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Additivity of multiple heat reservoirs in the Langevin equation
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The Langevin equation greatly simplifies the mathematical expression of the effects of thermal noise by using
only two terms, a dissipation term, and a random-noise term. The Langevin description was originally applied
to a system in contact with a single heat reservoir; however, many recent studies have also adopted a Langevin
description for systems connected to multiple heat reservoirs. This is accomplished through the introduction of
a simple summation for the dissipation and random-noise terms associated with each reservoir. However, the
validity of this simple addition has been the focus of only limited discussion and has raised several criticisms.
Moreover, this additive description has never been either experimentally or numerically verified, rendering its
validity is still an open question. Here we perform molecular dynamics simulations for a Brownian system in
simultaneous contact with multiple heat reservoirs to check the validity of this additive approach. Our simulation
results confirm that the effect of multiple heat reservoirs is additive in general. A very small deviation in the total
amount of dissipation and associated noise is found but seems not significant within statistical errors. We find
that the steady-state properties satisfy the additivity perfectly and are not affected by this deviation.
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I. INTRODUCTION

The Langevin equation is a stochastic differential equation
that describes the motion of a system as it interacts with
a thermal reservoir. The exact mathematical expression for
this system-reservoir interaction is often very complicated,
making it difficult to define thermodynamic quantities in the
strong interaction regime [1,2]. However, in the Langevin
description, the effect of a thermal reservoir on a system
is phenomenologically expressed through only two terms, a
dissipation term and an associated random-noise term [3]. This
simplification enables analysis of systems affected by thermal
noise at the mesoscopic scale. As heat can be naturally, and
perhaps intuitively, defined as work done by these two terms
[4–6], we also see why the ratio of the logarithms of the
forward and time-reversal path probabilities can be interpreted
as entropy production, which is one of the core discoveries of
recent developments in the field of stochastic thermodynamics
[7–12]. Additionally, the time evolution of the probability
distribution function of such a system can be investigated
through use of the corresponding Fokker-Planck equation.

Originally, the Langevin equation was introduced to de-
scribe the motion of a Brownian particle with a single degree
of freedom immersed in a single heat reservoir (BS). Recently,
there have been various studies investigating a Brownian sys-
tem with a single degree of freedom simultaneously connected
to multiple heat reservoirs (BM) but still using the Langevin
equation [13–18]. These studies have been motivated by the
development of Brownian motors [19–23] and the Feynman-
Smoluchowski ratchet [24–26]. We explicitly distinguish BM
from the multiple-heat-reservoir systems where a single degree
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of freedom is affected by only one heat reservoir at a time
[27,28].

Our examination of BM using the Langevin equation
proceeds as follows. Suppose we have n heat reservoirs and
a Brownian particle. When the particle is connected only
to reservoir i (i = 1, . . . ,n) with temperature Ti , its one-
dimensional motion can be described as

ẋ = v, mv̇ = f (x) − γiv + ξi, (1)

where x, v, and m are the position, velocity, and mass of the
particle, respectively; f (x) is an external force; and γi is the
dissipation coefficient associated with the ith reservoir. ξi is the
Gaussian white noise term of the ith reservoir, with statistical
properties satisfying 〈ξi(t)ξi(t ′)〉 = 2Diδ(t − t ′), where t is
time and Di = γiTi is the noise strength of ξi . In the analysis,
we set the Boltzmann constant kB = 1. We note that the
expression −γiv + ξi describes the effect of the reservoir.

Now we need to expand the system by imagining that the
particle is in contact with all n reservoirs simultaneously. What
would a Langevin equation for such a system contain? Previous
studies [13–18] have opted to treat the effect of the multiple
reservoirs as additive processes, written as

ẋ = v, mv̇ = f (x) − γ1,...,nv + ξ1,...,n, (2)

where γ1,...,n = ∑n
i=1 γi and ξ1,...,n = ∑n

i=1 ξi . Here we note
that 〈ξ1,...,n(t)ξ1,...,n(t ′)〉 = 2δ(t − t ′)D1,...,n, where D1,...,n =∑n

i=1 Di . Based on this equation, many thermodynamic prob-
lems of BM, such as the heat distribution [14], the amount of
irreversible heat flow [18], the entropy production [16], and
the overdamped limit [17], have been studied.

