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We consider the Ising model on a small-world network, where the long-range interaction strengthJ2 is in
general different from the local interaction strengthJ1, and examine its relaxation behaviors as well as phase
transitions. AsJ2/J1 is raised from zero, the critical temperature also increases, manifesting contributions of
long-range interactions to ordering. However, it becomes saturated eventually at large values ofJ2/J1 and the
system is found to display very slow relaxation, revealing that ordering dynamics is inhibited rather than
facilitated by strong long-range interactions. To circumvent this problem, we propose a modified updating
algorithm in Monte Carlo simulations, assisting the system to reach equilibrium quickly.
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When random links are added to a regular lattice, the
latter becomes a small-world network, characterized by short
path length and high clusteringf1,2g. In such a small-world
network, the diameter increases very slowly with system
size, l , ln N, while a regular one displaysl ,OsNd. Also
having common neighbors for two connected nodes is highly
probable. With these features, all elements on the network
can exchange information with each other more efficiently
than on a regular lattice. Accordingly, it is expected that dy-
namical systems on small-world networks may display en-
hanced performance; examples include ordering in spin mod-
els f3,4g, synchronization in coupled oscillatorsf5g, and
computational performance of neural networkf6g.

A small-world network, constructed from a one-
dimensional lattice, has two kinds of connections:sshort-
ranged local links andslong-ranged shortcuts. It is conceiv-
able that the two kinds of couplings in a real system have
different origins and thus different strengths; this makes it
desirable to examine the general case that interactions via
local links and via shortcuts are different in strength. It is
obvious that in the absence of long-range interactionssvia
shortcutsd, long-range order does not emerge. As a small
amount of weak long-range interactions is introduced, how-
ever, the system undergoes a phase transition to the state
with long-range order. This indicates the importance of
shortcuts in ordering, and it is of interest to elucidate how
much they are important, relative to local links. On the con-
trary, without neighborslocald interactions, the system can-
not percolate below a certain value of connectivity. There-
fore, we conclude that high clustering due to local
interactions is also important for achieving long-range order.

To probe the roles of long- and short-range interactions in
ordering, we consider the Ising model as a prototype system
exhibiting an order-disorder transition, and examine the tran-
sition behavior on a small-world network, varying the long-
range interaction strengthJ2 relative to the short-range
strengthJ1. When J2=0, the system reduces to the one-
dimensional Ising model and does not display long-range
order. In the case of uniform interactionsJ1=J2d, the system
is known to undergo a phase transition of the mean-field type
f3,7,8g. It is expected that the mean-field transition is preva-

lent for all finite values ofJ2/J1 as long as shortcuts account
for a finite fraction of total links. Shortcuts in general assist
spins to order, which is reflected by the increase of the criti-
cal temperature; similar trends have been found in analytical
studies of slightly different systems inequilibrium f9,10g.

This work focuses on how the system approaches equilib-
rium and reveals that strong long-range interactionssJ2/J1

@1d give rise to extremely slow relaxation, making Monte
Carlo sMCd dynamics based on the Metropolis algorithm in-
efficient. To avoid such slow convergence, we devise a modi-
fied updating algorithm, which assists the system to reach
equilibrium more quickly. In the limiting case that
J1=0—namely, all nearest-neighbor interactions are
deleted—the remaining linkssshortcutsd constitute a random
network with connectivitykP, wherek denotes the range of
the local interaction in the underlying lattice andP is the
probability of adding or rewiring shortcuts on each local
link.

Here the small-world network is constructed in the fol-
lowing way: We first consider a one-dimensionals1Dd lattice
of N nodes, each of which is connected to its 2k nearest
neighbors, withk being the local interaction range. Then
each local edge is visited once and a random long-range
connectionsshortcutd is added with probabilityP swithout
removing the local edged. Note the difference from the origi-
nal Watts and StrogatzsWSd constructionf2g, where local
edges are removed and reconnected to randomly chosen
nodes.

The Hamiltonian for the Ising model on a small-world
network with two such kinds of interactions is given by

H = − J1o
i

o
j=1

k

sisi+j − J2o
ki,jl

sis j , s1d

wheresis=±1d is the Ising spin on nodei of the network.
The first term is precisely the Hamiltonian for the 1D Ising
model withk nearest neighbors whereas the second one de-
scribes the contributions of spin pairs connected via long-
range connections.

