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A self-repelling two-leg (biped) spider walk is considered where the local stochastic movements are governed
by two independent control parameters βd and βh, so that the former controls the distance (d) between the legs
positions, and the latter controls the statistics of self-crossing of the traversed paths. The probability measure for
local movements is supposed to be the one for the “true self-avoiding walk” multiplied by a factor exponentially
decaying with d . After a transient behavior for short times, a variety of behaviors have been observed for large
times depending on the value of βd and βh. Our statistical analysis reveals that the system undergoes a crossover
between two (small and large βd ) regimes identified in large times (t). In the small βd regime, the random walkers
(identified by the position of the legs of the spider) remain on average in a fixed nonzero distance in the large
time limit, whereas in the second regime (large βd ), the absorbing force between the walkers dominates the other
stochastic forces. In the latter regime, d decays in a power-law fashion with the logarithm of time. When the
system is mapped to a growth process (represented by a height field which is identified by the number of visits
for each point), the roughness and the average height show different behaviors in two regimes, i.e., they show
a power law with respect to t in the first regime and log t in the second regime. The fractal dimension of the
random walker traces and the winding angle are shown to consistently undergo a similar crossover.
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I. INTRODUCTION

Random walks are at the heart of nonequilibrium statis-
tical mechanics and stochastic processes. They are unique
in describing nature due to their large applications in many
physical systems, such as polymers in a good solvent [1],
stock markets [2], thermal motion of gas molecules [3] or
networks [4,5], and mathematical statistics [6]. In most cases,
studies on random walks in the literature are surprisingly
limited to a few cases like uncorrelated random walks, self-
avoiding and loop-erased random walks [7–11], and fractional
Brownian motions [12] for which the mathematical structures
are more or less known. Many properties of these random
walks in various dimensions have been calculated analyt-
ically and numerically. In two dimensions, we know that
self-avoiding walk (SAW) is a Schramm-Loewner evolution
(SLE) with a diffusivity parameter κ = 8

3 , which is consistent
with a conformal field theory (CFT) with a central charge
c = 0 [13,14], whereas a loop-erased random walk (LERW)
is described by SLEκ=2 [15], which is consistent with the
c = −2 CFT [16] (both CFTs are logarithmic). The former
reveals a relation with the critical percolation theory [17], and
the latter shows that LERW is consistent with the interfaces
of sandpiles [18]. Some authors occasionally consider more
sophisticated situations, like correlated random walks with
dropping debris [namely, a true SAW (TSAW)] [19], self-
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avoiding random walks in media with quenched randomness
[20], TSAW with diffusion of debris [21,22], LERW in the
correlated background [23], history-dependent random walks
[24–27], restricted random walks [28], and random walks
on the random graphs [5,29]. Another type of correlation is
the one that the motion of a random walker depends on the
effective environment that is formed by the rest of the random
walkers in the media. This problem applies to many systems
like active matter (such as the Vicsek model of self-propelled
particles [30] and active Brownian motion [31]) and thermal
motion of gas molecules [3]. Polymers [32], polymer brushes
[33], and traces of grains in sandpiles [34] are other examples.

In nature, there are some more sophisticated situations,
such as multiagent stochastic correlated walks, which can
serve as the example of few-body active dynamics, taking con-
ditional steps depending on the structure of the background
potential or effective interaction with other agents. Consider
as an example two (male and female) insects that besides seek-
ing food tend to each other and therefore perform a correlated
exploration process in two dimensions, with a low tendency
to step on the places where they have already stepped due
to the fact that the chance of finding food in the traversed
path is low. This problem can be considered as a combination
of TSAW and the multiagent random walk problem, which
we call a self-repelling bipedal exploration process (SRBP).
SRBP can be taken into account as a member of a larger
class, namely, the spider walks, defining the systems in which
the particles move in such a way that their movements do
not violate some given rules [35]. A DNA molecular biped
on a one-dimensional walking path is another example that
is mapped to a spider walk on one-dimensional [36–38] and
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two-dimensional [37] random media. There are many more
examples that can be mapped to our model (SRBP as a gener-
alization of biped spider walk) such as insect movement [39],
a polymer ring entangled with obstacles [40], local clustering
for multiagent random walks [41], and an animal’s movement
as correlated random walks [42]. Another example of the sys-
tems that can potentially be mapped to SRBP is a system with
two kinds of monomers (e.g., blue and red) with an absorb-
ing interaction between blue-red pairs and repulsion between
blue-blue and red-red pairs, through the combining of which
two (blue and red) self-avoiding polymers are constructed,
which serves as a generalization of polymers entangled with
obstacles [40].