However, the justification of the additivity of multiple heat
reservoirs in this manner and, hence, the form of Eq. (2) is a
nontrivial problem and remains an open question. This issue
has been addressed theoretically in a highly specific situation
[19,20], where Eq. (2) was derived up to first order in the mass
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ratio between a reservoir particle and Brownian particle in the
low (reservoir particle) density, or the large-mean-free-path,
regime. The additivity in more general situations has not
yet been fully explored. There have also been criticisms on
the assumption of additivity by Hänggi [29], who claimed
that transient relaxation dynamics may not be sufficiently
described by Eq. (2), as initial condition dependence does not
dampen away in transient dynamics. Furthermore, nonequi-
librium dynamics with multiple reservoirs (which need not
all be at the same temperature) should be distinguished from
simple equilibrium dynamics at an effective temperature.
Nevertheless, Hänggi agreed that the steady-state dynamical
behavior will be correctly described by Eq. (2), as the effect
of the initial conditions become negligible over long times.
Parrondo and Español [18] also stated that Eq. (2) is correct
only for the asymptotic long-time limit, i.e., the steady state.
To our knowledge, the additivity property has never been
experimentally or numerically verified, making it important
to check its validity in general situations.

To accomplish this task, we perform molecular dynamics
(MD) simulations for BM (two reservoirs). We find that Eq. (2)
describes the BM dynamics well in general. More specifically,
there seems to exist a small raising in dissipation γ1,2 and noise
strength D1,2 from the simple additivity. It should be noted
that these small corrections appear even for the case of two
separate reservoirs with the same temperature and thus cannot
be attributed to nonequilibriumness with T1 �= T2. As their
magnitudes are just comparable to or smaller than statistical
errors, quantitative investigation on its origin is not properly
carried out in this study, which will be left for future study. We
report that the effective temperature T1,2 = D1,2/γ1,2, which
characterizes the steady state, seems to be in agreement with
that of Eq. (2) without any detectable deviation.

The remainder of this paper is organized as follows. We de-
scribe our model for the performed MD simulations in Sec. II.
The results of these simulations are then presented in Sec. III.
In Sec. III A, the dissipation coefficient γ is calculated from
the simulations with a single heat reservoir. In Sec. III B, γ1,2

is estimated from the simulation with two heat reservoirs, from
which we can test the additivity of the dissipation coefficients.
In Sec. III C, we present steady-state velocity distributions
compared with the Boltzmann distribution. D1,2 and T1,2 are
then estimated. We finally present our full conclusions of the
simulations and analysis in Sec. IV.

II. MODEL

We adopt the MD simulation model used for the thermal
Brownian motor [19]. Figure 1 shows the schematic of our
model, where a system with a single degree of freedom is
simultaneously affected by two heat reservoirs. There are two
boxes, 1 and 2, which contain N1 and N2 reservoir particles,
respectively. The boxes are two dimensional, with horizontal
length Lx and vertical length Ly . In each of our simulations,
we used square boxes, such that Lx = Ly = L. The number
density of reservoir particles in the box i (i = 1,2) is di =
Ni/L

2. We also include rods of length l1 and l2 in box 1 and 2,
respectively, with their widths taken to be zero for simplicity.
These two one-dimensional rods are rigidly connected and can
move only horizontally, with no vertical or rotational motion

T2

Lx

T1

Ly
l1

l2

(x,v)

FIG. 1. Schematic of the model. There are two two-dimensional
boxes 1 and 2 containing N1 and N2 reservoir particles, respectively.
The horizontal (vertical) length of the boxes is Lx (Ly). The distri-
butions of the reservoir particles in boxes 1 and 2 are maintained as
in equilibrium at temperatures of T1 and T2, respectively. There is a
rod with a length of l1 (l2) in the box 1 (2), and its width is zero. As
these two rods are rigidly connected and move only horizontally, their
positions x and velocities v are always exactly same.

allowed. The motion of the rod set is therefore described by a
single degree of freedom, (x,v), where x and v are the position
and velocity, respectively, in the horizontal direction only. We
refer to this rod set as the rigid stick component, which has a
total mass defined as m.

