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We study nonequilibrium dynamical models with two absorbing states: interacting monomer-dimer models,
probabilistic cellular automata models, nonequilibrium kinetic Ising models. These models exhibit a continu-
ous phase transition from an active phase into an absorbing phase that belongs to the universality class of the
models with the parity conservation. However, when we break the symmetry between the absorbing states by
introducing a symmetry-breaking field, Monte Carlo simulations show that the system goes back to the
conventional directed percolation universality class. In terms of domain wall language, the parity conservation
is not affected by the presence of the symmetry-breaking field. So the symmetry between the absorbing states
rather than the conservation laws plays an essential role in determining the universality class. We also perform
Monte Carlo simulations for the various interface dynamics between different absorbing states, which yield
new universal dynamic exponents. With the symmetry-breaking field, the interface moves, in average, with a
constant velocity in the direction of the unpreferred absorbing state and the dynamic scaling exponents appar-
ently assume trivial values. However, we find that the hyperscaling relation for the directed percolation
universality class is restored if one focuses on the dynamics of the interface on the side of the preferred
absorbing state onlyS1063-651X98)06806-§

PACS numbsgs): 64.60—i, 02.50~r, 05.70.Ln, 82.65.Jv

I. INTRODUCTION probabilistic cellular automat@PCA) [13,14], nonequilib-
rium kinetic Ising models with two different dynami¢sKI)
Many nonequilibrium dynamical models show continuous[15—-17, and interacting monomer-dimer mode{fMD)
phase transitions similar to ordinary equilibrium models. In[18,19. Numerical investigations show that critical behav-
fact, nonequilibrium models can supply much richer criticaliors of these models are different from DP but form a
behavior because their evolving dynamics do not require theon-DP universality class. These models share a common
detailed balance. So the universality classes of nonequilibsroperty that the absorbing phase consists of two equivalent
rium critical phenomena would be much more diverse andibsorbing states. By the analogy to the equilibrium Ising
would be governed by various symmetry properties of themodel, which has two equivalent ground states, we call this
evolution dynamics. non-DP universality class thdirected Ising(Dl) universality
An interesting example of nonequilibrium phase transi-class.
tions is the absorbing phase transition. In this case, there Recently, the branching annihilating random walks
exist some absorbing states in the configurational phas@AW) with offspring have been studied intensivelg0—
space. If the system gets into one of the absorbing states [#g]. Even though the BAW model has a single absorbing
the evolution dynamics, then the system is trapped inside aftate(vacuun), its critical behavior depends on the parity of
the absorbing states and no further dynamics occur to escagige number of offspring. It has been shown numerically that
out of the absorbing states. By controlling an external paramthe BAW models with an odd number of offspritBAWo)
eter, one can observe a continuous phase transition from along to the DP class, while the BAW models with an even
active steady-state phase into an inactive absorbing phaseumber of offspring BAWe) belong to the DI clasf22,24.
Recently, various kinds of nonequilibrium models exhibiting Dynamics of the BAWe models conserve the number of
such an absorbing phase transition have been studied extenalkers modulo 2, while the BAWo models evolve without
sively [1]. Most of the models investigated are found to be-any conservation. The common feature of the PCA, NKI,

long to the directed percolatiofDP) universality clas§2—  IMD, and BAWe models is that the number of particles
12]. A common feature of these models is that the absorbingwalkers in BAWe and kinks or domain walls in the other
phase consists of a single absorbing state. modelg is conserved modulo 2. From this point of view, it

Only a few models have been studied that are not in thgvas suggested that the parity conservation is responsible for
DP universality class. Those are the modélsand B of  the DI universality class. This is why the DI universality
class is sometimes called as the Ri@rity-conservinguni-
versality class.
* Address after September 1, 1998: Department of Physics, Boston However, we recently showed for the IMD model that an

