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Two-dimensional super-roughening in the three-dimensional Ising model
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We present a random-interface representation of the three-dimensional (3D) Ising model based on thermal
fluctuations of a uniquely defined geometric spin cluster in the 3D model and its 2D cross section. Extensive
simulations have been carried out to measure the global interfacial width as a function of temperature for different
lattice sizes which is shown to signal the criticality of the model at Tc by forming a size-independent cusp
in 3D, along with an emergent super-roughening at its 2D cross section. We find that the super-rough state
is accompanied by an intrinsic anomalous scaling behavior in the local properties characterized by a set of
geometric exponents which are the same as those for a pure 2D Ising model.
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The microscopic definition of the surface of separation
between two phases in equilibrium systems and their tran-
sition from a smooth to a rough interface—the so-called
roughening transition (RT)— are among the long-standing
problems in statistical physics [1–15]. The concept of RT in
the context of crystal growth and its correspondence with the
Ising model was first introduced by Burton and Cabrera [1]. In
this method, i.e., the lattice-gas realization of the Ising model,
the occupied sites corresponding to atoms are represented by
spins up and vacancies are represented by spins down. In
this picture, an interface separates the occupied sites from
the rest of the system. It has been argued that there exists a
temperature TR where the width of this interface diverges.

Let us briefly summarize the previous efforts in this regard
during the past decades. Burton et al. reported [2] that a
RT occurs in the three-dimensional (3D) Ising model at a
temperature TR very close to the critical point T 2D

c of a 2D
Ising model, i.e., at TR ≈ T 2D

c � 0.503Tc, with Tc being the
Curie point of the 3D Ising model. The arguments for the
existence of such RT were based on mapping the interface
problem into a 2D Ising model. This mapping is valid only
at sufficiently low temperatures [9]. Dobrushin demonstrated
that the interface width remains finite for low nonzero tem-
peratures [4]. Moreover, at low enough temperatures a sharp
interface between areas of opposite magnetization exists.
From a different point of view, van Beijeren and Gallavotti
[3,5] have proved that there is no sharp interface for the
2D Ising model on a square lattice. They demonstrated that
large fluctuations cause the interface width to diverge at any
temperature even at very low nonzero T . Furthermore, they
conjectured that the surface of separation between two phases
of opposite magnetization in the 3D Ising model might show
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a RT. Weeks et al. performed a low-temperature expansion of
the moments of the gradient of the density profile and used
the slope at its midpoint to estimate the RT temperature TR

for the width of an (001) interface in a 3D Ising model on
a simple cubic lattice with isotropic and anisotropic coupling
constants [6]. In the case of anisotropic coupling constants, the
so-called solid-on-solid (SOS) model, the vertical coupling
constant Jz goes to infinity while the horizontal constants
are fixed and finite Jx = Jy = J . Moreover, they obtained a
roughening temperature at TR ≈ 0.57Tc. van Beijeren proved
a rigorous lower bound of the roughening point TR � T 2D

c for
an arbitrary Jz [7].

Various Monte Carlo simulations have been also carried
out on the 3D Ising model to clarify the RT problem [9,11–
14]. Mon et al. have done extensive simulations and deter-
mined the roughening temperature to be at ∼0.542(5)Tc [13].
They also found that for higher temperatures, the squared
interface width increases logarithmically with system size.
Swendsen used a Monte Carlo simulation to demonstrate
the existence of the RT in SOS and discrete Gaussian (DG)
models [9]. He described the relationship between the RT
in SOS and DG models with a phase transition in the 2D
Ising model. In SOS models, the interface overhangs and
bubbles are neglected. A particular body-centered-cubic SOS
(BCSOS) model was introduced and solved exactly by van
Beijeren [10]. For precise simulation results of this and other
models of the RT, see Ref. [14]. We would like to emphasize
that the RT does not correspond to a bulk fixed point of the
renormalization group, and studies of the RT have not led to
progress in understanding the critical behavior of the 3D Ising
model.

