for understanding the relations
between the power, efficiency, constancy of a heat engine
[14–23].

The validity of the TUR was questioned recently for un-
derdamped Langevin dynamics [24]. Subsequently, Vu and
Hasegawa [25] demonstrated that the original TUR, Eq. (1),
can be violated for a squared velocity current in equilibrium
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and for displacement of the Brownian particle in a tilted
periodic potential. They derived a modified TUR for the
underdamped dynamics [25]:

Qu(�) ≡ Var[�]

〈�〉2
s

�u � 2kB, �u ≡ T(9σs + 4ϒ) + �,

(2)

where ϒ is the dynamical activity and � is a boundary term
defined as in Eq. (18).

However, Eq. (2) is derived under the assumption that an
external force is only position dependent and not velocity
dependent. Therefore, Eq. (2) cannot be applied to a system
such as that studied by Chun et al. [26], wherein a charged
Brownian particle moves under a magnetic field; specifically,
they showed that Eq. (1) can be violated when a magnetic
field and a rotational force are applied simultaneously. To
account for the effect of a Lorentz force on the TUR, some
modification of the TUR is necessary, taking into considera-
tion a velocity-dependent force in the underdamped dynamics.
Velocity-dependent force plays a key role in many impor-
tant contexts, such as molecular refrigerators (cold damping)
[27–32], collective motions of active or passive Brownian
particles with velocity-dependent interactions [33–39], and
certain active-matter dynamics [40–45].

In this work, we extend the uncertainty relation, Eq. (2) so
that it is applicable to underdamped Langevin systems with
a general velocity-dependent force. We find that a velocity-
dependent force only changes the dynamical activity term as
presented in Eq. (18). We examine the applicability of our
result in Eq. (20) to three physical systems driven by velocity-
dependent forces: a cold-damping problem, a magnetic-field
involved problem, and an active-matter problem. From these
concrete examples, we show that our inequality is valid for
a system driven by a velocity-dependent force, while the
original TUR [1] and that of Vu and Hasegawa’s [25] do not
hold. We also identify several conditions allowing the lowest
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bound of the inequality to be attained, which was claimed to
be impossible in a previous study [25].

The paper is organized as follows. In Sec. 2, we explain
our model system and derive the TUR for the underdamped
Langevin system with a velocity-dependent force. The main
results are presented in Eq. (20). In Sec. 3, we check our result
for three cases: cold-damping, a charged particle in a magnetic
field, and an active-matter system. In Sec. 4, we conclude the
paper with a brief summary and discussion.

II. MODEL AND MODIFIED TUR

We consider an N-dimensional underdamped Langevin
system, where the ith particle (i = 1, . . . , N) is in contact with
a heat reservoir with temperature Ti. Define xi and vi as posi-
tion and velocity of the ith particle, respectively. A general
position- and velocity-dependent force Fi(x, v) is applied to
the ith particle, where x = (x1, . . . , xN ) and v = (v1, . . . , vN ).
The dynamics of the ith particle is described by the following
equation:

ẋi = vi, miv̇i = Fi(x, v) − γivi + ξi, (3)

where mi, γi, and ξi are the mass, the damping coeffi-
cient, and the Gaussian white noise, satisfying 〈ξi(t )ξ j (t ′)〉 =
2kBγiTiδi jδ(t − t ′), respectively. For brevity, we set kB = 1
for the following discussion. If we define P(x, v, t ) as the
probability distribution function, then this dynamics can be
also described by the following Fokker-Planck equation:

∂t P(x, v, t ) = −
N∑

i=1

(
∂xi Jxi + ∂vi Jvi

)
, (4)

where the probabilistic currents Jxi = viP(x, v, t ) and Jvi =
m−1

i [−γivi + Fi(x, v) − Tiγim
−1
i ∂vi ]P(x, v, t ).

Now we consider a single trajectory in the (x, v) phase
space of this dynamics from time t = 0 to t = T, which is
denoted by � ≡ [x(t ), v(t )]t=T

t=0 . Note that (x0, v0) is the start-
ing point of this trajectory. The probability density observing
the trajectory � is denoted by P[�]. To calculate the EP (or
irreversibility), we need to define the time-reverse dynamics
[46]. The time-reverse position and velocity variables, x̃ and
ṽ, should satisfy

˙̃xi = ṽi, mi ˙̃vi = F †
i (x̃, ṽ) − γiṽi + ξi, (5)

where the † operation reverses signs of all odd parameters
in the time-reversal process. P†[�̃] is the probability density
observing the time-reverse trajectory �̃ ≡ [x(T− t ),−v(T−
t )]t=T

t=0 in the † dynamics of Eq. (5). Note that there is no
unique way to choose odd parameters for the time-reversal
process. For example, one may regard a magnetic field as
an odd parameter, so change the sign of a magnetic field in
the time-reverse dynamics [21,47]. On the other hand, one
may keep the sign of the magnetic field for the irreversibility
[48–52], where the † dynamics is identical to the original
time-forward dynamics. Nonetheless, we will show later that
our result does not depend on the choice of odd parameters.

With a certain choice of odd parameters, we divide the
force into the reversible and irreversible one as

Fi(x, v) = F rev
i (x, v) + F ir

i (x, v), (6)

with F rev
i (x, v)=F rev

i
†(x,−v) and F ir

i (x, v)= − F ir
i

†
(x,−v).