University, Boston, MA 02215. external field that conserves the parity but breaks the sym-
TAuthor to whom correspondence should be addressed. Electronimetry between two absorbing states forces the system back
address: hgpark@munhak.inha.ac.kr to the conventional DP universality claj29]. So we argued
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that the symmetry between absorbing states rather than thocess is not allowed, the IMD model possesses infinitely
conservation laws plays an essential role in determining thenany absorbing states which will be discussed elsewhere
universality class. Our argument was supported by receri4].
results for generalized monomer-monomer models studied The system has no fully saturated phases of monomers or
by Bassler and Browng30—32, and for some stochastic dimers, but instead two equivalent half-filled absorbing
models by Hinrichsep33]. states. These states are comprised of only the monomers at
In this paper, we study the effect of a symmetry-breakingthe odd- or even-numbered lattice sites, i.A04A0- - -) and
field in the IMD, PCA, and NKI models via stationary as (0AOA---) where “A” represents a monomer-occupied site
well as dynamic Monte Carlo simulations. Stationary simu-and “0” a vacant site. These two states are probabilistically
lations and defect dynamics for all three models clearly shovequivalent, unless we introduce a symmetry-breaking field
that the DI universality class crosses over to the DP clasdiscriminating the dynamics at the odd- and even-numbered
under a weak parity-conserving symmetry-breaking field. Insites. In this section, we consider the IMD model without a
fact, the ratio of the number of stationary runs that fall intosymmetry-breaking field. This model can be parametrized by
the unpreferred absorbing state and the number of those inthe monomer adsorption-attempt probability The dimer
the preferred state vanishes exponentially in system size. Sasorption-attempt probability is then given by-p.
the system with the symmetry-breaking field has in effect a In our previous stationary and dynamic Monte Carlo
single absorbing state, which leads to the DP class. simulationg 18,19, it was found that the system undergoes a
We also introduce new types of interface dynamics thatontinuous phase transition from a reactive phase into an
result in different values of dynamic scaling exponents.absorbing phase, which belongs to the DI universality class.
These exponents are found to be universal. Without &he kink representation of the IMD model is complicated
symmetry-breaking field, the hyperscaling relation for the Dldue to its multicomponent nature. Three types of kinks can
universality class is intact for various interface dynamics.be defined between lattice sites occupied by a dimer and a
However, with the symmetry-breaking field, the interfacedimer, by a dimer and a vacancy, and by a vacancy and a
moves, in average, with a constant velocity in the directiorvacancy. No conservation law is associated with each type of
of the unpreferred absorbing state. The dynamic scaling eXink, but the total number of kinks is conserved modulo 2.
ponents apparently assume trivial values and violate the hySo, in a broad sense, one can say that the IMD model
perscaling relation. However, we find that the hyperscalingevolves by the parity-conserving dynamics like the BAWe
relation for the DP universality class is restored if one fo-model. In this section, we discuss the dynamic critical be-
cuses on the dynamics of the interface on the side of thaavior of the IMD model via Monte Carlo simulations. Some
preferred absorbing state only. of the results reported previousfjt9] are much improved
In the next section, we report our numerical results for theusing efficient algorithms and some results for various inter-
IMD model in various dynamic simulations. In Sec. lll, the face dynamics are presented.
effect of the symmetry-breaking field in the IMD model is
dicussed in detail via stationary and dynamic simulations. In
Sec. IV, the numerical results for the PCA and NKI models
are presented. Finally we conclude in Sec. V with a summary We start with a lattice occupied by monomers at alternat-
and discussion. ing sites except at the central vacant site, i.e.,
(---AOAOQOAOAO- - -), where0 represents a defect at the
central site. Then the system evolves along the dynamic rule
Il. DYNAMIC CRITICAL BEHAVIOR OF THE IMD of the model. After one adsorption attempt on the average
MODEL per lattice site(one Monter Carlo time stepthe time is

incremented by one unit. A number of independent runs,

The interacting monomer-diméiMD ) model is a gener- . ) .
alization of the simple monomer-dimer model on a catalytic:wp'c"’IIIy 5x 10, are made up to810° t'_me steps for vari-
us values op near the critical probabilitp.. Most runs,

surface, in which particles of the same species have neare ) i
owever, stop earlier because the system enters into one of

neighbor repulsive interactiord8]. Here we consider the the absorbi tates. W th val babilit
one-dimensional IMD model with infinitely strong repul- € absorbing states. Yve measure the survival probability
sions between the same species. A monomardannot ad- P(t) (the probab!hty that the system is still active at time
sorb at a nearest-neighbor site of an already occupied montrnhe number o;_dlmer$\l(tf) aver?jged ?,Vﬁr all runs, a_nd the
mer (restricted vacangybut adsorbs at a free vacant site with mean square distance of spreading of the active refct)
averaged over surviving runs. At criticality, the values of

no adjacent monomer-occupied sites. Similarly, a dinBe) ( h S le alaebraically in the | -
cannot adsorb at a pair of restricted vacancBsn( nearest- these quantities scale algebraically in the long time Izt

neighbor sitesbut adsorbs at a pair of free vacancies. There P(t)~t?
are no nearest-neighbor restrictions in adsorbing particles of ’
different species. Only the adsorption-limited reactions are
considered. Adsorbed dimers dissociate and a nearest neigh-
bor of the adsorbed andB particles reacts, forms th&B
product, and desorbs the catalytic surface immediately. R%(t)~t*

Whenever there is aA adsorption attempt at a vacant site

between an adsorbédand an adsorbe, we allow theAto  and double-logarithmic plots of these values against time
adsorb and react immediately with the neighboriigthus  show straight lines at critiality. Off criticality, these plots
forming the AB product and desorbing the surface. If this show curvatures. More precise estimates for the dynamic

A. Defect dynamics

N(t)~t7”, @
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-0.26 . r r T B. Interface dynamics
028k | For the interface dynamics, we start with a pair of vacan-
cies placed at the central sites of a lattice and with monomers
030+ . occupied at alternating sites, i.e.,-¢ AOAQCAQOA.- )
= where the interface between two different absorbing states is
% 032 1 placed in the middle of two central vacanc In this case,
the system never enters an absorbing state, so that the sur-
034y | vival probability is always equal to 1 and the exponeént
056 . . . . =0. Even though the values &fand » vary with the types
of dynamics, their sund+ », which is responsible for the
growth of the number of kinkéor dimerg in surviving runs,
ooal | is known to be universdl35,19. This guarantees that the
' generalized hyperscaling relation is always satisfiél,
002 + 6+ n=dz/2 whered is the spatial dimension anglandy

are steady-state exponents explained in the next section. As
= 6=0 in this type of interface dynamics, it does not supply
S 000f A any new information about dynamic critical behavior of the
system.
002t In this section, we introduce three different types of inter-