We perform extensive MC simulations at various values
of the addition probabilityP and the coupling ratioJ2/J1.
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Specifically, we anneal the system, starting from disordered
states at high temperatures, and employ the standard Me-
tropolis algorithm with single-spin-flip updating to compute
various quantities including the order parametersmagnetiza-
tiond. As well known, this method is expected to have the
system reach efficiently the equilibrium, characterized by the
Boltzman distribution, and to give reliable results at all tem-
peratures except in the critical region, where critical slowing
down is unavoidable due to strong fluctuationsf11g. Ob-
tained are results which in general support the mean-field
transition and saturation of the critical temperature, unless
long-range interactions are far stronger than local ones.

On the other hand, forJ2 much larger thanJ1, the order
parametersmagnetizationd m turns out to change erratically
around the critical temperature and the ordered phase is
hardly observed at very low temperatures. Furthermore, at
low temperatures it varies largely MC run by run, even
though a single small-world network configuration is used
ssee Fig. 1 forJ2/J1=10 andP=0.1; for convenience, the
Boltzman constantkB is set equal to unity throughout this
paperd. Namely, the result depends upon the random number
sequence. This may be explained in the following way: At
high temperatures, all spins can flip easily and the system is
in the fully disordered state. On a small-world network, there
appear clusters which are connected by shortcuts with the
interaction strength far larger than the localsnearest-
neighbord one. As the temperature is lowered, spins on such
clusters align first along either the up or down direction
while other spins on the 1D chain flip easily because thermal
fluctuations are still strong compared with local interactions.
For the whole spins to be aligned below the critical tempera-
ture, all clusters should have the same spin orientation; oth-
erwise, some spinsswhich do not have long-range interac-
tionsd may confuse between spin clusters of different spin
directions. However, it is not probable for a spin in the clus-
ter to have opposite directions, due to the strong long-range
interactions at such low temperatures. This yields low accep-

tance ratios in the algorithm, resulting in an extremely long
relaxation time. Accordingly, the system tends to remain in a
disordered state which does not correspond to the minimum
of the free energy, even if the temperature is lower than the
critical temperature. Finally, at very low temperatures, spins
seldom flip, so that the value of the order parameter depends
on the previous history.

We examine relaxation of the order parameter, starting
from the fully ordered state near the critical temperatureTc
and from the disordered state at low temperatures, to mea-
sure the characteristic time scale for the system to reach
equilibrium. Assuming the exponential relaxation in the form
um−mequ,e−t/t, we estimate the value oft, varying J2/J1
and P. Figure 2 shows the relaxation timet, measured in
units of the MC step, in the system of sizeN=6400 snomi-
nallyd at the critical temperature. It is observed thatt grows
exponentially from 102 to 108 as J2/J1 is increased. For a
given value ofJ2/J1, t is shown to depend algebraically on
P: t, P−s. We stress that these features are not restricted
merely to the region near the critical temperature; they per-
sist at all temperatures below the critical temperature, as
shown in Fig. 3. In fact they areeven more conspicuous at
low temperatures;this manifests the sharp contrast with the
conventional critical slowing down, present only near the
critical temperature in systems on regular latticesf11g.

FIG. 1. Erratic behavior of the order parameter with temperature
T/J1 swith the Boltzman constantkB;1d for J2/J1=10 and P
=0.1. The magnetizationm has been obtained from the average over
53104 MC steps after the data during initial 53104 MC steps
discarded. Data, labeled by five symbols, represent the results of
five MC runs, respectively, on asingle small-world network. The
magnetization at low temperatures varies largely run by run, and the
system persists to remain in the disordered state.

FIG. 2. Relaxation timet sin units of the MC stepd near the
critical temperatureTc, estimated from the relationm−meq,e−t/t,
with J2/J1 and P varied. sad Exponential increase oft with J2/J1

for P=0.1, reflecting that the updating probability is an exponen-
tially decreasing function ofJ2/J1. The solid line represents the best
fit: t=t0e

aJ2/J1 with t0=1.7 anda=1.6. sbd Algebraic decrease oft
with P for two values ofJ2/J1, which is related to the characteristic
path length of the small-world network. The solid and dashed lines
correspond to the power-law decayt=t0P−s with t0=1.4, s=1.56
andt0=2.8, s=3.3, respectively.
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One can understand the exponential growth oft in terms
of the inverse updating probability. For large values ofJ2/J1,
flipping one spin in a pair which interact strongly with each
other will give much influence to the relaxation process. The
probability of this update is given bye−DE/T at temperatureT,
where the energy changeDE=J2−cJ1 depends on the neigh-
boring spin states through integerc. Since the temperature is
measured in units ofJ1, the inverse of the updating probabil-
ity leads to the relaxation time in the formt,eaJ2/J1, where
a is a constant. On the other hand, as the link addition prob-
ability P is increased, the characteristic path lengthl of the
system in general reduces in an algebraic wayf12g; this al-
lows information to travel more efficiently and thus gives
rise to the algebraic decrease oft with P.