In this paper, we consider the SRBP problem with two
independent parameters, one of which controls the tendency
between two agents (βd ≡ 1/Td ), and another controls the
disinclination for crossing the traversed path (βh ≡ 1/Th). The
variables Td and Th can be interpreted as two different temper-
atures in our model. To capture the “true self-repulsion,” we
use the method given in [21], according to which the random
walkers drop one unit of debris in the site that they are in,
so that hi(t ) shows the height of the debris in site i at time
t . Then the random walkers come back to any site i with a
probability proportional to exp[−βhh] (the step length is one
unit of lattice). The relative distance of two agents, the height
of debris, and the random walker paths are the important
quantities that we study in this paper. This system is shown
to undergo anomalous diffusion (with respect to the relative
coordinate) and shows a crossover point to a new phase that is
determined by βd and βh.

The paper is organized as follows. In the next section,
we introduce the model. The results for the diffusion process
are presented in Sec. III. Section IV is devoted to the fractal
dimension of the traces and the winding angle statistics. We
close the paper with a conclusion section.

II. THE MODEL

The spider walks with k legs are defined through consid-
ering k different (coupled) traces [Xt = (X1,t , X2,t , . . . , Xk,t ],
where Xi,t stands for the position of the ith leg of the spider at
time t) over a given undirected connected graph G(V, E ) with
vertex set V and edge set E . The model is identified using
the transition matrix P = {p(x, y)}x,y∈G, where p(x, y) is zero
only when the required links are missing in G. Showing the
position of the spider by x = (x1, x2, . . . , xk ), the transition to
y = (y1, y2, . . . , yk ) is given by p(xi, yi ) if there exists exactly
one index i such that xi �= yi. Many properties of this model
have been explored in the literature, such as recurrence [35],
transience, ergodicity, and spider walks in random media [35].
The example is the legs of the biped molecule (as a biped
spider), which moves on the integer lattice representing the
nucleic acid binding domains imprinted on the path [36].

As partially explained in the introduction, we consider two
correlated random walks that step on a lattice. This problem
is mapped to a generalized biped spider walk problem in the
Euclidean space (square lattice). The generalization looks to
the fact that the traces that are traversed by the legs of the
spider matter, i.e., the traces are self-repulsive in the sense
that in each time step t , the random walkers drop a unit of

t

r
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t − 1

FIG. 1. Schematic representation of the random walks of one
agent with the corresponding winding angle θt and displacement r(t ).

debris at the point that they stand on, e.g., the site i, so that the
height of the site increases by one, i.e., hi(t ) → hi(t ) + 1. The
steps are taken according to the following update probability:
Suppose that the random walkers are in points r0

1 and r0
2 at

time t , and r1 and r2 are some random neighbors of r0
1 and r0

2,
respectively. Then the probability to step to the neighboring
sites r1 and r2 at the next time is proportional to

P ∝ exp {−βh[h(r1) + h(r2)]} exp [−βdδd], (1)

where δd ≡ dnew − dold, dnew ≡ |r1 − r2| and dold ≡ |r0
1 −

r0
2|. The first factor cares about self-repulsion, and the second

one cares about the tendency between the pair, so that when
both βh and βd are zero, all the directions are equiprobable and
one retrieves two-dimensional uncorrelated random walks.
The simulation is started by two agents that start from the
origin. At each time the next step is taken towards a random
neighbor according to the probability given above. For calcu-
lating the winding angle statistics, we prevent the agents from
entering a region in a close neighborhood of the origin [43].
The larger amount of βh leads to a smaller probability of self-
intersection, so that (βd , βh) → (0,∞) gives two independent
ordinary SAWs. In the opposite limit for βh = 0, and defining
d ≡ |r1 − r2|, at long enough times, one expects that