. . . . face dynamics that may give nontrivial scaling of the surviv-
ial probability P(t). For convenience, the ordinary interface
dynamics as above is called age-A interface dynamics
Our previous study for the typ&-interface dynamics found

116+ _ that »=0.285(20) andz=1.14(2) as expecteld 9.
In thetype-B interface dynamicsve stop the evolution if

1.14-W¢W the interface collapses to its initial configuration, i.e., two
W vacant sites between the absorbing states. Then this run is
112}

] treated as a dead one. This dynamics is originally introduced
by Bassler and Browne for a three species monomer-

z(t)

1101 1 monomer modef30]. At criticality, we measuré(t), N(t),
andR?(t). P(t) now represents not a true survival probabil-
00 000z 0004 0006 0008 0010 ity but a probability of avoiding a collapse. In Fig. 2, we plot
10/t the effective exponents against L0ODur estimates for the

dynamic scaling exponents ag=0.731), »=-—0.41(1),

FIG. 1. Plots of the effective exponents againstt fot the  andz=1.162). These values satisfy the generalized hyper-
defect dynamics of the symmetric IMD model. Three curves fromscaling relation of the DI universality class and are in excel-
top to bottom in each panel correspondpte 0.5315, 0.5322, and lent accord with those reported by Bassler and Brojats.
0.5329. To see how much these exponents are robust, we change the

criteria for stopping the evolution from two active sites to

as trivial value of § in the typeB dynamics is believed to be
universal.
In the type-C interface dynamicsve focus only on the
log[ P(t)/P(t/b)] profile between the central site and the leftmost &he left
—a(t)= log(b) 2 front) of the active region. We stop the evolution when the

left front of the active region comes back to the celitaitial

position and treat this run as a dead ofsee Fig. 3. So
and similarly for »(t) andz(t). In this paper, we plot the P(t) represents a probability of avoiding a collapse of the
effective exponents against 1@ith b=10. Off criticality,  active region in the left side with respect to the initial loca-
these plots show positive or negative curvatures. The scalinton of the interface. We measufé(t) as the number of
exponents can be extracted by taking the asymptotic valuadimers only in the left side of the center aRd(t) as the
of the effective exponents at criticality. mean square spreading of the active region in the left side of

Our estimates for the critical probability and the dynamicthe center. The typ€&- interface dynamics is useful when one

scaling exponets are p.=0.53243), 6=0.2905), needs to distinguish the behavior of the left and right fronts
7=0.00(1), andz=1.135(5) (see Fig. 1 Note that the es- of the interface. So it is especially important to consider this
timate forz is much improved compared with our previous type of dynamics for the interface between unequivalent ab-
result:z=1.34(20)[19]. These values are in excellent agree-sorbing stategsee Sec. I)l. The effective exponents against
ment with those of the DI universality class such as thelOt at criticality are plotted in Fig. 4. Our estimates afe
BAWe model[26]. =0.3955), »=—0.1Q01), andz=1.15Q5), which also sat-
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-0.40
42 the typeb interface dynamics yields the same exponents as
0. in the typeA (ordinary dynamics. The typé: dynamics
does not yield the correct scaling exponents for the interface
1.20 between unequivalent absorbing states, so in this case the
118 type-D dynamics can be employed inste@ge Sec. Il ¢
118 I1l. THE IMD MODEL WITH A SYMMETRY-BREAKING
_ FIELD
=
N1 We introduce a symmetry-breaking field that makes the
112 system prefer one absorbing state over the of@é}. This
can be done by differentiating the monomer adsorption-
attempt probabilityp at an odd-numbered vacant site and at

FIG. 2. Plots of the effective exponents against 0¥ the type-
B interface dynamics of the symmetric IMD model at criticality
(p.=0.5322).
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an even-numbered one. If a monomer attempts to adsorb on
an even-numbered free vacant site, the adsorption attempt is
rejected with probabilith (0<h<1). The caséa=0 corre-
sponds to the ordinary IMD model discussed in the previous
section. For finiteh, the monomers tend to adsorb more on
an odd-numbered site than an even-numbered one. So the
absorbing state with odd-numbered sites occupied by mono-

isfy the generalized hyperscaling relation of the DI UNIVer- hers is probabilistically preferable to the other absorbing

sality class. The value od is different from those for the .o However, the kink dynamics of this model still con-

defect and o_ther mterfac_e dynaml_cs. It would be useful t.oserves the parity in terms of the total number of kinks. In this
check that this exponent is also universal for other models