Then, we get the irreversible part of the velocity component
of the probability current as

J ir
vi

= 1

mi

[
F ir

i (x, v) − γivi − Tiγi

mi
∂vi

]
P(x, v, t ). (7)

The total EP is determined by the ratio between the two
trajectory probabilities P[�] and P†(�̃), that is, �Stot =
ln[P[�]/P†[�̃]] [46]. In addition, the average EP rate can be
written as [48,51]:

σ ≡ 〈Ṡtot〉 =
N∑

i=1

m2
i

Tiγi

∫
dx
∫

dv

(
J ir
vi

)2
P(x, v, t )

. (8)

Note that σ defined in Eq. (8) for systems driven by velocity-
dependent forces usually does not correspond to the con-
ventional form of the EP consisting of the Shannon entropy
change and the Clausius entropy production associated with
the heat exchange [32,47–52]. Thus, the conventional EP by
itself can be negative in some systems driven by velocity-
dependent forces [32,50,51].

The main goal of this study is finding a modified TUR for
a general current � which has the following form:

�[�] =
∫ T

0
dt�(x(t ), v(t )) ◦ v(t ), (9)

where � is an arbitrary N-dimensional vector and ◦ denotes
the Stratonovich multiplication. Note that the calculation
result is independent of the choice of the calculus (Ito or
Stratonovich) in this case. To go further, we take the virtual
perturbation approach by Vu and Hasegawa [6,7,25]. First,
consider an auxiliary dynamics

ẋi = vi, miv̇i = Hθ,i(x, v) + ξi, (10)

where Hθ,i is an auxiliary force with Hθ=0,i = Fi − γivi. Thus,
the auxiliary dynamics (10) becomes the original dynamics
(3) at θ = 0. The detailed form of Hθ,i will be given later.
The trajectory probability density in the auxiliary dynamics is
denoted by Pθ [�]. In the Onsager-Machlup formulation [53],
Pθ [�] in the Ito scheme is given by

Pθ [�] = NPθ (x0, v0)
N∏

i=1

exp[−Ai[�]], (11)

where the action Ai[�] = ∫ T0 dt 1
4Tiγi

[miv̇i − Hθ,i(x, v)]2 and
N is the normalization constant which is independent of θ .

The trajectory-ensemble average of �[�] in the auxil-
iary dynamics is 〈�〉θ = ∫ D��[�]Pθ [�]. With Varθ [�] ≡
〈�2〉θ − 〈�〉2

θ , the Cramér-Rao inequality yields [7]

Varθ [�]

(∂θ 〈�〉θ )2
� 1

I(θ )
, (12)

where I is the Fisher information given by

I(θ ) = −〈∂2
θ ln Pθ (x0, v0)

〉
θ
+ 1

2

〈
N∑

i=1

∫ T
0

dt
(∂θHθ,i )2

Tiγi

〉
θ

.

(13)

We slightly modify the perturbation technique presented in
Ref. [25] in order to include a velocity-dependent force by
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considering the auxiliary force as

Hθ,i(x, v) = − (1 + θ )γivi + (1 + θ )2Fi

(
x,

v

1 + θ

)

+ Tiγi

mi
[1 − (1 + θ )3]

∂vi P
ss
(
x, v

1+θ

)
Pss
(
x, v

1+θ

) , (14)

where Pss(x, v) is the steady-state solution of the original
dynamics (4). By using Eq. (14), it can be easily shown
that the steady-state probability distribution function of the
Fokker-Planck equation of the auxiliary dynamics is given by

Pss
θ (x, v) = Pss

(
x, v

1+θ

)
(1 + θ )N

. (15)

For a general �(x(t ), v(t )), ∂θ 〈�〉θ at θ = 0 in the steady state
becomes

∂θ 〈�〉θ,s|θ=0 = ∂θ

[
T
∫

dx
∫

dv�(x, v) · vPss
θ (x, v)

]∣∣∣∣
θ=0

= T
∫

dx
∫

dvPss(x, v)v · (1 + v · ∇v )�(x, v)

= 〈�〉s + 〈�′〉s, (16)

where 〈�〉s = T ∫ dx
∫

dv�(x, v) · vPss(x, v) and 〈�′〉s =
T
∫

dx
∫

dv[(v · ∇v )�(x, v)] · vPss(x, v).
Now, we calculate the Fisher information I(θ ) at θ =

0. The second bulk term in Eq. (13) can be split into the
term proportional to the EP and the term proportional to the
dynamic activity, while the first term yields the boundary term
independent of the time duration T. After some algebra in the
steady state, we arrive at

I(0) = 1
2 [T(9σs + 4ϒuv) + �], (17)

where σs is the steady-state EP rate given by Eq. (8), ϒuv is
the generalized dynamic activity, and � is the boundary term,
which are expressed by

ϒuv =
N∑

i=1

(
1

4Tiγi

〈
F2

i

〉
s − 2γi

Ti

〈
v2

i

〉
s − 1

2Ti
〈viFi〉s

+ 3

2Tiγi

〈
FiF

ir
i

〉
s + 3

Ti

〈
viF

ir
i

〉
s + 3

2mi

〈
∂viFi

〉
s + 3γi

mi

)
,

� = 2

〈[∑N
i=1 vi∂vi P

ss(x, v)

Pss(x, v)

]2〉
s

− 2N2, (18)

with

Fi = 2F rev
i − F ir

i − (v · ∇v )Fi. (19)

We note that ϒuv in Eq. (18) becomes ϒ of Ref. [25] when
the force is only position dependent (see Eqs. (A42) and (A3)
of Ref. [25]). From Eqs. (12), (16), and (17), the TUR can be
written as

Quv(�) ≡ Var[�]

〈�〉2
s

�uv � 2, �uv ≡ T(9σs + 4ϒuv) + �

(1 + 〈�′〉s/〈�〉s)2
,

(20)

where the subscript “uv” represents the “underdamped dy-
namics with a velocity-dependent force.” The main difference
of Eq. (20) from Eq. (2) is the form of the dynamical activity.