Here, we present an alternative approach to this problem
by introducing some geometric measures in terms of thermal
evolution of the spin domains’ interface that exhibits a RT
exactly at the Curie point Tc. We simulate the 3D Ising model
by using the Wolff’s single-cluster update algorithm [18] on
a cubic lattice of linear size L whose spins at the bottom
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FIG. 1. (a) Schematic illustration of geometric spin clusters in a
3D Ising model with fixed boundary condition at the bottom (z = 0).
(b) A 2D cross section of the model with its different spin clusters
shown in different colors (spins up are merely colored). Note that the
clustering procedure is performed independently in 3D and 2D on the
same spin configuration. The solid line shows the unique interface on
the 2D cross section which exhibits a super-roughening transition at
the Curie point Tc.

boundary (z = 0) are set to be fixed at a state, say, “up.”
Periodic boundary conditions along the x and y directions
and a free boundary condition at the top boundary are applied
[Fig. 1(a)]. We focus on an interfacial evolution of a uniquely
defined cluster of spins that is connected to the bottom bound-
ary. A geometric spin cluster is defined as a set of connected
nearest-neighbor sites of like-sign spins which is identified by
the Hoshen-Kopelman algorithm [19]. With the interface we
mean a random surface that separates the cluster attached to
the floor from the rest of the spins. Such a surface in the 3D
system is a fluctuating membrane and in a 2D cross section
of the system is a fluctuating curve [the solid red line in
Fig. 1(b)], which are the main subjects of the present study.
For every identified random membrane (in 3D) and random
curve (at the 2D cross section of the 3D model) we assign
a unique corresponding height profile represented by h(x, y)
and h(x), respectively, which are independent of each other
since the clustering procedure is performed independently in
the 3D and 2D cross section on the same spin configuration
(Fig. 1). At every lattice point x sitting at the floor [either at the
floor of the 3D model denoted by (x, y) or the 2D cross section
of the model denoted by (x, L/2)], h(x) denotes the height of
the uppermost spin which belongs to the cluster attached to
the floor. This representation provides a (non-one-to-one) map
from spin configurations to a height profile. The unique fea-
ture of our approach is that it provides a representation of the
3D Ising model in lower dimension that signals the criticality
of the bulk, and also it reveals unexpected similarities with the
2D Ising model at the Curie point. It is worth mentioning that
our results are independent of the position of the 2D slice and
it can be considered at any 1 � y � L or 1 � x � L.

Our aim here is to study the statistics of fluctuations in the
height profiles {h(x)} within the proposed random-interface
representation of the 3D Ising model. A basic quantity to char-
acterize the height fluctuations around the mean value h̄ is the
global interface width, W 2(L) = 〈h2(x)〉c := 〈[h(x) − h̄]2〉,
where the bar stands for the average over all spatial space x,
and the angle brackets denote ensemble averaging. Previously
posed definitions of the interface by other authors are different

FIG. 2. The average squared width as a function of temperature
for (a) the fluctuating membranes in a 3D Ising model and (b) the
fluctuating curves at its 2D cross section. The vertical dashed line
indicates the position of the Curie point best estimated numeri-
cally Tc ≈ 4.511 524 (all temperatures are expressed in [J/kB] units)
[16,17]. The solid lines show the scaling behavior of the cusplike
width in terms of the reduced temperature t = (T − Tc )/Tc by intro-
ducing the supercritical θ+ = 0.60(3) and subcritical θ− = 0.43(4)
exponents near the critical point tc = 0. All averages are taken over
independent spin configurations after thermal equilibration with 106,
2.5 × 106, and 5 × 106 independent realizations for T < Tc, T = Tc,
and T > Tc, respectively.

(see Supplemental Material [20]). Figure 2 presents the results
of our computations for global width for different lattice sizes
as a function of temperature for the fluctuating membranes
[in the 3D Ising model, Fig. 2(a)] and the fluctuating curves
[at the 2D cross section of the model, Fig. 2(b)]. We find that
the data for the 3D case are mostly coinciding for different
system sizes. The only deviation is around the critical point Tc.
Interestingly, the width behavior signals the criticality of the
bulk by forming a cusp exactly at T = Tc (Fig. 2). To further
investigate the system size effects at Tc, we have produced
the data for global width at Tc for larger number of sizes
and examined if it exhibits a scaling behavior. As shown in
Fig. 3(a), the best fit to our data suggests the relation

W 2(L) = W 2
0 + cL−η, (1)

with the irrelevant exponent η = 1.33(2), the constant c =
−208(9), and the intrinsic size-independent surface width
W 2

0 = 8.40(1). We also find that in terms of the reduced
temperature t ≡ (T − Tc)/Tc, the global width follows the
scaling relation

W 2(t ) = W 2
0 + c±|t |θ± , (2)

with c+ = −14.6(12), θ+ = 0.60(3) for t > 0 and c− =
−30(4), θ− = 0.43(4) for t < 0 near the critical point tc = 0
[Fig. 2(a)]. The surprise comes from the fact that the percola-
tion transition of spin clusters (as a pure geometric transition)
occurs at some temperature Tp ∼ 4.31 [21,22] well below the
Curie point Tc ∼ 4.51, and one would naturally expect that
W 2

0 , as a geometric quantity, should respond to the global
geometric changes at Tp, but it does not, and, in turn, it signals
the thermal phase transition in the 3D Ising model.