〈d〉 = −∂/∂βd ln
∫ ∞

0
e−βd d dd = β−1

d = Td , (2)

where the ergodicity was considered, meaning that the random
walker has enough time to find any possible configuration,
i.e., all d values are visited. The other well-known limit is
βd = βh = 0, which is corresponds to two independent two-
dimensional uncorrelated random walks—space filling with
mass fractal dimension d f = 2. The winding angle θ is de-
fined as the total winding angle of the random walker around
the origin. The general setup of the problem and the quantities
of interest are schematically shown in Fig. 1, where a small
region around the starting point was removed. It was shown
that for the ordinary two-dimensional random walks with the
starting point excluded [8,43],〈

θ2m
〉 ∝ (log t )2m, (3)

and the distribution function Pt (θ ) ∝ exp[−2π |θ | log t]. This
is in contrast to SAWs, where 〈θ2〉 = 8

3 t [13]. Also, note that
the characteristic distance of the random walker scales with
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(b)

(c)

(d)

FIG. 2. Log-log plots of r ≡ |r| vs t for βd = 0.005 and βd = 1.5 for various values of βh (each corresponding to a curve with a specific
line style) are shown in (a) and (b), respectively. The slope of each curve gives the diffusion exponent ν. The corresponding exponents in terms
of βh and βd are shown in (c) and (d), respectively. In (d) one can see that for βd � 0.2, the diffusion exponent ν changes abruptly, and for
βd � 0.2, it roughly remains fixed.

tν , where ν = 1/2 for ordinary random walks and ν = 3/4
for SAWs.

III. THE DIFFUSION PROCESS

In this section we present the results of the simulations. We
use the Metropolis algorithm with the accepted ratio P defined
in Eq. (1) to accept one of the 16 possible pair movements on
a lattice at each time step t . For various values of βd , and
βh (with variable increments), we generated more than 105

independent realizations, for each of which the time runs up
to t = 106. The run time for high βh values increases dramat-
ically because of the self-avoiding character of the traces.

The type of diffusion (normal, sub-, and superdiffusion)
for each agent is arguably the most important question in the
transport perspective. Our inspections show that the statistics
of the random walkers are quite sensitive to βd and βh. Impor-
tantly, the position of each random walker r ≡ |r| crosses over
from normal diffusion (identified by an exponent ν = 1

2 in the
scaling relation r ∝ tν) to a regime with a different diffusion
exponent; see Fig. 2. As βh increases, one expects that the
SAW behavior is retrieved, νSAW = 3

4 [13], which is expected
from Fig. 2(c), while the dependence on βd is quite low for
βd � 0.2. As βd increases, the crossover to the new regime
happens earlier, i.e., βd facilitates this crossover.

The relative distance between the random walkers
(dβd ,βh (t )) is the other quantity that shows considerable change
as βd and βh vary. Figure 3 shows this quantity in terms of time
t for various amounts of βh and for βd = 0.2 and 2 [Figs. 3(a)
and 3(b) respectively]. For both cases in the early times, the
distance between the random walkers (agents) increases with
time in a power-law fashion. There is, however, an important
difference between them in long times: for βd = 0.2 the graph

saturates to a βh-dependent constant, while the graph for
βd = 2, d decays in a power-law fashion in terms of log t .
More precisely, in the large βd regime, the random walkers
are asymptotically absorbed to each other with a heavy tail
function:

dR2
βd ,βh

(t )
∣∣
large times

∝ (log t )−αd . (4)