Interactions between the reservoir particles are modeled
as perfectly elastic hard-disk collisions, with all disks having
radius R. For simplicity, an elastic collision between a rod
and a reservoir particle is assumed to occur when the particle
center reaches the rod. We use the Langevin thermostat to
maintain the velocity statistics of the reservoir particles for
a given temperature Ti [30]. That is, their respective motions
are determined by the following Langevin equation:

ẋr = vr , mr v̇r = Fint − γrvr + ξ r,i , (3)

where xr and vr are two-dimensional vectors containing the
position and velocity of a reservoir particle, respectively; mr is
mass of a reservoir particle; and γr is the dissipation coefficient
of the Langevin thermostat. ξ r,i is the Gaussian white noise vec-
tor of box i, satisfying 〈ξ r,i(t)ξ

ᵀ
r,i(t

′)〉 = 2γrTiδ(t − t ′)I, where
I is the 2 × 2 identity matrix. Fint denotes the interaction forces
due to collisions with other reservoir particles or a rod. This
model has only two reservoirs; however, it is straightforward
to extend to a n-reservoir model (n � 2).

In all simulations, we implement periodic boundary condi-
tions for each box and set mr = 1, γr = 1, R = 0.1, m = 50,
and L = 30. We vary other parameters in the range of 0.6 �
Ti � 1.4, 0.8 � li � 1.2, and 0.2 � di � 0.3. Our simulation
results shown in the next section provide the numerical estimate
of the rigid-rod dissipation coefficient in the range of 0.6 �
γi � 1.2.

Note that there are four distinct timescales in this model:
(i) τ = m/γi is the relaxation time of the rigid rod, (ii) τr =
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mr/γr is the relaxation time of the reservoir particle due to
the Langevin thermostat, (iii) τs−r ≈ √

mr/Ti(dili)−1 is the
collision time between the rod and a reservoir particle, and
(iv) τr−r = √

mr/Ti(4
√

2diR)−1 is the collision time between
reservoir particles.

For typical values in our simulations (Ti ∼ 1, li ∼ 1, di ∼
0.25, and γi ∼ 1), the typical timescales are τ ∼ 50, τr ∼ 1,
τs−r ∼ 4, and τr−r ∼ 7. First, we point out that, with τs−r ≈
4τr , the memory of the previous collision between the rod and a
reservoir particle should be considerably weakened when they
collide with each other again at the next collision. Second, with
τ/τs−r ∼ 10, these timescales are well separated, but maybe
higher collision statistics are necessary to match the Langevin
equation (1) perfectly without any transient period. We will
see multiple relaxation modes at early times from simulations
in the next section. Finally, we note that τr−r is irrelevant due
to the Langevin thermostat with much shorter relaxation time
(τr 	 τr−r ).

III. SIMULATIONS AND RESULTS

To verify the additivity of multiple reservoirs in the
Langevin equation, we examine two theoretically additive
properties. These are the dissipation coefficients, such that
γ1,2 = γ1 + γ2, and the noise strengths, such that D1,2 = D1 +
D2.

First, we calculate the dissipation coefficient γi from Eq. (1)
using the MD simulations, in which the rigid stick is connected
to a single heat reservoir i (i = 1,2). Analysis results are
presented in Sec. III A, where we measure γi from finite-time
relaxation dynamics. Following this, we repeat the procedure
for the BM dynamics where the rigid stick is in contact
with heat reservoirs 1 and 2 simultaneously. The dissipation
coefficient γ1,2 in Eq. (2) is measured and compared with the
individual case to verify the additive relationship γ1 + γ2 =
γ1,2. This analysis is presented in Sec. III B. We also examine
other relaxation modes corresponding to short-time dynamics
for possible corrections to Eq. (2).

Second, the additivity of noise strength can be measured,
and possibly confirmed, using the following procedure. We
obtain the steady-state probability distribution function for BM
and compare it with the expected Boltzmann (Gaussian) dis-
tribution. Then we estimate T1,2 from the velocity distribution,
which yields D1,2 via the relation of D1,2 = γ1,2T1,2.