This difference goes away without a velocity-dependent force
by setting ∂v j Fi = 0 and F ir

i = 0 for all i and j. It should
be emphasized that �uv is independent of the choice of odd
parameters, even though the EP rate σs and the dynamic
activity ϒ depends on the choice, respectively. This implies
that the original TUR depends on this choice. We also note
that, when � has only position-dependent terms, 〈�′〉s = 0.
If �i(x, v) = λi(x)vd

i , then 〈�′〉s/〈�〉s = d . These cases had
been previously discussed in Ref. [25].

III. EXAMPLES

In this section, we test our main result in Eq. (20), for three
systems affected by velocity-dependent forces: (i) a molecular
refrigerator, (ii) a Brownian particle in a magnetic field with a
rotational force, and (iii) an active-matter system.

A. Molecular refrigerator

Here, we consider a one-dimensional Brownian particle
immersed in a reservoir with temperature T . Its position and
velocity are denoted by x and v, respectively. An external
linear dissipative force −αv is applied to the particle. Then,
the equation of motion becomes

ẋ = v, mv̇ = −αv − γ v + ξ, (21)

where γ and ξ are the damping coefficient and the Gaus-
sian white noise satisfying 〈ξ (t )ξ (t ′)〉 = 2γ T δ(t − t ′), re-
spectively. Note that α + γ > 0 for the stability of the dy-
namics. Equation (21) describes the motion of the simplest
molecular refrigerator [27–32]. The external dissipative force
reduces the thermal fluctuation of the particle when α > 0.
Thus, its motion is effectively the same as that of a particle
in a cooler environment, which mimics a refrigerator at the
particle level. This mechanism is often used for reducing
thermal fluctuations of a mesoscopic system such as a sus-
pended mirror of interferometric detectors [28,29] and an
atomic-force-microscope cantilever [30,31].

The steady state of Eq. (21) is given by the Boltzmann
distribution, that is,

Pss(v) =
√

m

2πT ′ exp
(
− m

2T ′ v
2
)
, (22)

where T ′ = γ T/(γ + α) is the effective temperature.
In this problem, we choose the reversible and irreversible

forces as follows:

F rev = 0, F ir = −αv, F = 2αv. (23)

Then, it is straightforward to show that ϒuv = (α + γ )/m
from the fact 〈v2〉s = T ′/m. In addition, the irreversible cur-
rent becomes zero from Eq. (7), thus σs = 0. Finally, � = 4.
Therefore, �uv of the molecular refrigerator becomes

�mr
uv =

(
4T

α + γ

m
+ 4

)/
(1 + 〈�′〉s/〈�〉s)2. (24)

Note that we can choose another reversible and irreversible
force as F rev = −αv and F ir = 0, respectively [32]. In this
case, the EP rate changes as σs = α2/[m(α + γ )] (called as
entropy pumping [32]), while �mr

uv remains unchanged. This
result can be also obtained by simply replacing γ to γ + α in
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the formulation of Ref. [25]. This is due to the linearity of the
velocity-dependent force αv in this specific example, with the
choice of this force as an irreversible one.

To test the validity of Eq. (20), we choose the work current
for � with �(v) = −αv. It is easy to calculate the average
work in the steady state as

〈W mr〉s = T〈−αv2〉s = − αγ T

m(α + γ )
T. (25)

Its variance can be also calculated explicitly (see the detailed
calculation in Appendix A):

Var[W mr]= 2α2γ 2T 2

m(α + γ )3

(
T− m{1 − exp[−2(α + γ )T/m]}

2(α + γ )

)
.

(26)

Combining Eqs. (25), (26), and (24) with the fact
〈W mr′〉s/〈W mr〉s = 1, we find the TUR factor for the work as

Qmr
uv (W mr) ≡ Var[W mr]

〈W mr〉2
�mr

uv = 2

(
1 + 1

χ

)(
1 − 1 − e−2χ

2χ

)
,

(27)

where χ = T/τrelax is the observation time in the unit of the
relaxation time τrelax ≡ m/(α + γ ). This factor turns out to be
always larger than 2, as expected (see Fig. 1). It is noteworthy
to mention that the lowest bound (Quv → 2) is reachable in
both the χ → 0 (short-time) and χ → ∞ (long-time) limit.
Thus, our inequality of Eq. (20) provides a tight bound for
work fluctuations in this case.

To confirm our analysis, we performed numerical calcula-
tions by solving Eq. (21) using a generalized velocity-Verlet
algorithm [54] which is correct up to the second order of
simulation time step �t = 0.01. We obtained Qmr

uv (W mr) by
averaging over 107 sample paths starting from random initial
states sampled from the steady-state distribution (22). Numer-
ical results are shown in Fig. 1, which are perfectly matched
to the analytic curve (27).