060101-2



TWO-DIMENSIONAL SUPER-ROUGHENING IN THE … PHYSICAL REVIEW E 100, 060101(R) (2019)

FIG. 3. (a) The average squared width as a function of the system
size L at the Curie point T = Tc for the fluctuating membranes
in a 3D Ising model with the intrinsic roughness W 2

0 = 8.40(1),
the constant c = −208(9), and the irrelevant exponent η = 1.33(2)
estimated from the best fit to our data. (b) The same quantity for the
fluctuating curves at the 2D cross section of the model at Tc which
diverges with the global roughness exponent α = 1.03(2).

The intrinsic width characterizes the internal structure of
the fluctuating membrane which is due to the holes and
overhangs mostly dominant at Tc for which the leading con-
tribution comes from the short-wavelength fluctuations in
the local height increments. This behavior is totally differ-
ent from that of the rough surfaces [23–25] for which the
Family-Vicsek scaling ansatz, i.e., W 2(L) ∼ L2α , holds at the
steady state where α > 0 is the global roughness exponent,
originating from the long-wavelength fluctuations. The exis-
tence of such a small length scale at the critical point may
explain why, contrary to the 2D Ising model, geometric spin
clusters do not capture the scale-invariant criticality of the 3D
model in a way that the Fortuin-Kasteleyn clusters do [26].
However, the quantity W 2(T ), built on the geometric spin
clusters, is able to capture the criticality by forming a cusp
at Tc.

In order to show that the emergence of the intrinsic width
is a characteristic feature of the three dimensions, let us
now look at the statistics of the height profile built on a 2D
cross section of the spin configuration at y = L/2 (Fig. 1)
in the 3D Ising model. Surprisingly, the global interface
width exhibits a totally different behavior at the 2D cross
section of the model with a geometric RT [Fig. 2(b)]. For
T < Tc the interface width remains small as L increases,
indicative of a smooth interface in the subcritical regime,
while it is nonzero in the supercritical region with T >

Tc. Exactly at the critical point T = Tc, the global inter-
face width diverges with the system size, i.e., W 2(L) ∼ L2α

with the global roughness exponent α = 1.03(2) [Fig. 3(b)]
which is a super-rough interface. The global roughness expo-
nent α ∼ 1 guarantees the fractal property of the interfaces
[27] (i.e., the fluctuating curves) but it strongly suggests
the existence of an anomalous scaling behavior implying
that one more exponent, i.e., the local roughness exponent
αl , may be needed to assess the universality class of the
model.

FIG. 4. Scaling behavior of two local measures computed on
the 2D cross section of the 3D Ising model of various linear size
L at the Curie point Tc. (a) Scaled squared local width w2(l, L)
as a function of the window size l and (b) the power spectrum
Sq(L). Their anomalous scaling properties give two corresponding
local exponents αl = αs ≈ 0.5 different from the global roughness
exponent α ≈ 1 [Fig. 3(b)].

In order to examine this anomalous scaling hypothesis,
let us investigate the scaling behavior of the two follow-
ing local measures at T = Tc: (i) The local interface width
w2(l ) := 〈〈〈〈[h(x) − 〈h〉l ]2〉l〉〉〉, where 〈· · · 〉l indicates an aver-
age over x in windows of size l that is expected to have
the scaling relation w2(l ) ∼ l2αl , with αl being the local
roughness exponent [23]. The extra bold angle brackets de-
note the ensemble averaging. (ii) The structure factor (or
the power spectrum) Sq = 〈ĥ(q)ĥ(−q)〉, in which the Fourier
transform of the height profile h(x) is given by ĥ(q) =
L−1/2 ∑