A. Dissipation coefficient with a single reservoir

Here we consider the case of a single heat reservoir. This
simulation is possible in our setup when N2 = 0, meaning that
the rigid stick is in contact with reservoir 1 only. The set of
control parameters are T1, l1, and d1; for the remainder of this
section, for convenience, we remove the subscript notation and
denote them as T , l, and d, respectively. Initial velocity is set as
v0 = 1 for the following simulations unless otherwise noted.

The rigid stick motion is supposed to be described by
the Langevin Eq. (1) with zero external force, i.e., f (x) =
0. By taking averages of both sides of the Langevin equa-
tion, we obtain m〈v̇t 〉 = −γ 〈vt 〉, where we have omitted the
dummy subscript i. Then, the velocity relaxation dynamics are
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FIG. 2. Estimates for the dissipation coefficients. (a) Single reser-
voir atT = 1.0. Semilog plots of 〈vt 〉/v0 versus t/τ for l = 0.9 and 1.0
with d = 0.25 with the rigid-rod relaxation time τ . Slopes of the solid
lines are determined from the long-time values of Fig. 2(b). (b) Plots
of successive slope s(t) of data in (a) against t/τ . The horizontal lines
denote the long-time average slope ss and the vertical lines indicate
the saturation time τs . (c) Two reservoirs at T1 = 1.0 and T2 = 0.6,
respectively. Semilog plots of 〈vt 〉/v0 versus t/τ for l1 = l2 = 0.8
and 0.9 with d1 = d2 = 0.25. Slopes of the solid lines are determined
from the long-time values of Fig. 2(d). (d) Plots of successive slope
s(t) of data in (c) against t/τ .

given by

〈vt 〉 = 〈v0〉e− γ

m
t , (4)

where 〈v0〉 = 1 and m = 50.
In simulations, we measure the time dependence of 〈vt 〉

up to t = 200 and estimate the dissipation coefficient γ

numerically. Figure 2 shows its estimate procedure in details.
Figure 2(a) displays semilog plots of 〈vt 〉 against t for two
different values of l = 0.9 and l = 1.0 with T = 1.0 and
d = 0.25. We approximate the ensemble average 〈vt 〉 by
averaging over 105 simulation runs. Overall data seem to be
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well fitted by a linear regression model as expected from
Eq. (4). However, there is a slight deviation at early times. To
carefully analyze this initial transient behavior, we calculate
the successive slopes, defined as s(t) ≡ (ln〈vt+δ〉 − ln〈vt 〉)/δ,
which are presented in Fig. 2(b) with δ = 5. As can be seen
in this figure, the slope changes at early times but saturates
in the long-time limit. We estimate the long-time slope ss by
averaging over slope data in the saturated regime (t > τs) and
determine the dissipation coefficient value by γ = −mss . In all
figures, the time axis is shown in the unit of the typical rigid-rod
relaxation time τ = m/γ ≈ 50, where one can see that the
saturation regime starts around τs/τ ∼ 1. The horizontal lines
in Fig. 2(b) denote ss and the vertical lines indicate τs .

We note that there are multiple relaxation modes in this
dynamics for large but finite τ/τs−r [20]. The dominant (first)
mode is described by the Langevin equations (1) or (2) with the
relaxation time m/γ . The relaxation time of the second mode is
m/(2γ ) and higher modes have shorter relaxation times. Thus,
it is expected that all the modes except the dominant one are
almost invisible for t � τ ∼ τs . For l = 0.9 and 1.0 cases, we
find τs/τ � 1.2 and 1.0, respectively, as seen in Fig. 2(b).

We study the temperature dependence of the dissipation
coefficient. In this simulation, we vary T with fixed l = 1.0
and d = 0.25. From the saturated slopes, we estimate the
values of dissipation coefficients for various values of T ,
which are presented in Fig. 3(a). We see that the dissipation
coefficient increases as the temperature increases. A similar
tendency can be also found from Sutherland’s formula for ideal
gases [31].