Accordingly, it is concluded that the true equilibrium state
may not be obtained within moderate MC steps when long-
range interactions are substantially stronger than local ones.
To circumvent this problem and to obtain the equilibrium
state efficiently, we propose a modified updating method
which is efficient in simulations of such a system. The slow
relaxation originates from the fact that flipping a spin inter-
acting sstronglyd via a shortcut is hardly probable, even
though the free energy reduces if accepted. Therefore, when
a spin in a cluster linked via shortcuts is selected during
sequential update, we also consider, with probability one-
half, the possibility of flipping all the spins in the cluster
simultaneously. Note that the probability of such cluster up-

dating is much higher than that of usual single-spin updating
because the energy difference involves only the short-range
interactions. Still single-spin updating is also allowed, so that
ergodicity of the system remains intact. Further, the probabil-
ity to be selected as a cluster is taken always the same for
every relevant spin, which guarantees the detailed balance
condition. The new algorithm is thus expected to help the
system to reach the correct equilibrium quickly, yielding ap-
propriate results efficiently.

To demonstrate the efficiency of the new algorithm, we
employ it to probe the case of strong long-range interactions
sJ2/J1*5d where the conventional algorithm is practically
inapplicable. To find the critical temperature at given values
of P and J2/J1, we examine the scaling behaviors of the
magnetizationm, susceptibilityx, specific heatC, and Bind-
er’s cumulantf11g. Typically, we consider the system of size
up toN=12 800 and take the average over 100 different net-
work realizations as well as the thermal average over 5
3104 MC steps after equilibration at each temperature.

We write the finite-size scaling forms asm
=N−b/n̄hsutuN1/n̄d, x=Ng/n̄gsutuN1/n̄d, andC=Na/n̄fsutuN1/n̄d with
appropriate scaling functions and critical exponentsg, a, b,
and n, where t;sT−Tcd /Tc is the reduced temperature.
Finite-size scaling analyses of these quantities obtained for
N=1600, 3200, 6400, and 12 800 unanimously support a
phase transition of the mean-field type, with exponentsg
=1, a=0, b=1/2, andn=2. The critical temperature turns
out to agree well with the value obtained from the unique
crossing point of Binder’s cumulant. It is thus concluded that
the system undergoes a finite-temperature transition of mean-
field nature forJ2/J1.0 andPÞ0.

Here shortcut interactions are essential for the 1D system
to display long-range order. The critical temperatureTc/J1 is
expected to increase asJ2/J1 is raised. In simulations, how-
ever, Tc/J1 does not keep increasing withJ2/J1 beyond a
certain value depending onP. In Fig. 4, we present the phase
diagram of the system with rangek=1, for various values of
P. In this case ofk=1, analytic results have been reported for
similar systems: A replica-symmetric solution has been de-
veloped on the networks constructed by superimposing ran-
dom graphs onto a one-dimensional ringf9g. Subsequently,
combinatorics has been used to treat quenched disorder on
the networks, where each node is restricted from having
more than one shortcutf10g. Those networks coincide with
our network only in the limitP→0. For finiteP, in contrast
to the latter, we allow each node to have more than one
shortcut in the construction, which is more realistic and nec-
essary for the small-world network to have an exponential
tail in the degree distribution. Further, one end of each added
shortcut is determined sequentially, which makes our net-
work have less numbers of large-degree nodes than the
former ssuperimposed randomd network. Accordingly, the
standard small-world network used in this study lies in be-
tween the two types of network in Refs.f9,10g. Since spins
on those nodes which have more links facilitate more spins
to order, the critical temperature of the system on the small-
world network should be lower than that in Ref.f10g and
higher that that in Ref.f9g, and such a difference is expected
to grow asP and J2 are increased. It is indeed observed in
Fig. 4 that the phase boundary of the system on the small-

FIG. 3. Relaxation timet sin units of the MC stepd at low
temperatureTc/2, estimated from the relationm−meq,e−t/t, with
J2/J1 and P varied. sad Exponential increase oft with J2/J1 for
P=0.1, reflecting that the updating probability is an exponentially
decreasing function ofJ2/J1. The solid line represents the best fit:
t=t0e

aJ2/J1 with t0=13 anda=2.6.sbd Algebraic decrease oft with
P for J2/J1=5.0. The solid line corresponds to the power-law decay
t=t0P−s with t0=0.8 ands=7.1.
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world network locates in between the boundary obtained in
Ref. f10g and that in Ref.f9g, particularly in case thatJ2 is
substantially larger thanJ1 and P is not very small sP
*0.05d.