Our observations show that a crossover is established between
two distinct regimes in terms of βd identified by different
statistical behaviors. Let us show the crossover region by β∗

d ,
which is [0.2, 0.5]. For βd smaller than β∗

d (let us call it the R1
regime), d saturates to a constant value for long enough times
[like βd = 0.2 in Fig. 3(a)], while for βd > β∗

d (the R2 regime)
d varies in the form of Eq. (4) [like βd = 2 in Fig. 3(b)]. For
the R1 regime, the curves for d are collapsed (fitted to each
other) with an appropriate choice of exponents, a fact that was
not observed for the R2 regime. Figures 3(c) and 3(d) show the
data collapse analysis for the R1 regime for βh = 0.2 and 1,
demonstrating that the relative distance of the agents satisfies
the following scaling behavior (for all βh values in the interval
[0.01, 1]; also note that it is not applicable for R2 regime):

dR1
βd ,βh

(t ) = C(βh)β−b
d F

(
βa

d t
)
, (5)

where a and b are their corresponding exponents, C(βh) is a
smooth function of βh, and F is a universal function with the
asymptotic behavior limx→0 F (x) ∝ xb/a and limx→∞ F (x) =
const. These exponents are interestingly more or less inde-
pendent of βh for βh ∈ [0.01, 1], being fixed at a = 2.00 ±
0.05 and b = 1.00 ± 0.05. This shows that d (t )small times ∝ t z

where the dynamic exponent z = 0.51 ± 0.02 lies pretty much
within the normal diffusion regime. We notice that this
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(a)

(b)

(c)

(d)

FIG. 3. Log-log plots of d ≡ |r1 − r2| in terms of log10 t for βd = 0.2 and for βd = 2 are plotted in (a) and (b), respectively. It is clear
that we have two different behaviors in (a) and (b). The βd = 0.2 and βd = 2 belong to the R1 and R2 regimes, respectively. When βh ≈ 0,
these differences do not exist anymore; i.e., the variable d (t ) reaches a saturation value ds at a big enough time for all values of βd > 0. The
corresponding data collapse analysis for βh = 0.2 and βh = 1 with a = 2.00(5) and b = 1.00(5) is shown in (c) and (d), respectively. It is
worth noting that the data collapse happens in the R1 regime (βh > 0, βd � 0.2).

behavior cannot be valid for (or simply extrapolated to) much
larger βh where one expects the SAW regime with zSAW = 3

4 .
To monitor the differences of the R1 and R2 regimes, we

show the αd exponent in terms of βd and βh in Figs. 4(a) and
4(b), respectively. αd is almost zero for βd � 0.6 [inset of
Fig. 4(a)] as expected from the definition of the R1 regime
and grows more or less linearly by increasing βd starting
from βd ≈ 0.6, consistent with the above claim (βh = 0 is
an exception for which αd is almost zero everywhere). The

dependence of αd on βh is low [Fig. 4(b)], as can also be seen
in the other observables like Fig. 5 where ds is the amount of
d at a fixed time t = 103 after the saturation is established.
The latter figure shows that the change of ds with respect to
βh is negligibly small. For small βd values, the graphs are
fitted with the relation ds ∝ 1/βd , which is true for all βh

values considered in this work [in agreement with Eqs. (2)
and (5)], while some deviations are observed for large βd

values.

(a) (b)

FIG. 4. The exponents αd in terms of βd for 0.5 < βd < 2, and 0 < βd � 0.5 are shown in the main panel and inset of (a), respectively. In
the two mentioned regimes, R1 and R2, we see different behaviors for d (t ) = |r1 − r2|. In the first regime, d (t ) reaches a plateau region. But
in the second regime, we see d (t ) follows the power law in terms of log10 t . The legend of the inset figure is the same as the main panel. The
x-axis of the inset is in log10 scale for making the graph clearer. In (b) the exponent αd is plotted in terms of βh, which roughly remains fixed
for almost large βh.
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FIG. 5. The amount of d at t = 103 in terms of βd for various
values of βh is shown in main panel. For small values of βd , d (t )
reaches ds, and all curves follow the scaling relation ds ∝ 1/βd ,
which is consistent with Eq. (2). The change of ds with respect to
βh for each curve (corresponding to a βd ), is negligibly small, which
is shown in the inset.