We then proceed to study the rod-length dependence of the
dissipation coefficient. In this simulation, we fix d = 0.25 and
T = 1.0 or 0.6 while varying l. Again, we obtain the saturated
slops for all values of l. The results can be seen in Fig. 3(b). We
find that the relaxation dynamics become more dissipative for

 0.6

 0.8

1

 1.2

 1.4

 0.5 1  1.5

γ

T

(a)

 0.6

 0.8

1

 1.2

 1.4

 0.7  0.9  1.1  1.3

γ

l

(b)

T=1.0

T=0.6

 0.6

 0.8

1

 1.2

 1.4

 0.2  0.25  0.3

γ

d

(c)

T=1.0

T=0.6

FIG. 3. T , l, and d dependence of γ . (a) T dependence of γ with
l = 1.0 and d = 0.25. (b) l dependence of γ for T = 1.0 and 0.6 with
d = 0.25. (c) d dependence of γ for T = 1.0 and 0.6 with l = 1.0.

longer lengths of rod. This is easily understood by the Stokes’s
law; the dissipation coefficient is proportional to the radius of
a Brownian particle [32].
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FIG. 4. Additivity of dissipation coefficients. (a) Plot of γ1,2 versus γ1 + γ2 when T1 and T2 are varied. Statistical errors are denoted by
small vertical and horizontal ticks, and the solid line denotes the “y = x” line. (b) Plot of γ1,2 versus γ1 + γ2 when l1 and l2 are varied. (c) Plot
of γ1,2 versus γ1 + γ2 when d1 and d2 are varied. (d) Plot of γ1,2 versus γ1 + γ2 when l1 and d2 are varied. (e) Plot of γ1,2 versus γ1 + γ2 when
l1 and T2 are varied. (f) Plot of γ1,2 versus γ1 + γ2 when d1 and T2 are varied. In all the plots, filled circles represent the data for T1 = T2.
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Finally, we investigate the dependence on the density of
reservoir particles, d, which is shown in Fig. 3(c). In this
simulation, we set l = 1.0 and T = 1.0 or T = 0.6. As seen
in the figure, the dissipation coefficient increases with the
density. This is expected, as a more crowded environment
of reservoir particles increases the total resistance to the rod
motion.

In summary, the dissipation coefficient in the presence
of a single reservoir i is a function of Ti , li , and di , i.e.,
γi = γi(Ti,li ,di). For use in following sections, we define the
notation γi(zi), where z = T ,l,d. This allows us to denote zi

as the only varying parameter, where two of its parameters are
fixed at given values.

B. Dissipation coefficient with two reservoirs

We now consider the case of two reservoirs, where N1,N2 �=
0, and the rigid stick is in contact with both heat reservoirs 1
and 2 simultaneously. If the rigid stick motion in this situation
can, indeed, be described by Eq. (2) after the initial transient
regime, then we would expect the average velocity to show the
following relaxation behavior:

〈vt 〉 = 〈v0〉e− γ1,2
m

t . (5)

To determine whether 〈vt 〉 corresponds to Eq. (5), we per-
formed extensive MD simulations for many different pairs of
(T1,l1,d1,T2,l2,d2). Figure 2(c) shows semilog plots of 〈vt 〉
against t for two values of l1 = l2 = 0.8,0.9 at fixed T1 = 1.0,
T2 = 0.6, and d1 = d2 = 0.25. Following the same procedure
as done for obtaining Fig. 2(b), we obtain the saturated slopes
from Fig. 2(d). The solid lines in Fig. 2(c) are drawn by using
these saturated slopes. After the transient regime, we see that
all data are well fitted by the straight lines. The saturation
time τs/τ for l1 = l2 = 0.8 and 0.9 are estimated as 0.74 and
0.64, respectively, in Fig. 2(d). We also obtain data for many
other pairs of (T1,l1,d1,T2,l2,d2), which again correspond
well to fitted linear regression. From the saturated slopes,
we determine the values of γ1,2 as a function of parameters
(T1,l1,d1,T2,l2,d2). Using our compact notation, we define
γ1,2(z1,z2), where z = l,T ,d, denoting that only z1 and z2

are varying parameters, whereas the others are fixed at given
values.