We check whether the original TUR (1) is valid or not in
this model. As mentioned previously, the EP rate depends on

FIG. 1. The TUR factor Q for the molecular refrigerator as a
function of the rescaled observation time χ . Red circles, blue down-
triangles, and cyan squares are the numerical results for (α, γ ) =
(0.33, 0.67), (0.5, 0.5), and (0.67, 0.33), respectively. For this cal-
culation, m = 1 and T = 1 are used. The black solid curve denotes
the analytic result (27).

the choice of the odd parameters. With the choice of F rev =
0 and F ir = −αv, we get σs = 0. Therefore, the original
TUR factor Qmr

ori(W
mr) = 0, which clearly violates the original

TUR. With the choice of F rev = −αv and F ir = 0, we get
σs = α2/[m(α + γ )], leading to

Qmr
ori(W

mr) = 2α2

(α + γ )2

(
1 − 1 − e−2χ

2χ

)
. (28)

When α > 0, Qmr
ori(W

mr) becomes smaller than 2. Again, the
original TUR is broken.

The modified TUR found by Vu and Hasegawa (2) does not
hold either in this model. Their dynamical activity is given by
[25]

ϒ = 1

T γ
〈F 2〉s − 3

γ

T
〈v2〉s + 4

γ

m
= γ 2 + α2 + 4γα

m(γ + α)
, (29)

where F = −αv. The EP rate is choice dependent, as dis-
cussed above. It turns out that any choice yields a negative
value for �u in Eq. (2) for some parameter range of α, which
clearly demonstrates that Eq. (2) is not valid for a system
driven by a velocity-dependent force. Thus, our inequality of
Eq. (20) should be used for a underdamped system with a
velocity-dependent force.

B. Brownian particle in a magnetic field with a rotational force

Recently, Chun et al. [26] studied the validity of the
original TUR for a Brownian particle in a magnetic field. They
found that the original TUR on the work current can be broken
due to a magnetic field. To find a correct uncertainty relation,
we should take account of the effect of a velocity-dependent
force, since the magnetic field induces a Lorentz force.

To check validity of our inequality, we consider the same
system studied by Chun et al. [26]. Suppose that a charged
Brownian particle is trapped in a harmonic potential with
stiffness k and immersed in a reservoir with temperature
T . The particle moves in a two-dimensional space, and its
position and velocity are denoted by x = (x1, x2) and v =
(v1, v2), respectively. The Lorentz force (Bv2,−Bv1) and a
nonconservative rotational force (ωx2,−ωx1) are applied to
the particle. Then, the equation of motion can be written as

ẋ1 = v1, mv̇1 = Bv2 − kx1 + ωx2 − γ v1 + ξ1,

ẋ2 = v2, mv̇2 = −Bv1 − kx2 − ωx1 − γ v2 + ξ2. (30)

In this dynamics, the total forces are F1 = Bv2 − kx1 + ωx2

and F2 = −Bv1 − kx2 − ωx1. We choose the reversible part
of Fi as F rev

1 = F1 and F rev
2 = F2, with the irreversible parts

F ir
1 = 0 and F ir

2 = 0. Then, we get F1 = 2F1 − Bv2 and F2 =
2F2 + Bv1. With this choice, the irreversible current (7) sim-
ply becomes the heat current [47,51] and the EP rate is given
by

σs = −〈Q̇1〉s + 〈Q̇2〉s

T
= −2γ

m
+ γ

T

(〈
v2

1

〉
s + 〈v2

2

〉
s

)
, (31)

where Q̇i = (−γ vi + ξi ) ◦ vi is the heat current in the ith
direction. The second equality of Eq. (31) comes from the
fact 〈Q̇i〉s = γ (T/m − 〈v2〉s) [51,55] which can be straight-
forwardly shown by using the Stratonovich multiplication.

For evaluating the boundary term �, we need to know the
distribution function Pss(x, v). For this purpose, we rewrite
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Eq. (30) in the form of a multivariate Ornstein-Uhlenbeck
process as

ż = −Az + η, (32)

where z = (x1, x2, v1, v2)T, η = (0, 0, ξ1, ξ2)T, and

A = 1

m

⎛
⎜⎜⎜⎝

0 0 −m 0

0 0 0 −m

k −ω γ −B

ω k B γ

⎞
⎟⎟⎟⎠. (33)

As we are interested in the steady state, we need a condition
for guaranteeing a stable solution of this linear system which
is given by [26,56]

K ≡ k + ωB

γ
− ω2m

γ 2
> 0. (34)

We define the covariance matrix C ≡ 〈zzT〉s which is the

solution of the matrix equation AC + CAT = 2D, where D =
(γ T/m2)diag{0, 0, 1, 1}. The solution is [26,56,57]

C = T

γ K

⎛
⎜⎜⎜⎝

γ 0 0 −ω

0 γ ω 0

0 ω (γ k + ωB)/m 0

−ω 0 0 (γ k + ωB)/m

⎞
⎟⎟⎟⎠.