The problem of random walkers in two dimensions can
readily be mapped to a (2+1)-dimensional growth by consid-
ering the statistics of the height produced by the amount of
debris left by random walkers at each site. There is consider-
able literature on mapping a landscape generated by debris
in TSAW to rough surfaces. In the original paper by Amit
et al. [19], it was assumed that the roughness can be ne-
glected, so that the rough surface is characterized only by
its gradient. Obukhov and Peliti then argued that roughness
is a significant quantity as well as the gradient [44]. This

was further discussed by Derkachov et al. [45]. Whatever
the correct description of the landscape, it is characterized by
long-range correlations. From this point of view, the rough-
ness is arguably the significant quantity that identifies the
system’s universality class. It is defined by

w2 = 〈(h(r) − h̄)2〉, (6)

where the overbar represents the spatial average O ≡
1

m(t )

∑
x,y∈
(t ) O(x, y), and 〈· · · 〉 is the ensemble average. The

variables m(t ) = ∑
i �(hi(t ) − 1) and 
(t ) are the number of

occupied sites and the set of all occupied sites, respectively.
Also, � is the step function defined by �(x) = 1 for x � 0
and zero otherwise. We found a same crossover point in terms
of t , so that for βd � β∗

d (R1 regime) both h (=〈h̄〉) and w

grow with time in a power-law fashion, while for βd 
 β∗
d

(R2 regime) both of them grow with a power of log t . For
βd � β∗

d both behaviors are observed, one for small timescales
and another for large times.

Two extreme cases (R1 and R2 regimes) for w have been
shown in Fig. 6 (the results for h are quite similar to w, which
can be realized from scaling arguments). Figures 6(a) and 6(b)
are w2 for βd = 0.005 (in the R1 regime) and βd = 1.5 (in the
R2 regime) respectively, from which we see that the log-log
plot of roughness is linear with time in the R1 regime, whereas
it is linear with respect to log t in the R2 regime. The quantities
shown in Figs. 6(c) and 6(d) are the corresponding exponents
in long times defined by

w2
R1 ∝ tα(1)

w , w2
R2 ∝ (log t )α

(2)
w . (7)

It should be noted that the label and the scale of the axes in
Figs. 6(a) and 6(b) have been chosen in accordance with the
fact that Fig. 6(a) describes the R1 regime and satisfies the first

(a)

(b)

(c)

(d)

FIG. 6. Log-log plot of w2 in terms of t for βd = 0.005 is plotted in (a). This βd is found in the R1 regime, in which the width is proportional
to tα

(1)
w . In (b) the log-log plot of width is shown in terms of log10 t for βd = 1.5. This βd belongs to the R2 regime, in which w2(t ) ∝ (log t )α

(2)
w .

In (c) and (d), the exponents α(1)
w , and α(2)

w are depicted in terms of βd in the regions βd � 0.2 and βd 
 0.2 for various amounts of βh,
respectively.
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(a)

(b)

(c)

(d)

FIG. 7. Log-log plots of trace length of the random walker (l) in terms of L (lateral size of minimal square containing the whole trace)
for βd = 0.005 and βd = 1.5 are shown in (a) and (b), respectively. The slope of each curve yields the fractal dimension df of random walker
traces. The corresponding fractal dimensions calculated using the sandbox method in terms of βh and βd are shown in (c) and (d), respectively.
In (d) one can see that for βd � 0.2, the value of df changes abruptly. But for βd � 0.2, the value of df remains almost fixed.

relation of the above equation. In contrast, Fig. 6(b) belongs
to the R2 regime and satisfies the second relation.

Considering Figs. 6(c) and 6(d), we see that α(1)
w after a

slight increase shows a decreasing behavior in terms of βd (it
decreases with βh), while α

(2)
h is more or less constant. Both

exponents decrease with βh for all βd values. α(1)
w is not a

monotonic function in terms of βd , showing a maximum at
βd ≈ 0.005, while it decreases with βh confirming that it is
entering a logarithmic regime. α(2)

w is almost robust against
βd and decreases with βh. Note that our definition of spatial
averaging differs from the one used in [21] (here the average is
over the occupied sites), so that our exponents cannot be com-
pared with that paper. We are not sure whether this behavior
of the roughness remains unchanged as t → ∞ or it enters
a stationary regime, for which much larger scale simulations
are needed. The second way out of this problem might be
to consider the random walkers on a finite lattice, which is
beyond the scope of this paper.