IR cti A
X ; ection, we show that the symmetry-breaking field forces the
:jhe DI _un|:c/er:;z:1||t3|/3 ((_::IZSS. Idn |Secd :*VdV\tlﬁ study the tt)_ﬁpe- . system back to the conventional DP universality class via

ynarrlcs orthe model and find this exponent 1S unl'stationary and dynamic simulations. Therefore one can con-
versal. clude that not the parity conservation but the symmetry be-

q Fma]ly, we |'ntr.:)dutce ttﬁwfe'g g]terfaqe dynam|c§’.h|§ tween the absorbing states is essential in determining the
ynamics IS simiiar to the type- dynamics in measuring universality class of the absorbing phase transitions.
physical quantities. But we do not stop the evolution when

the left front of the active region hits the center. However,
while its left front wanders in the right side of the center, we
treat this run as a dead one temporarily, andé@f) and We run stationary Monte Carlo simulations starting with
R2(t) to zero. When it comes back to the left side of thean empty lattice with sizé. Then the system evolves along
center, we treat this run as a surviving run again and measutie dynamic rule with the symmetry-breaking field using pe-
N(t) andR?(t) as usual in the typ& dynamics.P(t) rep-  riodic boundary conditions. We set the value of the
resents a probability that the active region covers the left sideymmetry-breaking fielch=0.5 for convenience. After a

of the center and is expected to converge to a nonzero comufficiently long time, the system reaches a quasisteady state
stant less than 1. The effective exponents against 40/ first and stays for a reasonably long time before finally en-
criticality are plotted in Fig. 5. Our estimates ar® tering into an absorbing state. We measure the concentration
=0.01Q5), »=0.291), andz=1.151). Asexpecteds is  of dimers in the quasisteady state and average over many
nearly zero andP(t) converges to 0.69) (see Fig. . So independent runs that have not yet entered into an absorbing

A. Stationary simulations
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FIG. 4. Plots of the effective exponents against 0¥ the type-
C interface dynamics of the symmetric IMD model at criticality. 1.04}
state. The number of independent runs varies from16* oo 0002 0004 0006 0008 0010

for the system sizé& =32 to 3x 10° for L=512. 10
Elementary scaling theory combined with the finite-size /t

Scal_ing thgor){2,_3_6] p_rec_iicts that the average conce_ntration FIG. 5. Plots of the effective exponents against 16 the type-

of dimersp at criticality in the steady state scales with Sys-p jnterface dynamics of the symmetric IMD model at criticality.

tem sizelL as

relaxation time exponent;. From the elementary scaling

theory, one can expect the short time behavior of the dimer

concentration at criticality as

p(L)~L7Fm, )

where 8 is the order parameter exponent andis the cor-
relation length exponent in the spatial direction. In the reac- iy _+— By
. e S p(t)~t= . 4
tive phase p<p.), the concentratiop remains finite in the
limit L—oo0, but it should vanish exponentially with system
size in the absorbing phasp¥p.).

At p., we expect the ratio of the concentrations of dimers 0.50
for two successive system sizefl /2)/ p(L)=2"*, ignor-
ing corrections to scaling. This ratio converges to 1 for
<p. and approaches 2 f@r>p. in the limit L—o. We plot
the logarithm of this ratio divided by lgg2 as a function of
p for L=64,128,256, and 512 in Fig. 7. The crossing points
between lines for two successive sizes converge to the point
atp.=0.413(1) and3/v, =0.232). Thecritical probability 0.70
can be more accurately estimated from the defect dynamics
simulations;p.=0.4138(3)(see Sec. Il B. We run station-
ary simulations at this value @f and find the better estimate 065 — o v i o o
for B/v, =0.243(8) (see Fig. 8 This value is consistent 10/t
with the standard DP value of 0.2554 [26].

By analyzing the decay characteristics of dimer concen- FIG. 6. P(t) vs 10t for the typeD interface dynamics of the
trations at criticality, we can extract information about thesymmetric IMD model.

The characteristi¢relaxation time 7 for a finite system is

0.75 | —

P(t)




57 CRITICAL PHENOMENA OF NONEQUILIBRIUM . .. 6443

osk T T T T ]
—m—64 Y
Doop T T
—~ —v—512 o
g /:/ éﬂ
3
: 02 - 4
g -7"
o
oo A/‘ ] 1 1 1 1 1 1 1 1 1
0.39 0,;0 0,:‘1 0,:12 0,113 0.44 0.0 0.5 1.0 L5 20 25 3.0 3.5 4.0 4.5 5.0
P logt
FIG. 7. Plots of logd p(L/2)/p(L)]/log;o(2) vs p for the FIG. 9. Time dependence of the average concentration of dimers
asymmetric IMD model with the symmetry-breaking fidld=0.5  at criticality for various system sizés=32—512 for the asymmet-
for various system sizes= 64, 128, 256, and 512. ric IMD model with h=0.5. The solid line is of slope-0.165.
defined as the elapsing time for a finite system to enter into B. Defect dynamics
the quasisteady state. Then one can firstales at criticality When the symmetry between the absorbing states is bro-
as ken, the defect dynamics are sensitive to the initial configu-
rations. One can start with a lattice with a defect, either in the
T~LVI"e, (5) preferred absorbing state or in the unpreferred absorbing

state. The latter case does not show critical spreading of the
active region. The domain of the preferred absorbing state
grows at the center of the active region while the region of
the unpreferred absorbing state recedes with a constant
speed. This dynamics is much like two interface dynamics
between the preferred and unpreferred absorbing states
cYvhere two interfaces move in the opposite direction. We will
fjiscuss the interface dynamics in the next subsection.