(35)

Then, the distribution function can be written as [26]

Pss(z) = 1√
det2πC

exp

[
−1

2
zT · C−1z

]
. (36)

By inserting Eq. (36) to Eq. (18), we can explicitly calculate
�. The result is

� = 8 + 4mω2

γ 2K
. (37)

Finally, using the fact 〈x2
1〉s = C11, 〈x2

2〉s = C22, 〈v2
1〉s = C33,

〈v2
2〉s = C44, 〈x1v2〉s = C14, and 〈x2v1〉s = C23, the dynamical

activity can be written as

ϒmag
uv = B2/4 − 2γ 2

γ T
(C33 + C44) + k2 + ω2

γ T
(C11 + C22)

+ ωγ − Bk

γ T
(C14 − C23) + 6γ

m
. (38)

Combining Eqs. (31), (37), and (38), we have, consequently,

�mag
uv =

ST+ 8 + 4mω2

γ 2K

(1 + 〈�′〉s/〈�〉s)2
, (39)

where the bulk term S = 9σs + 4ϒ
mag
uv is given as

S = 8γ (B2/4 + γ 2)K + 2mγ [(K + ω2mγ −2 + k)2 + ω2]

mγ 2K
.

(40)
We consider the accumulated work W mag done by

the nonconservative rotational force, that is, with �(x) =
(ωx2,−ωx1) as

W mag(T) =
∫ T

0
ω[x2(t )v1(t ) − x1(t )v2(t )]dt . (41)

As � has only position-dependent terms, 〈W mag′〉s/〈W mag〉s =
0. The long-time behavior of the relative fluctuation of the
accumulated work was already calculated in Ref. [26,58],
which is

2Dmag
W

〈Ẇ mag〉2
s

=
[
1 + ω2

0(1 + 3m0) + ω3
0m0B0

]
γ(

1 + ω0B0 − ω2
0m0
)
ω2

0k
, (42)

where the diffusion coefficient Dmag
W is defined as

Dmag
W ≡ lim

T→∞
Var[W mag]

2T
(43)

and ω0 = ω/k, B0 = B/γ , and m0 = km/γ 2 are dimension-
less parameters. By multiplying Eqs. (39) and (42), we finally
get

Qmag
uv,∞(W mag) ≡ 2Dmag

W

〈Ẇ mag〉2
s

S, (44)

where the subscript “∞” denotes that Qmag
uv is evaluated in the

T→ ∞ limit.
To confirm our bound, we numerically calculate

Qmag
uv,∞(W mag) for many parameter sets of (ω0, B0, m0)

and plot them in Fig. 2. As shown in the figure, Qmag
uv,∞(W mag)

satisfies our bound (20). However, it seems that the lowest
bound is not reachable at all in this case; the minimum
value of Qmag

uv,∞(W mag) is about ∼100, which indicates that
Qmag

uv,∞(W mag) provides a very loose (so not much useful)
bound in this system. For comparison, we also plot the values
of the original TUR factor Qmag

ori,∞(W mag) for many parameter
sets, which is given by

Qmag
ori,∞(W mag) ≡ 2Dmag

W

〈Ẇ mag〉2
s

σs, (45)

where we calculate the EP rate σs as in Eq. (31). As al-
ready reported in Ref. [26], the origianl TUR is satisfied as
Qmag

ori,∞(W mag) � 2 for Bω < 0, but does not hold for Bω > 0.
We remark that the original TUR is valid for all parameter

regions when we take the Lorentz force as the irreversible

FIG. 2. The TUR factor Q as a function of the rescaled magnetic
field B0 in the infinite time limit for a charged Brownian particle in a
magnetic field. Open red circles represent the results calculated from
the original TUR (45), whereas filled blue squares represent those
from our result in Eq. (44). Under the stability condition (34), we
choose the parameters m0 ∈ [0, 1] and ω0 ∈ [0, 10] for a given B0

to plot data points. The black dashed-dotted line indicates the TUR
bound, that is, Q = 2.
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one. In this case, the EP rate includes an extra positive
unconventional term σ unc

s = 2B2(k + ωB/γ )/(mγ K ) [51,56].
However, it is not clear at this moment that this choice
may guarantee the validity of the original TUR in a more
generalized model with a magetic field as well as nonlinear
nonconservative forces.

C. Active matter

We consider an overdamped “self-propelled” or “active”
particle moving along a one-dimensional ring. The dynamics
of an active particle is sometimes described by the active
Ornstein-Uhlenbeck process (AOUP) [44,45], which is given
by

ẋ = −μ∂x� + fnc + η, (46)

where μ is the mobility, � is a potential applied to the
particle, fnc is an applied nonconservative force, and η is
a colored noise satisfying 〈η(t )η(0)〉 = (D/τ )e−|t |/τ . In the
AOUP description, the evolution of η is simply described by

τ η̇ = −η +
√

2Dξ, (47)

where τ is the persistence time and ξ is a white Gaussian
noise satisfying 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). This overdamped
motion with a colored noise can be written in the form of an
underdamped dynamics. By introducing the auxiliary velocity
v ≡ ẋ and mass m ≡ τ/μ, we have [44,45]

mv̇ = −∂x� − τv∂2
x � + γ fnc + m ḟnc − γ v +

√
2γ T ξ,

(48)

where � = � + τ∂t�, γ ≡ 1/μ, and the auxiliary
temperature by T ≡ D/μ. Equation (48) describes the
underdamped motion of a Brownian particle with an external
force F = −∂x� − τv∂2

x � + γ fnc + m ḟnc in a reservoir
with temperature T . As F depends on velocity v, the effect
of a velocity-dependent force should be considered for the
uncertainty relation.