IV. FRACTAL PROPERTIES

The comparison of the fractal properties of the random
walker traces with the other known exact results reveals the
properties of the model. It especially helps significantly to
understand the nature of the crossover. We have used the sand-
box method [46] to estimate the fractal dimension (FD). There
are many other methods for estimating the fractal FD, like
box counting, gyration radius, etc., that should be the same in
the scaling limit, i.e., L → ∞. But for finite systems, the esti-
mated FD and the data quality depend on the chosen method.
Briefly, one considers the traces for one random walker up to
time t with length l (t ) and encloses it with a minimal square
with an edge length L. The scaling relation between l and

L gives us the FD, l (t ) ∼ L(t )d f . In Figs. 7(a) and 7(b), this
relation is shown for the R1 and R2 regimes, respectively.
The exponent d f can be considered as the dynamical mass
FD since the quantities are time dependent. We calculate
the effective d f in terms of βh and βd [Figs. 7(c) and 7(d),
respectively]. The FD of βd = βh = 0 is almost 2 as expected
for two-dimensional uncorrelated random walks. Note also
that the other extreme is βh → ∞ for which dSAW

f = 4
3 . From

Fig. 7(c) we see that FD decreases as βh increases (show-
ing that the traces become sparse), approaching this value.
Figure 7(d) shows that for βd > β∗

d , FD becomes almost con-
stant in terms of βd .

Now we are in the position to test the statistics of the
winding angle defined in Fig. 1. Its variance 〈θ2〉 is given in
Eq. (3) for βd = βh = 0. This function is linear in the log-log
scale plot in terms of log10 t shown in Figs. 8(a) and 8(b) with
the exponents in large timescales given in Figs. 8(c) and 8(d).
These results confirm that Eq. (3) is applicable for all cases
with generalized exponents; i.e., it should be generalized to

〈θ2〉 = A(log t )αθ (βd ,βh ), αθ (0, 0) = 2, (8)

where A is a nonuniversal constant. From Figs. 8(c) and 8(d),
one observes that αθ changes from 2 to the lower values. It
is hard to decide whether this exponent is identical for all
βd and βh values when βh is high enough. Roughly speak-
ing, αθ changes from 2 for small βh and βd values to 0.9 <

αθ (βd , βh) < 1.2 for large βh and βd .
It is interesting to note that there is a universal point t∗

where for a fixed βd all the graphs for various βh meet each
other. The slope of the graphs is different on two sides of
this point, so that t∗

θ is served as the crossover point be-
tween small- and large-scale behaviors. We calculate αθ by
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(a)

(b) (d)

(c)

FIG. 8. Log-log plots of the variance of the winding angle 〈θ2〉 in terms of log10 t for βd = 0.2 and βd = 1 are shown in (a) and (b),
respectively. Panels (a) and (b) have the same legend. The slope of each curve in the significant times gives αθ . It seems that all curves in each
panel meet at a specific time, e.g., t∗. We show the dependency of t∗ on βd in Fig. 9. The corresponding exponent αθ in the long-time limit
in terms of βh and βd is plotted in (c) and (d), respectively. For βd � 0.2 in (d), one can see that the value of df changes abruptly. But for
βd � 0.2, the value of αθ almost remains fixed.

extracting the slopes on the right-hand side of this point, i.e.,
large timescales. Using this fact, one can conclude that A
must follow A = C/(log t∗

θ )αθ (βd ,βh ), where C is a nonuniversal
constant, reading

〈θ2〉 = C

(
log t

log t∗
θ

)αθ (βd ,βh )

. (9)

To calculate t∗
θ , we identify the crossing point of each two

curves corresponding to different values of βh. The reported
t∗
θ is the average value, and the error bar is the variance of it.