In Fig. 9, we plotp at p, versus time for various system
sizes. Investigating the slopes in this double-logarithmic plot
we estimateg/ v =0.165(10). The double-logarithmic plot
(Fig. 10 for the characteristic time versus the system size
L shows a straight line from which we obtainj /v,
=1.45(10), which is consistent with the above results an

?ggggz) reasonably well with the standard DP value o We choose the initial configuration with a defect at the
' : Fenter in the preferred absorbing state. We tset0.5 for

Similar results are obtained for the system with a Weakeconvenience Our estimates for the critical probability and
symmetry-breaking field. Therefore we conclude that the ’ P y

symmetry-breaking field in the system with two absorbingthe dynamic scaling ~exponents ar@.=0.413§3),

states is relevant in determining the universality class ami: 0.1635), #=0.31%5), andz=1.265(5) (see Fig. 11

makes the system behave like having a single absorbin hese values are a_Iso improved compar_ed with our previous
state. In fact, the number of stationary runs falling into the sults[29] and are in excellent accord with the standard DP

unpreferred absorbing state compared with the number ofalues;5=0.159§4), »=0.3137(10), andt=1.2660(14).

those into the preferred state vanishes exponentially in sys-

tem size(see Sec. IV A The preferred absorbing state be- C. Interface dynamics
haves as a unique absorbing state of the system. As the two absorbing states are not probabilistically
equivalent, the dynamics of the interface between the pre-
07 ferred and unpreferred absorbing states shows a completely
-0.8 -
3.6
;5 0.9 |
2 30
%
1.0 F S
2.4
-1.1 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1
1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
log L 1.8 |
. . — . i ) 1.4 . 1.6 . 1.8 . 2.0 . 2.2 . 2.4 . 2.6 . 2.8
FIG. 8. The average concentration of dimerst criticality in log L
the quasisteady state against the system &izén a double-
logarithmic plots for various system sizés=32—-512 for the FIG. 10. Size dependence of the characteristic time at criticality

asymmetric IMD model withh=0.5. The solid line is of slope for various system size&=32—512 for the asymmetric IMD
—0.243. model withh=0.5. The solid line is of slope 1.45.
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FIG. 11. Plots of the effective exponents againstt 0r the
defect dynamics of the asymmetric IMD model whbk-0.5. Three
curves from top to bottom in each panel correspon@+c0.4132,
0.4138, and 0.4144.

preferred absorbing staee call it P-interface front moves
slower than the right interface froftU-interface fronj near

the unpreferred absorbing state due to the symmetry-
breaking field. At the critical point, thB-interface front be-
haves like a critical interfacézero velocity with nontrivial
temporal scalingas in the critical defect dynamics, but the
U-interface front still moves with a finite velocity. As we
increasep further into the absorbing phase, the active region
cannot grow and the preferred absorbing state dominates.
The P-interface front moves with the same velocity and the
same direction as th&-interface front. The width of the
active region is finite, in contrast to its diffusive behavior in
the absorbing phase for the symmetric case. Here, we con-
sider the critical case only.

In the symmetric case, four different interface dynamics
are introduced. In the ordinaiyype-A) interface dynamics,
the exponeng/2 converges to a trivial value of unity, due to
the ballistic nature of th&J-interface front even at criticality.
The typeB interface dynamics also involve the dynamics of
the U-interface front, so it does not yield nontrival values of
the exponents. The typ@-and typeb interface dynamics
focus only on the profile between the initial position of the
interface (the center and theP-interface front which be-
haves in a critical fashion.

For the type€ dynamics, we run X10* independent
samples up to & 10* time steps ap.=0.4138 withh=0.5.

Our estimates aré=0.371), »=0.11(1), andz=1.27(1)

(Fig. 13. As expected, the value af agrees well with the

DP value and these exponents satisfiy the generalized hyper-
scaling relation for the DP universality class, i.é+ 7
=0.48(2) is in excellent accord with the standard DP value
of 0.4731).

Similarly, we find 6=0.022), %=0.451), and
z=1.23(2) for the typed dynamics(Fig. 14. Again these
values agree well with the DP values. The concept of con-
centrating only on the relevant interface front may be applied
to other types of models in which many types of interfaces
coexist and some of them are not equivalent.