Here, we consider a tilted periodic potential [25,59]:

fnc = f (const) and � = AL

2πn
sin

(
2πn

L
x

)
, (49)

where A is the amplitude of the potential, L is the length of the
ring, and n is an integer number. As there is no explicit time
dependence in fnc and �, ḟnc = 0, and � = �. We choose F ir

as a velocity-dependent part of F . Thus, we have

F rev = −A cos

(
2πn

L
x

)
+ γ f ,

F ir = 2πnmμA

L
v sin

(
2πn

L
x

)
, (50)

F = −2A cos

(
2πn

L
x

)
+ 2γ f − 4πnmμA

L
v sin

(
2πn

L
x

)
.

The steady-state EP rate can be expressed as

σs = − A

T

(
2πnmμ

L

)2〈
v3 cos

(
2πn

L
x

)〉
s

+ γ f

T
〈v〉s, (51)

of which the detailed derivation is presented in Appendix B.
Note that this EP is calculated in the auxiliary underdamped
dynamics, thus, it does not necessarily correspond to the

actual EP calculated in the original overdamped dynamics
[44,45,60].

It is not possible to proceed to calculate the TUR factor
analytically with the periodic potential. For simplicity, we first
consider the case of � = 0, where all calculations can be done
analytically, but there is no velocity-dependent force. The
auxiliary underdamped equation of motion, Eq. (48), becomes

ẋ = v, mv̇ = γ f − γ v +
√

2γ T ξ . (52)

Here, we take F = γ f = F rev and F ir = 0, thus F = 2F . By
making a change of variables as V = v − f and X = x − f t ,
Eq. (52) becomes Ẋ = V and mV̇ = −γV + √

2γ T ξ , which
describes a Brownian motion without an external force. Thus,
it is straightforward to calculate 〈v〉s = f , 〈x〉s = fT, 〈v2〉s =
f 2 + T/m, and 〈x2〉s = f 2T2 + 2TT/γ from the facts 〈V 〉s =
0, 〈X 〉s = 0, 〈V 2〉s = T/m, and 〈X 2〉s = 2TT/γ . In addition,
the EP rate is σs = γ f 〈v〉s/T = γ f 2/T and the steady-state
distribution function is Pss(v) = √

m/(2πT ) exp[−m(v −
f )2/(2T )]. Using these results, �uv of the active matter be-
comes

�am
uv =

[(
γ f 2

T
+ 4γ

m

)
T+ 2m f 2

T
+ 4

]/
(1 + 〈�′〉s/〈�〉s)2.

(53)

We consider the accumulated work W mag done by the
constant force f , giving � = f and 〈W mag′〉s = 0. It is easy
to calculate its average and variance as

Var[W am]

〈W am〉2
s

= Var[x]

〈x〉2
s

= 2T

γ f 2T
. (54)

Then, the original TUR for this active system gives

Qam
ori (W

am) ≡ Var[W am]

〈W am〉2
s

Tσs = 2, (55)

which always reaches the lowest bound of the original TUR.
On the other hand, our result in Eq. (20) gives

Qam
uv (W am) ≡ Var[W am]

〈W am〉2
s

�am
uv

= 2 + 8T

f 2m
+ 4T

γ f 2T

(
m f 2

T
+ 2

)
, (56)

which is always larger than 2. The lowest bound is reachable
in the limit of both T and f → ∞.

For nonzero �, we perform numerical simulations. For
convenience, we first reduce the number of parameters of the
system by rescaling the units of length, time, and energy. To
this end, we introduce the dimensionless variables

x0 ≡ n

L
x, t0 ≡ t

τ
, η0 ≡ nτ

L
η, (57)

and ξ0(t0) ≡ √
τξ (t ) satisfying 〈ξ0(t0)ξ0(t ′

0)〉 = δ(t0 − t ′
0).

Equations (46) and (47) are then written in terms of the
dimensionless variables and parameters as

∂t0 x0 = −μ0∂x0�0 + f0 + η0 (58)

and

∂t0η0 = −η0 +
√

2μ0ξ0, (59)
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FIG. 3. The TUR factor Q as a function of the dimensionless
force f0 in the infinite-time limit for the active-matter system for var-
ious μ0 and A0. Circles, triangles, and squares denote the numerical
results for μ0 = 0.5, 1, and 2, respectively. Symbols with no line
(red), dotted line (blue), and dashed line (cyan) represent A0 = 0,
A0 = 0.05, and A0 = 0.1, respectively. The analytic results (56) for
A = 0 are drawn by the black solid curves. The black dashed-dotted
line indicates the bound Q = 2.

where μ0 ≡ (n/L)2τT μ, f0 ≡ nτ f /L, and �0 ≡ �/T =
(A0/2π ) sin(2πx0) with A0 = LA/(nT ). Thus, the system is
characterized by the three dimensionless parameters, μ0, f0,
and A0. We numerically integrate the underdamped equa-
tions, Eqs. (58) and (59), using the second-order integrator
[54]. Note that the boundary term � cannot be calculated
without knowing the explicit form of the steady-state dis-
tribution pss(x, v). Thus, we consider the infinite-time limit
(T→ ∞), where the boundary term can be neglected. We
then calculate 〈Ẇ am〉s and the diffusion coefficient Dam

W =
limT→∞ Var[W am]/(2T) via extrapolation from 105 different
trajectories.