FIG. 9. The crossover time t∗
θ related to 〈θ2〉 curves [see Eq. (9)

and Fig. 8] in terms of βd is shown. It seems that for βd < 0.2, the
value of t∗ decreases. But for βd > 0.2, it increases, and finally for
large βd greater than 0.5, the values of t∗

θ roughly remain fixed within
the error bar.

Figure 9 shows log10 t∗
θ in terms of βd , in which we see that it

changes behavior when one crosses from the R1 regime to R2
regime, i.e., in the R1 regime it is an increasing function of
βd , while for the R2 regime it almost saturates to a constant.

V. CONCLUSION

This paper is devoted to the analysis of a biped spider walk,
i.e., two correlated self-repelling random walkers, which is re-
alized by dropping debris in the lattice points that are visited.
The motion of random walkers is controlled by two external
parameters (βd , βh) where βd captures the tendency of the
random walkers to each other, and βh controls the possibility
that a random walker steps on a site with debris height h. As
an assessment of our model, we checked the following limits:

(βd , βh) → (0, 0), which is simple random walk with the
fractal dimension d f = 2 corresponding to the diffusion ex-
ponent ν = 1/2. Also, the second moment of the winding
angle is expected to show a power-law behavior with log t [see
Eq. (8)].

(βd , βh) → (finite, 0), where the stationary distance be-
tween random walkers is expected to behave like Eq. (2).

In the limit (βd , βh) → (0,∞), our model is expected to
behave like SAWs, for which we have observed compatible
results.

Our study uncovers the fact that there is a crossover point
in which random walkers change from uncorrelated random
walks to a regime that is characterized in this paper in detail.
In the regime, the system is in the superdiffusion phase with
some diffusion exponents higher than 1

2 . By analyzing the
diffusion exponent and the fractal dimension of the random
walker traces, we showed that regime although exhibiting
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FIG. 10. We summarize the important findings of the paper. Our
significant finding is the crossover behavior in terms of βd . This
crossover region is β∗

d ∈ [0.2 − 0.5]. Moreover, for case (βd , βh ) →
(0, 0), the system behaves like two independent random walks.
When (βd , βh ) → (0, ∞), we expect two independent ordinary self-
avoiding random walks. For large values of βh, the exponents of αd ,
αθ remain almost unchanged.

properties partially similar to self-avoiding walks represents
unique features. The first regime which is identified by a
crossover region βd � β∗

d ∈ [0.2 − 0.5] (β∗
d is a crossover

point) is called the R1 regime, whereas the other regime is
called R2.

In the long-time limit, the random walkers stay in a finite
equilibrium distance in the R1 regime, while they tend to stay
near each other in R2 regime. This tendency is described by
a power-law decay of d = |r1 − r2| in terms of the logarithm
of time. The decay is faster for lower βd [Fig. 4(a)], while it is
not very sensitive to βh (for not very small βh).

A similar crossover is seen for the sandbox fractal dimen-
sion of random walker traces, which is expected to become
an uncorrelated random walk dURW

f = 2 as (βd , βh) → (0, 0),

and SAW as (βd , βh) → (0,∞) with dSAW
f = 4

3 . We observed
that the traces become more sparse (more self-avoiding) as
βh increases, i.e., d f , starting from 2 (the uncorrelated case)
decreases with βh saturating to a value. For βd �= 0 this fi-
nal fractal dimension is almost independent of βd ; e.g., it is
1.6 ± 0.1 for βh = 2.0.

In the analysis of the winding angle, two important facts
were found: (1) the variance of the winding angle regarding
Eq. (3) with a different exponent [Eq. (9)] which is not effec-
tively βd -dependent, and is pretty sensitive to βh (transiting
from 2.0 ± 0.1 to 1.1 ± 0.2) and (2) there is a crossover time
t∗
θ where for fixed βd all the βh graphs meet each other almost

in a same point. We observed that the slopes of the graphs
before and after this point are slightly different (Fig. 8). The
important findings of the paper are summarized in Fig. 10.
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