IV. OTHER MODELS

different behavior from the symmetric case. In Fig. 12, evo-

lutions of the interface below, at, and above criticality are
shown. Forp<p., the active region grows linearly in time

A. Probabilistic celluar automata

Grassberger, Krause, and von der TW&B,14 studied

in both directions. Of course, the left interface front near thewo models of probabilistic cellular automatéPCA),

(@) (b)

(c)

FIG. 12. Evolutions of the asymmetric IMD interface dynamics @rp<p., (b) p=p., and(c) p>p.. The region of the preferred
(unpreferregl absorbing state is shown in bla¢grey). The active sites are represented by white pixels.
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FIG. 13. Plots of the effective exponents againstt ¥0f the FIG. 14. Plots of the effective exponents againstt X6f the
typeC interface dynamics of the asymmetric IMD model for typeD interface dynamics of the asymmetric IMD model for
=0.5 at criticality. =0.5 at criticality.

namely, modelsA andB about ten years ago. THe model  configuration right before entering into an absorbing state,
evolves with rule number 94 in the notation of Wolfr48y] i.e., (---010111010--)—(---010L01010 - -). If the flip-
except 110 and 011 configurations, where the central spin ping probability of the central spin in the 111 configuration
flips to O with probabilityp and remains unflipped with prob- depends on the evenness or oddness of the position of the
ability 1—p. The B model evolves with rule number 50 ex- central spin, the symmetry between two absorbing states can
cept 110 and 011 configurations, where the central spin be broken. With probabilith, we reject the flipping attempt
flips to 0 with probability - p and remains unflipped with of the central spin in the 111 configuration when it is at an
probability p. These are the first models investigated, whicheven-numbered site. Then the absorbing state with 1's at the
are not in the DP universality class. Both models have twadd-numbered sites is probabilistically preferable to the
equivalent absorbing states, i.e., (1010 and (0101--), other one. Again the parity in the total number of kinks is
and exhibit an absorbing phase transition that belongs to theonserved even with the symmetry-breaking field
DI universality class. But these models behave differently in  We run the defect and typ@-interface dynamics witln
the absorbing phase. Once the system enters into one of the0.1. Our estimates for the defect dynamics grg
two absorbing states, it remains in that state forever in mode¥ 0.243%4), 6=0.1625(25), »=0.3105), and z
A but oscillates from one state to the other in moBelln =1.245(5)(Fig. 15. These values agree very well with the
spite of the discriminating behavior, these models belong tstandard DP values. For the ty@einterface dynamics at
the same DI universality class. In the kink representation, theriticality, we find 6=0.3742), 5=0.11%5), and z
total number of kinks are conserved modulo 2 in the dynam=1.275(5) (Fig. 16), which agree with the results for the
ics. IMD model with the symmetry-breaking fieldsee Sec.
First, consider theA model. We can introduce the IIl C). So the value of in the type€ dynamics seems to be
symmetry-breaking field which makes the system to prefeuniversal. In order to check whether the value &fn the
(1010 - -) to (010% - -). The system must go through a 111 type-C dynamics is universal in the symmetric case, we run
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defect dynamics of the asymmetric PCRA model with h=0.1.
Three curves from top to bottom in each panel correspong to
=0.2443, 0.2435, and 0.2427.

FIG. 16. Plots of the effective exponents againstt X0f the
typeC interface dynamics of the asymmetric P@Amodel with
h=0.1 at criticality.

the typeC interface dynamics whenh=0 and find
6=0.3955), »=-0.082), and z=1.17(2) (Fig. 17,
which is consistent with those found in the IMD model with-
out the symmetry-breaking fielgee Sec. Il B

We also run stationary simulations at criticality with size
L=32 up to 512 withh=0.1. Our estimates for the steady-
state exponents arg/v, =0.2485), B/v=0.15%5), and
v /v, =1.63(5) (Fig. 18, which also agree reasonably well
with the DP values. We measure the number of stationar
runs falling into the unpreferred and preferred absorbin
states respectively, i.eN, and N, at criticality in the long
time limit. The ratioR=N, /N, versus system siZe is plot-

—(---0100L01010 - -). We can introduce a rejection prob-
ability discriminating the even- and odd-numbered sites
similar to that in theA model, but it cannot make the two
absorbing states probabilistically unequivalent due to the os-
cillatory nature in the dynamics. In fact, it is meaningless to
distinguish the two absorbing states without any dynamic
barrier. In theA model, there exists a dynamic barrier be-
tween the two absorbing states, which makes the system take
¥n infinitely long time to hop from near one absorbing state
o near the other absorbing state. This dynamic barrier is
similar to the free energy barrier between two ground states
ted in Fig. 19. This ratio vanishes exponentially in systemin the equilil_)ril_,lm I_sing model. Withogt this barrier, there is_
i no way to distinguish the two absorbing states. Therefore it

SIz€, R~_exp(—L/L0) with Lo=13. It means that the Chaf‘c.e seems impossible to find the crossover from the DI to the DP
of entering into the unpreferred absorbing state is neg"g'bl%piversality class in the B model

so the system behaves like having a single absorbing state 0
the preferred one.

For the B model, the situation is quite different.
The system oscillates between the two absorbing Nonequilibrium kinetic Ising modelNKI) recently intro-
states; (1010 -)« (0101 --). In this model, the system duced by Menyhal [15—17 evolves with the competing ef-
must go through a 000 configuration right before enterfect of spin flips at zero temperaturd €£0) and nearest-
ing into an absorbing state, i.e.,--(-10100010%--) neighbor spin exchanges &t=«. The spin-flip dynamics

B. Nonequilibrium kinetic Ising model
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FIG. 17. Plots of the effective exponents againstt X0f the
typeC interface dynamics of the symmetric P@Amodel at criti- FIG. 18. The kink density in the quasisteady state against the
cality. system size, time dependence of the kink densityat12, and

size dependence of the characteristic time are plotted for the asym-
metric PCAA model withh=0.1 at criticality. The solid lines are

occurs with probabilityp and spin-exchange dynamics with of slope—0.245,—0.155, and 1.63 from top to bottom,

1—p. The competition between the two different dynamics
at different temperatures drives the system into an nonequi-
librium steady state and there is a continuous phase transition
as the competition parametprvaries.