The results are presented in Fig. 3. As shown in the
figure, Qam

uv,∞(W am) satisfies the bound (20). When A0 = 0,
the numerical data are consistent with our analytic result
(56). For all parameter spaces, it seems that Qam

uv,∞(W am) is a
monotonically decreasing function of f0 and a monotonically
increasing function of μ0 and A0. Furthermore, as the effect
of A0 becomes negligible for large f [59], it is expected that
all curves can be fitted by Eq. (56) and saturate to the bound 2
in the large f limit.

IV. CONCLUSION AND DISCUSSION

In summary, we derived a modified TUR for underdamped
Langevin dynamics with a velocity-dependent force by ex-
tending the theory of Vu and Hasegawa [25], and showed
that a velocity-dependent force only changes the form of the
dynamical activity function, compared to the case without a
velocity-dependent force. In particular, our bound in Eq. (20)
does not depend on the choice of reversible and irreversible
forces, in sharp contrast to the original TUR [1] and the
modified TUR [25], where the bounds are dependent on
the choice of reversible force in the presence of velocity-
dependent forces.

We examine our bound in the context of three important
systems pertaining to a velocity-dependent force: a molecular
refrigerator, Brownian motion in a magnetic field, and active
matter. In each case, we check the original TUR and our
modified one for the work fluctuations and show that our
inequality always holds, whereas the previously known TURs
do not.

In the original TUR, the equality when the TUR factor
reaches the bound is attained when the distribution is Gaussian
[59]. Thus, the lowest bound is reached on approaching the
reversible limit. However, in the case of our inequality, the
equality is not simply attained on reaching the reversible
limit. Instead, certain system-dependent specific limits are
necessary to obtain the lowest bound. Moreover, it seems that
the lowest bound is not achievable for some systems, e.g., a
Brownian particle in a magnetic field. Thus, in these cases,
our bound becomes significantly loose.

We remark that our result based on the Cramér-Rao in-
equality [7] is not a unique inequality for velocity-driven
systems, because the choice of the auxiliary dynamics is quite
arbitrary. For example, if we set the auxiliary force as

Hθ,i(x, v) = − γivi + (1 + θ )Fi

(
x

1 + θ
,

v

1 + θ

)

+ Tiγi

mi
[1 − (1 + θ )2]

∂vi P
ss
(

x
1+θ

, v
1+θ

)
Pss
(

x
1+θ

, v
1+θ

) , (60)

the steady-state distribution of the auxiliary dynamics is given
by

Pss
θ (x, v) = Pss

(
x

1+θ
, v

1+θ

)
(1 + θ )2N

. (61)

Then, the TUR factor for the work of the molecular refrigera-
tor is given by (see Appendix C for the detailed calculation)

Qmr
uv (W mr) = 2

(
1 + 2

χ

)(
1 − 1 − e−2χ

2χ

)
, (62)

which happens to be always larger than the previous result in
Eq. (27). Thus, this new auxiliary force does not yield a tighter
bound compared to the previous one. It seems quite difficult
to find an auxiliary force providing the tightest bound, even
for a given specific model and, of course, in general.

Finally, we comment on the uncertainty relation derived
from the fluctuation theorems. Hasegawa and Vu [61] recently
presented another type of TUR, as follows:

Var[�]

〈�〉2
� 2

e�Stot − 1
, (63)

where they assume that the detailed fluctuation theorem is
satisfied for �Stot (EP during the time interval T), and the
current � is antisymmetric under time-reversal operation of
a trajectory, that is, �[�] = −�[�†]. This TUR is known to
be valid for time-discrete Markov chains and time-dependent
driving with a periodic and time-symmetric protocol [8,61]. In
the molecular-refrigerator case, the work current is symmetric
under time reversal, such that the above TUR cannot be
applied. In addition, the above TUR provides an exponentially
loose bound for the long-time limit, whereas our inequality
constrains the relative fluctuations linearly.
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APPENDIX A: VARIATION OF WORK IN THE
MOLECULAR REFRIGERATOR

The velocity v and work W mr are stochastic random vari-
ables. From the equation of motion (21) and the definition of
work, one can write the stochastic differential equation for the
velocity and work as

v̇ = −α + γ

m
v + 1

m
ξ, (A1)

Ẇ mr = −αv2. (A2)

For simplicity, we will omit the superscript “mr” for the
following discussion in this section.

By using dW 2/dt = 2WẆ and d (v2W )/dt = 2v ◦ v̇W +
v2Ẇ , we have the following equations:

∂t 〈W 2〉s = −2α〈v2W 〉s (A3)

and

∂t 〈v2W 〉s = −2
α + γ

m
〈v2W 〉s −

(
αT ′

m

)2[ 3

α
+ 2(α + γ )

mα
t

]
.

(A4)

In the derivation of Eq. (A4), we used 〈v2〉s = T ′/m and
the property of the Gaussian distribution, 〈v4〉s = 3〈v2〉2

s . By
solving (A4), we get

〈v2W 〉s = − α(T ′)2

m(α + γ )
{1 − exp[−2(α + γ )t/m]} − α

(
T ′

m

)2

t .

(A5)

Plugging the solution (A5) into Eq. (A3) and integrating up to
T yields

〈W 2〉s = 2
(αT ′)2

m(α + γ )

(
T− m{1 − exp[−2(α + γ )T/m]}

2(α + γ )

)

+〈W 〉2
s , (A6)

which leads to the variance of work, Eq. (26).