We also consider the system with rangek=2, where local
interactions are present between the next-nearest neighbors
as well as the nearest neighbors, and perform extensive simu-
lations, the results of which are displayed in Fig. 5. As ex-
pected, the region of the ordered phase in the phase diagram
is increased compared with the casek=1. Except for this,
when P is small sP,0.3d, the overall features are entirely
similar to those of the casek=1: The critical temperature
increases withJ2/J1, eventually saturating to a finite value.
In the case thatPù0.3, on the other hand, one observes an
order-disorder transition on theJ1=0 line; this corresponds
to the small-world network whose local links are all deleted
so that there remain only randomly added shortcuts with
fraction P. In comparison with the caseP,0.3, where no
ordered phase exists on this line, the percolation problem is
manifested in the resulting random graph. Namely, the sys-
tem is percolating only when its connectivity, given bykP, is
higher than 2Pc<0.6. It is pleasing that this value agrees
with the known expression for the threshold value,Pc=1
−Îsk−1d /k f7g. We have also performed simulations of the
system withk=3, to obtain fully consistent results. It is of
interest that the threshold value is smaller than that of the
Erdös-RenyisERd random graphf13g, which reflects that our
random graph is still more regular than the ER graph.

In summary, we have studied via extensive numerical
simulations the Ising model on a small-world network, where

long-range interactions via shortcuts are in general different
from local interactions. It has been demonstrated that long-
range interactions via added shortcuts help spins to order,
raising the critical temperature at first and having it saturated
eventually. Of particular interest is the case of strong long-
range interactions, relative to the local ones, where each
cluster may play the role of temporarily quenched random-
ness. The system then tends to be trapped in a local mini-
mum, inhibited from relaxation to the global minimumsi.e.,
equilibriumd; this results in very slow relaxation, making
simulations inefficient. This is in contrast with the Ising
model on conventional regular or disordered lattices, where
severe inhomogeneity in the interaction strength is absent
and equilibrium is reached quickly at all temperatures except
in the critical region without any erratic behavior. To circum-
vent this problem, we have developed a modified updating
algorithm, assisting the system to reach equilibrium quickly.
Any dynamical system on a small-world network with strong
long-range interactions is expected to behave similarly, and
the modified algorithm developed here may be used to obtain
sequilibriumd thermodynamic properties efficiently. Finally,
it would be of interest to investigate the case that long- and
short-range interactions have opposite signssJ2/J1,0d. The
coexistence of ferromagnetic and antiferromagnetic interac-
tions in general introduces frustration into the system, which,
together with the randomness associated with the long-range
connections, may lead tostrulyd glassy behaviorf14g. A de-
tailed investigation of how such a glass system relaxes de-
pending on the valueJ2/J1 and comparison with the other
cases are left for further study.

This work was supported in part by the KOSEF Grant No.
R01-2002-000-00285-0 and by the BK21 Program.

FIG. 4. Phase diagram of the Ising model on a small-world
network, where the region below each boundary represents the or-
dered phase for the corresponding value of the addition probability
P. Simulation data for various values ofP are depicted by symbols
on lines; the latter are merely guides to the eye. Analytic results in
Refs.f9,10g are also plotted, with the same kinds of thick and thin
lines, respectively, for each value ofP. They coincide with numeri-
cal results whenP is small and/orJ2 is sufficiently smaller thanJ1.
For J2/J1 large, our data locate between the two analytic results in
the phase diagram.

FIG. 5. Phase diagram of the Ising model on a small-world
network with rangek=2. Simulation data for various values ofP
are depicted by symbols on lines; the latter are merely guides to the
eye. ForPù0.3, the phase boundary intersects theJ1=0 line at a
finite value ofJ2, manifesting the presence of a phase transition.
This exhibits that a small-world network with local links deleted
has a threshold value ofP below which no long-range order
emerges.
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