In the T=0 spin-flip dynamics, the system evolves trying
to lower the energy. A spin is allowed to flip only if the flip
lowers the energy of the system or leaves it unchanged. We
use the parameterto distinguish the cases when the energy
is lowered or unchanged. We flip a spin with probabilitin
the former case and flip a spin freely in the latter case. Here,
we setr =0.5. In theT =« spin-exchange dynamics, nearest-
neighbor spins are freely exchanged regardless of the energy 5
change. Any up-down pair of spins can flip to the down-up
pair of spins if they are in the nearest neighbor.

The absorbing phase consists of two completely ferro-
magnetically ordered states that are equivalent. One cannot
flip a spin in these absorbing states because it increases the T e T S S
energy. These absorbing states are the same as the two de- 00 s s s T 8
generate ground states of the equilibrium ferromagnetic Ising L
model. The absorbing transition of the NKI model belongs to  FIG. 19. The semilogarithmic plot for the ra®against system
the DI universality class. In terms of ordinary domain-wall sizeL. The solid line isR=1.44 expt-L/12.9).
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defect dynamics of the asymmetric NKI model wiik=0.1. Three . _ . .
curves from top to bottom in each panel correspondyte0.18 FIG. 21. The kink density in the quasisteady state against the
0.19 and 0.20 ' system size, time dependence of the kink densityat12, and

size dependence of the characteristic time are plotted for the asym-
metric NKI model withh=0.1 at criticality. The solid lines are of

language, a domain wall between different spins is interSloPe—0.24,—0.155, and 1.50 from top to bottom.

preted as a walker in the BAW model. Then the NKI model
can be mapped exactly to the BAW model with two off-
spring with a control parameter for the two walker annihila-  All models studied in this papgtMD, PCA, NKI) pre-
tion procesg27,38. serve the parity of the total number of kinks but cross over
We introduce a symmetry-breaking field that prefers upfrom the directed IsingDl) to directed percolatiofDP) uni-
spins over down spins. So this field plays like an externalersality class when the parity-conserving symmetry-
magnetic field in the equilibrium Ising model. For conve- breaking field is introduced. As we argued in our preliminary
nience, we define the symmetry-breaking fibldis a prob- paper[29], the essential factor that determines the universal-
ability of not allowing an up spin to flip. Therefore the ab- ity class of a nonequilibrium absorbing phase transition is
sorbing state with all spins up becomes the preferredhot the conservation laws in dynamics but the symmetry be-
absorbing state. Again the parity in the total number of dotween absorbing states.
main walls is still conserved even with the symmetry- We take a careful look at various kinds of kinks in these
breaking field. models. First, consider the NKI model, which is the simplest
We run the defect dynamics and stationary simulation®ne in the domain wal{or kink) representation. In the NKI
with h=0.1. Our estimates arp,=0.1905), §=0.141), model, a kink is assigned between two neighboring spins in
7=0.321), andz=1.25(5) (Fig. 20, which agree well with  the opposite direction. Only one type of kink exists in the
the standard DP value. Stationary simulations at criticalityNKI model and there is a two-to-one mapping between spin
yield /v, =0.241), B/v=0.15%5), andy| /v, =1.50(5)  configurations and kink configurations. The two absorbing
(Fig. 21), which also agree reasonably well with the DP val- states correspond to the vacuum configuration in the kink
ues. representation. The evolution dynamics conserves the total