APPENDIX B: THE EP RATE IN THE ACTIVE MATTER
WITH A TILTED PERIODIC POTENTIAL

From the Onsager-Machlup formalism [53], the probability
densities for the forward � and time-reversal �̃ trajectories of
Eq. (48) in the Stratonovich convention are given by

P[�] = NP(x0, v0) exp

[
− μ

4T

∫ T
0

dt G2 − 1

2

∫ T
0

dt g

]
,

P[�̃] = NP(xT, vT) exp

[
− μ

4T

∫ T
0

dt G̃2 − 1

2

∫ T
0

dt g̃

]
,

(B1)

respectively, whereN is a normalization constant and G, G̃, g,
g̃ are give by

G ≡ mv̇ + ∂x� + τv∂2
x � − γ f + γ v,

G̃ ≡ mv̇ + ∂x� + τ (−v)∂2
x � − γ f + γ (−v),

g ≡ −μ∂vv∂2
x � − 1/τ,

g̃ ≡ −μ∂(−v)(−v)∂2
x � − 1/τ. (B2)

Thus, the total EP can be written as [44,46]

�Stot[�] = ln
P[�]

P[�̃]
= ln

P(x0, v0)

P(xT, vT)
− μ

T

∫ T
0

dt G, (B3)

where G ≡ τm(v̇∂x )(v∂x )� + γ mv ◦ v̇ + τ∂x�(v∂x )∂x� +
γ (v∂x )� − γ τ f (v∂x )∂x� − γ 2 f v. As � has only x
dependence, we can use the relation v∂x = d/dt . Then,
we can show that∫ T

0
dt v ◦ v̇ = 1

2

(
v2
T − v2

0

)
, (B4)

∫ T
0

dt v∂x� = �T − �0, (B5)

∫ T
0

dt ∂x�(v∂x )∂x� = 1

2
[(∂x�T)2 − (∂x�0)2], (B6)

∫ T
0

dt (v∂x )∂x� = ∂x�T − ∂x�0, (B7)

∫ T
0

dt (v̇∂x )(v∂x )� = −
∫ T

0
(v∂x )3�, (B8)∫ T

0
dt v = xT − x0. (B9)

As Eqs. (B4), (B5), (B6), and (B7) are boundary terms, their
steady-state averages vanish. Thus, only remaining terms in
the steady state are Eqs. (B8) and (B9). Then, the steady-state
average of �Stot becomes

〈�Stot〉s = Tσs = T
[

m2μ2

T
〈v3∂3

x �〉s + γ f

T
〈v〉s

]
. (B10)

APPENDIX C: CALCULATION OF THE TUR FACTOR OF
THE MOLECULAR REFRIGERATOR FOR OTHER

AUXILIARY FORCE

For the auxiliary force (60) and the corresponding steady-
state distribution (61), ∂θ 〈�〉θ at θ = 0 in the steady state
becomes

∂θ 〈�〉θ,s|θ=0

= ∂θ

[
T
∫

dx
∫

dv�(x, v) · vPss
θ (x, v)

]∣∣∣∣
θ=0

= T
∫

dx
∫

dvPss(x, v)v · (1 + v · ∇v + x · ∇x)�(x, v)

= 〈�〉s + 〈�′′〉s, (C1)

where 〈�′′〉s ≡ T ∫ dx
∫

dv[(v · ∇v + x · ∇x)�(x, v)] · vPss

(x, v). After the same algebra used for deriving Eq. (17), we
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arrive at

I(0) = 1
2 [T(4σs + 4ϒ ′

uv) + �′], (C2)

where ϒ ′
uv and �′ are expressed as

ϒ ′
uv =

N∑
i=1

(
−γi

Ti

〈
v2

i

〉
s
+ 1

4Tiγi

〈
F′

i
2〉

s
+ 1

Tiγi

〈
F′

iF
ir

i

〉
s

+ 2

Ti

〈
viF

ir
i

〉
s
+ 1

mi

〈
∂viF′

i

〉
s
+ 2γi

mi

)
,

�′ = 2

〈[
(v · ∇v + x · ∇x)Pss(x, v)

Pss(x, v)

]2
〉

s

− 8N2, (C3)

with

F′
i = F rev

i − F ir
i − (v · ∇v + x · ∇x)Fi. (C4)

Then, TUR can be written as

Q′
uv(�) ≡ Var[�]

〈�〉2
s

�′
uv � 2, �′

uv ≡ T(4σs + 4ϒ ′
uv) + �′

(1 + 〈�′′〉s/〈�〉s)2
.

(C5)

The equation of motion for a molecular refrigerator can be
written as

ẋ = v, mv̇ = −kx − αv − γ v + ξ . (C6)

Note that the harmonic potential term −kx is added in the
above equation (C6). If we set F rev = −kx and F ir = −αv,
then F′ = 2αv. The steady-state distribution of the Langevin
equation (C6) is

Pss(x, v) =
√

mk

2πT ′ e
− m

2T ′ v2− k
2T ′ x2

. (C7)

Using the fact 〈v2〉s = T ′/m, I(0) can be calculated as

I(0) = 2T
α + γ

m
+ 4. (C8)

In k → 0 limit, using 〈�′′〉s/〈�〉s = 1, �′
uv becomes

�′
uv = Tα + γ

m
+ 2. (C9)

Therefore, the TUR factor becomes

Qmr
uv (W mr) = 2

(
1 + 2

χ

)(
1 − 1 − e−2χ

2χ

)
. (C10)
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