Now we analyze the additivity of dissipation coefficients;
that is, we examine whether γ1,2(z1,z2) = γ1(z1) + γ2(z2).
First, we fix l1 = l2 = 1.0 and d1 = d2 = 0.25 and vary T1

and T2. Figure 4(a) shows the plots of γ1,2(T1,T2) against
γ1(T1) + γ2(T2) for various pairs of (T1,T2), with T1 and T2

taking the values 0.6,0.8,1.0,1.2, and 1.4. We see that the data
trend is again well fitted by a straight line. There seems a slight
deviation from the exact additivity in all data, which we write
as

γ1,2

γ1 + γ2
= 1 + ε, (6)

where ε is positive and its magnitude is about 2%. However,
the deviation magnitude is smaller than statistical errors about
∼ 4%, so it is difficult to figure out its origin whether it comes
from an measurement artifact or has a meaningful physical
mechanism. One thing we want to mention is that this slight
deviation cannot be attributed to nonequilibrium behavior for
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FIG. 5. Statistical deviation from the simple additivity. (a) Dissi-
pation coefficients with v0 = 1. (b) Dissipation coefficients with the
steady-state initial condition. (c) Effective temperatures. Filled circles
represent the data for T1 = T2.

T1 �= T2, where an energy current between two reservoirs
through the rigid stick is expected. We find that, even for the
equilibrium situation, T1 = T2, (perfectly identical reservoirs
with the same d and l), ε remains, with a similar magnitude as
in the T1 �= T2 case. These are represented by five filled dots
in Fig. 4(a).

We also check the additive property of dissipation coeffi-
cients with various parameter values. Figure 4(b) shows the
plots for fixed values of d1 = d2 = 0.25, T1 = 1.0, and T2 =
0.6 and various pairs of (l1,l2) with l1,l2 = 0.8,0.9,1.0,1.1, and
1.2. For Fig. 4(c), we fix l1 = l2 = 1.0, T1 = 1.0, and T2 = 0.6
for pairs of (d1,d2) with d1,d2 = 0.2,0.225,0.25,0.275, and
0.3. In Figs. 4(d), 4(e), and 4(f), more general situations are
considered, where pairs of (l1,d2), (l1,T2), and (d1,T2) are
varied, respectively. In all cases, the additivity behavior is
clearly satisfied with the similar small deviation. The deviation
magnitude is better seen in Figure 5(a), showing plots of
the same data in Fig. 4 in terms of the ratio of γ1,2 and
γ1 + γ2. The average value of the ratio is 1.02 (2% deviation
from the additivity), which is smaller than statistical errors
(4% ∼ 7%).

Note that all simulations so far start from the initial condi-
tion,v0 = 1. This initial condition sets a very high initial energy
(= 25) of the rigid stick compared with the thermal energy
(∼1). One might suspect that this unusual initial condition
could affect the relaxation dynamics. To check this, we perform
simulations with the steady-state initial condition, where we
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(c) (T1,T2) = (1.4,1.2) with l1 = l2 = 1 and d1 = d2 = 0.25. Solid curve denotes the Boltzmann distribution Eq. (9) with (a) T1,2 = 0.706, (b)
T1,2 = 0.943. (c) T1,2 = 1.30. (d) Scaled kurtosis curves as a function time for (a), (b), and (c) cases.

expect from the Langevin equations as

〈vtv0〉 = 〈
v2

0

〉
e− γ

m
t . (7)

We choose the same parameters used in Fig. 4(a) and obtain
the average values of the correlation function over 5 × 105

samples. Figure 5(b) shows the simulation result, which seems
similar to the previous case with the v0 = 1 initial condition.

C. Steady-state distribution and effective temperature
with two reservoirs

Here, we check the steady-state distribution with two
reservoirs. The velocity distribution P (v,t) of Eq. (2) can
be calculated from the corresponding Fokker-Plank equation
which is given by

∂

∂t
P (v,t) = ∂

∂v

(
γ1,2

m
v + D1,2

m2

∂

∂v

)
P (v,t). (8)

The steady-state distribution of Eq. (8) is the following
Boltzmann distribution:

Ps(v) =
√

m

2πT1,2
e
− mv2

2T1,2 , (9)

where T1,2 = D1,2/γ1,2. Note that the effective temperature
T1,2 is neither T1 nor T2, so the rigid stick is not in an
equilibrium state; indeed, it is in a nonequilibrium steady state,
even though the distribution is a Boltzmann distribution. As a
result, there is a finite heat current [14,18] and positive entropy
production [16,17] in BM.