V. SUMMARY AND DISCUSSION
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number of kinks modulo 2. By identifying a kink as a walker breaking field, these models cross over from the DI to DP
in the BAW model, the NKI model can be exactly mapped touniversality class as in the models studied in this paper.
the BAW model with two offspring with a control parameter These results strongly support our conclusion that the sym-
for the two walker annihilation proce$27,38. Numerical —metry between absorbing states, not the conservation law, is
results[22,26] and recent field theoretical works for the the essential property to determine the universality class of
BAW models[39,4Q suggest that the parity conservation is the absorbing phase transitions. However, we do not exclude
responsible for the DI universality class. The symmetry-the possibility of the hidden conservation law in the kink
breaking field in the NKI model cannot be represented by alynamics of these models. In their absorbing phase, numeri-
local kink operator in the field theory language, similar to thecal simulations show that large domains of two different ab-
magnetic field in the equilibrium Ising model in the Bloch sorbing states are formed and active regions between two
wall representation. Therefore the recent field theoretical redifferent domains(domain walls with finite width survive
sults by Cardy and “ber [39,40 do not apply when the and diffuse until they annihilate pairwi$83]. It implies that
symmetry-breaking field is introduced. In order to considerthere may be an effective parity conservation law in domain
the symmetry-breaking field, one should include the long-walls, even though there is no parity conservation in micro-
range string operator, i.e., the global product of the numbesgcopic kinks. With the symmetry-breaking field, large do-
operators of kinks in the quantum Hamiltonian, which be-mains of the unpreferred absorbing state completely disap-
comes a highly nontrivial problem. Our numerical resultspear and domain walls(active regions annihilate by
suggest that this long-range string operator is relevant anthemselves.
makes the system leave a DI fixed point and flow into a DP  In this paper, we also introduce and investigate various
fixed point by the renormalization-group transformations. interface dynamics. Without the symmetry-breaking field,
The PCA models are similar to the NKI models evenwe find new universal exponents fd in the typeB and
though there seems no trivial mapping into the BAW mod-type-C interface dynamics, but the hyperscaling relation for
els. These models contain two types of kinks, which are asthe DI universality class is always intact. With the
signed between two neighboring 1's and 0's, respectivelysymmetry-breaking field, the interface moves, in average,
There is no kink between 1 and 0, so the two absorbing statesith a constant velocity in the direction of the unpreferred
correspond to the vacuum in the kink representation. Due t@bsorbing state. By focusing only on the side of the preferred
the parallel updating procedure, it is not easy to examin@bsorbing state, we find new exponents ddior the typeC
whether these two types of kinks can be represented by or@nd typeb dynamics and the hyperscaling relation for the
kink operator in the field theory. But the parity of the total DP universality class is obtained. These new exponents are
number of kinks is conserved during the evolution. Thealso shown to be universal. These types of interface dynam-
symmetry-breaking field that discriminates the even-ics should be useful in studying some other models with
numbered and odd-numbered sites should be also reprgiany but inequivalent absorbing states.
sented by a long-range string operator like that in the NKI It is interesting to compare the two-dimensional equilib-
model. However, théd model does not have any dynamic rium Ising model with the one-dimensional NKI model. It is
barrier between two absorbing states due to the oscillatoryell known that two-dimensional equilibrium models are re-
nature, so it is not affected by the symmetry-breaking fieldJated to one-dimensional kinetic models via transfer matrix
Except for that, we can draw the same conclusion for thdormalism[41]. An extra space dimension is interpreted as
PCA models as in the NKI model. the time dimension in one-dimensional kinetic models. One
The IMD model has a more complex kink representationcan write down the evolution operator of the kinetic model
due to its multicomponent nature. Three different types ofcorresponding to a given two-dimensional equilibrium
kinks are found betweel andB, B and 0, 0 and 0, wher® model. This evolution operator is Hermitian for the equilib-
is a site occupied by a dimer atom and 0 is a vacancy. Thgum model. General nonequilibrium kinetic models in one
parity of the total number of kinks is conserved and thedimension can be obtained by modifying the above Hermit-
symmetry-breaking field is similar to that in the PCA mod- ian evolution operator in a non-Hermitian form, i.e., break-
els. Our numerical results show that the IMD model exhibitsing the detailed balance. Then equilibrium modeldinmli-
the same critical behavior as in the NKI and PCA model. Itmensions and nonequilibrium kinetic models h—1
may imply that the differences between various kinks in thedimensions can be directly compared.
IMD and PCA models are just irrelevant details that do not The NKI model is a special case of general nonequilib-
affect the universal behavior. It may be interesting to studyrium kinetic Ising models. In the NKI model, the time rever-
these differences in the field theoretical models. sal symmetry is broken completely and its dynamics favors
Recently, a few other models have been introduced wittone time direction over the other. Therefore, by adding a
equivalent absorbing states. Those are generalized monomelifectional sense in the time direction to the equilibrium
monomer models studied by Bassler and Brog@—32, Ising model, one can see the crossover from the equilibrium
and generalized Domany-Kinzel models and generalizedsing universality class to the nonequilibrium DI universality
contact processes studied by Hinrich§88]. These models class.
are multicomponent models so there are many types of Similar things happen for the models with a single ab-
kinks. Unlike the IMD model, there appears no explicit par-sorbing state that belong to the DP universality class. The
ity conservation law in the kink representation of these mod{percolation problem is equivalent to tlge—1 limit of the
els, even though they all have two equivalent absorbingl-state Potts mod¢#2]. The DP problem is defined by add-
states. Numerical simulations showed that these models bég a directional sense to the percolation problem. Similarly,
long to the DI universality class. By introducing a symmetry-one can define nonequilibrium models wigrequivalent ab-
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sorbing states by adding a directional sense todtstate field is applied to the two-dimensional equilibrium Ising
Potts model. Both models have the permutation symmetrynodel. The percolation universality class appears only
betweenq ground(or absorbing states, so these nonequilib- through the random cluster formulation of the Potts model
rium models may be called as thestate directed Potts  [43]. Therefore the analogy between thpestate Potts model
model. In this sense, the NKI model may be called the di-and theqg-state directed Potts model is not complete. These
rected Ising model and the NKI universality class as the disimilarities and differences should be further investigated in
rected Ising(Dl) universality class. It will be interesting to the future.

set up and investigate the directed Potts models g8
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