[h(x) − h̄] exp(iqx), which is supposed to follow the
power law Sq ∼ q−(2αs+1) [23], with the spectral roughness
exponent αs. The relation αl = αs = α is only valid for the
self-affine surfaces that follow the Family-Vicsek scaling as
one of the possible scaling forms compatible with generic
scaling invariant growth [28–30], which is not the case here.
Figure 4 represents the results of our computations for the
local width [Fig. 4(a)] and the power spectrum [Fig. 4(b)] for
an ensemble of interfaces on a 2D cross section of the 3D
Ising model at T = Tc for various system sizes L. We find
that all data for different size L collapse onto a single curve
when they are suitably rescaled, and they follow the scaling
relations w2(l, L) ∼ l2αl Lα and S(q, L) ∼ q−(2αs+1)L2(α−αs ),
respectively, with α ≈ 1 again, and αl = αs ≈ 0.5 estimated
from the best fit to our data. Apparently these exponents
do not belong to the Family-Vicsek scaling, however, within
the generic scaling picture presented in Ref. [29], they
fall into the class of intrinsically anomalous roughened
surfaces.

The statistical measures discussed here for the random-
interface representations of the 3D Ising model are governed
by the properties of the corresponding height fluctuations
which can be characterized by the probability distribution of
the height differences δh between any pair of nearest-neighbor
sites. As Fig. 5(a) shows, the distribution of the height
fluctuations in the random-membrane representation of the
3D Ising model at Tc is a size-independent exponential, i.e.,
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FIG. 5. Probability distribution function of the absolute height
differences |δh| in the 3D Ising model (a) and its 2D cross section
(b) for various linear sizes L at the Curie point Tc. Our data are
consistent with a size-independent exponential distribution of the
height fluctuations in 3D (with k = 0.26), and a power-law dis-
tribution ∼|δh|−τ with τ ≈ 2.13(2) in a 2D cross section of the
model in which the rescaled data for different sizes collapse onto a
single curve.

P(|δh|, L) ∼ exp(−k|δh|) with k = 0.26. This may explain
why the membrane in 3D is smooth due to the exponential
suppression of large fluctuations. The emergence of the size-
independent intrinsic width W0 is also connected with the
observed size-independent distribution, since the exponential
distribution naturally introduces a finite length scale ∝1/k
in the system. We find that the height fluctuations in the
random-curve representation of a 2D cross section of the
3D model behave totally different and follow a scaling dis-
tribution P(|δh|, L) ∼ |δh|−τ L−(2+τ ) with τ ≈ 2.13(2). This
power-law distribution is strongly consistent with the previous
observation by two of us in Ref. [22] that the geometric
spin clusters in the 2D cross section become critical exactly
at the critical point of the 3D bulk. To give more evidence on
the critical manifestation of the 2D cross section, we studied
the random-curve representation of the pure 2D Ising model
at criticality and, interestingly, found the same results as for
the 2D cross section of the 3D Ising model with the con-
jectured superuniversal exponents α = 1 and αl = αs = 1/2
(see also Supplemental Material [20]). Table I summarizes
the global and local exponents that we have obtained for
the 2D Ising model and the cross section of the 3D Ising
model.

TABLE I. Scaling exponents related to the random interfaces of
the 2D cross section of the 3D Ising model and the 2D Ising model.

Exponent Cross section of 3D Ising 2D Ising

α 1.03(2) 1.00(1)
αl 0.52(2) 0.51(1)
αs 0.50(1) 0.51(1)
τ 2.13(2) 2.15(2)

FIG. 6. Upper panel: The average squared width as a function
of temperature for the fluctuating curves in a 2D Ising model. The
vertical dashed line indicates the position of the Curie point, T 2D

c =
2/[ln(1 + √

2)]. Inset: The average squared width as a function of
the system size L at T = T 2D

c . The global width W diverges with
the global roughness exponent α = 1.00(1). Lower panels: Scaling
behavior of two local measures computed on the 2D Ising model of
various linear sizes L at the critical point T = T 2D

c . Scaled squared
local width w2(l, L) as a function of the window size l (left) and
the power spectrum Sq(L) (right). Their scaling properties give two
corresponding local exponents αl = αs ≈ 0.5.

As shown in Fig. 6 (upper panel), the global interface
width for the 2D Ising model exhibits a geometric roughening
transition at T = T 2D

c . This behavior is very similar to the
one observed on the cross section of the 3D Ising model [see
Fig. 2(b)]. This similarity is also supported by computing the
local measures addressed in Fig. 6 (lower panels). This figure
represents the results for the local width w(l ) and the power
spectrum Sq for an ensemble of interfaces of the 2D Ising
model at T 2D

c for various system sizes L. We find the local
roughness exponent and the spectral exponent as αl = αs ≈
0.5 (see Table I).
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