If the additivity of the noise magnitudes (D1,2 = D1 + D2)
were assumed to be valid with the additivity of dissipation
coefficients (γ1,2 = γ1 + γ2), then T1,2 becomes

T1,2 = γ1T1 + γ2T2

γ1 + γ2
≡ T 0

1,2. (10)

However, as there is a small correction in the additivity of
dissipation coefficients as in Eq. (6), it is not clear that T1,2 is
equal to T 0

1,2 without any correction.
We perform MD simulations to check the validity of

Eqs. (9) and (10) from the steady-state distributions. We use 57
parameter sets of (T1,l1,d1,T2,l2,d2) for T1 �= T2 cases and 13
parameter sets for T1 = T2 cases. As the relaxation timescale
m/γ1,2 ∼ 30, we gather 5 × 104 sets of velocity data, starting
from t = 5000, to obtain the steady-state distribution.

Figures 6(a), 6(b) and 6(c) show the examples of the
simulated (dots) and expected (solid curves) distributions
of v for three parameter sets with T1 �= T2. In these sets,
we fix l1 = l2 = 1 and d1 = d2 = 0.25 and take three dif-
ferent pairs of (T1,T2), such as (0.8,0.6), (1.2,0.6), and
(1.4,1.2), which set (γ1,γ2) as (0.885,0.785), (1.05,0.785),
and (1.10,1.05), respectively. For these pairs, Eq. (10) pre-
dicts T 0

1,2 = 0.706, 0.943, and 1.30, respectively. The simu-
lated distributions are reasonably well fitted by the expected
Boltzmann curves, implying that T1,2 � T 0

1,2. We check non-
Gaussianity quantitatively by measuring the scaled kurtosis,
K(t) = 〈v4

t 〉/(3〈v2
t 〉2) − 1, as a function of time, which are

presented in Fig. 6(d). Note that K(t) approaches zero as the
distribution goes toward the Gaussian. After t/τ ∼ 2, all the
scaled kurtosis curves converge to zero with statistical errors
less than 0.006 for all cases, which confirm the Gaussian
steady-state distribution of Eq. (9).

We also measure the velocity dispersion 〈v2〉s for each
steady-state distribution and estimate T1,2 quantitatively using
the relation T1,2 ≡ m〈v2〉s given by Eq. (9). Figure 5(c) shows
the ratio T1,2/T 0

1,2 for all 70 parameter sets. In contrast to
the case of dissipation coefficients in Fig. 5(a), there seems
no systematic deviation such that the average value of the
ratio is 1.005 (0.5% deviation from the additivity), which is
much smaller than statistical errors (∼3%). Thus, we conclude
that the steady state is almost perfectly described by Eq. (2),
supporting the claim by Hänggi [29].

IV. CONCLUSIONS

In this work, we investigate the additivity of two heat
reservoirs with arbitrary temperatures by extensive MD sim-
ulations. We first estimate dissipation coefficients from the
relaxation dynamics and check the additivity of dissipation
coefficients, γ1,2 = γ1 + γ2. We find that the additivity is
satisfied very well in general only with a small deviation less
than statistical errors. The origin of this small deviation is
unclear whether it is resulted from a measurement artifact or
a certain physical mechanism. Nevertheless, as its magnitude
is smaller than the numerical accuracy, we conclude that the
additivity is at least ‘statistically’ valid. In addition, we find that
the initial-condition dependence of the relaxation dynamics
is not substantial to be considered. Therefore, concern about
the initial-condition dependence raised by Hänggi [29] and
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Parrondo and Español [18] in nonequilibrium situations may
be regarded not significant in general. Finally, we report
that the steady-state distribution satisfies the additivity almost
perfectly, as expected.
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