PHYSICAL REVIEW E 71, 036103(2005

Slow relaxation in the Ising model on a small-world network with strong long-range interactions
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We consider the Ising model on a small-world network, where the long-range interaction stleiigin
general different from the local interaction strendih and examine its relaxation behaviors as well as phase
transitions. AsJ,/J; is raised from zero, the critical temperature also increases, manifesting contributions of
long-range interactions to ordering. However, it becomes saturated eventually at large valy/ds ahd the
system is found to display very slow relaxation, revealing that ordering dynamics is inhibited rather than
facilitated by strong long-range interactions. To circumvent this problem, we propose a modified updating
algorithm in Monte Carlo simulations, assisting the system to reach equilibrium quickly.
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When random links are added to a regular lattice, thdent for all finite values ofl,/J; as long as shortcuts account
latter becomes a small-world network, characterized by shorifor a finite fraction of total links. Shortcuts in general assist
path length and high clusterifg,2]. In such a small-world spins to order, which is reflected by the increase of the criti-
network, the diameter increases very slowly with systenctal temperature; similar trends have been found in analytical
size,|~In N, while a regular one displays~O(N). Also  studies of slightly different systems &quilibrium[9,10].
having common neighbors for two connected nodes is highly This work focuses on how the system approaches equilib-
probable. With these features, all elements on the networkum and reveals that strong long-range interactioigJ;
can exchange information with each other more efficiently>1) give rise to extremely slow relaxation, making Monte
than on a regular lattice. Accordingly, it is expected that dy-Carlo (MC) dynamics based on the Metropolis algorithm in-
namical systems on small-world networks may display enefficient. To avoid such slow convergence, we devise a modi-
hanced performance; examples include ordering in spin modied updating algorithm, which assists the system to reach
els [3,4], synchronization in coupled oscillatof$], and  equilibrium more quickly. In the limiting case that
computational performance of neural netwdeq. J;=0—namely, all nearest-neighbor interactions are

A small-world network, constructed from a one- deleted—the remaining linkshortcut$ constitute a random
dimensional lattice, has two kinds of connectioigshort-  network with connectivitykP, wherek denotes the range of
range local links and(long-range shortcuts. It is conceiv- the local interaction in the underlying lattice afdis the
able that the two kinds of couplings in a real system haveprobability of adding or rewiring shortcuts on each local
different origins and thus different strengths; this makes itink.
desirable to examine the general case that interactions via Here the small-world network is constructed in the fol-
local links and via shortcuts are different in strength. It islowing way: We first consider a one-dimensio&D) lattice
obvious that in the absence of long-range interactiois  of N nodes, each of which is connected to its 2earest
shortcut$, long-range order does not emerge. As a smalheighbors, withk being the local interaction range. Then
amount of weak long-range interactions is introduced, howeach local edge is visited once and a random long-range
ever, the system undergoes a phase transition to the statennection(shortcuy is added with probabilityP (without
with long-range order. This indicates the importance ofremoving the local edgeNote the difference from the origi-
shortcuts in ordering, and it is of interest to elucidate hownal Watts and StrogatdVS) construction[2], where local
much they are important, relative to local links. On the con-edges are removed and reconnected to randomly chosen
trary, without neighborlocal) interactions, the system can- nodes.
not percolate below a certain value of connectivity. There- The Hamiltonian for the Ising model on a small-world
fore, we conclude that high clustering due to localnetwork with two such kinds of interactions is given by
interactions is also important for achieving long-range order. ‘

To probe the roles of long- and short-range interactions in _
ordering, we consider the Ising model as a prototype system H=-32 2‘1 Ti%i+j ~ ‘]ZZ gigj (1)

- . - . ()
exhibiting an order-disorder transition, and examine the tran-
sition behavior on a small-world network, varying the long- where o;(=£1) is the Ising spin on node of the network.
range interaction strengtd, relative to the short-range The first term is precisely the Hamiltonian for the 1D Ising
strengthJ;. When J,=0, the system reduces to the one-model withk nearest neighbors whereas the second one de-
dimensional Ising model and does not display long-rangescribes the contributions of spin pairs connected via long-
order. In the case of uniform interactiéd, =J,), the system range connections.
is known to undergo a phase transition of the mean-field type We perform extensive MC simulations at various values
[3,7,8. It is expected that the mean-field transition is preva-of the addition probabilityP and the coupling ratid,/J;.

ij=
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FIG. 1. Erratic behavior of the order parameter with temperature
T/J; (with the Boltzman constankg=1) for J,/J;=10 and P
=0.1. The magnetizatiom has been obtained from the average over
5X 10* MC steps after the data during initial>x510* MC steps

discarded. Data, labeled by five symbols, represent the results of [ ™~ .

five MC runs, respectively, on single small-world network. The e
magnetization at low temperatures varies largely run by run, and the .

system persists to remain in the disordered state. 10_01 0.1 1

Specifically, we anneal the system, starting from disordered © P

states at high temperatures, and employ the standard Me- |G, 2. Relaxation timer (in units of the MC stepnear the
tropolis algorithm with single-spin-flip updating to compute ritical temperatureT,, estimated from the relatiom—my,~ €7,
various quantities including the order parameteagnetiza-  jth J,/J, and P varied. (a) Exponential increase of with J,/J;
tion). As well known, this method is expected to have thefor p=0.1, reflecting that the updating probability is an exponen-
system reach efficiently the equilibrium, characterized by theja|ly decreasing function ai,/J,. The solid line represents the best
Boltzman distribution, and to give reliable results at all tem-jt- ;= 70€2%%1 with 70=1.7 anda=1.6. (b) Algebraic decrease of
peratures except in the critical region, where critical slowingyith p for two values ofl,/J;, which is related to the characteristic
down is unavoidable due to strong fluctuatids]. Ob-  path length of the small-world network. The solid and dashed lines
tained are results which in general support the mean-fieldorrespond to the power-law decay 7P~ with 7y=1.4, 0=1.56
transition and saturation of the critical temperature, unlesand »,=2.8, 0=3.3, respectively.

long-range interactions are far stronger than local ones.

On the other hand, fod, much larger thanl,, the order tance ratios in the algorithm, resulting in an extremely long
parameteilmagnetization m turns out to change erratically relaxation time. Accordingly, the system tends to remain in a
around the critical temperature and the ordered phase Wisordered state which does not correspond to the minimum
hardly observed at very low temperatures. Furthermore, atf the free energy, even if the temperature is lower than the
low temperatures it varies largely MC run by run, evencritical temperature. Finally, at very low temperatures, spins
though a single small-world network configuration is usedseldom flip, so that the value of the order parameter depends
(see Fig. 1 ford,/J;=10 andP=0.1; for convenience, the on the previous history.

Boltzman constankg is set equal to unity throughout this ~ We examine relaxation of the order parameter, starting
papej. Namely, the result depends upon the random numbefrom the fully ordered state near the critical temperaffige
sequence. This may be explained in the following way: Atand from the disordered state at low temperatures, to mea-
high temperatures, all spins can flip easily and the system isure the characteristic time scale for the system to reach
in the fully disordered state. On a small-world network, thereequilibrium. Assuming the exponential relaxation in the form
appear clusters which are connected by shortcuts with then-me/~e™", we estimate the value of, varying J,/J;
interaction strength far larger than the locabhearest- andP. Figure 2 shows the relaxation time measured in
neighboj one. As the temperature is lowered, spins on suchunits of the MC step, in the system of sikk=6400 (nomi-
clusters align first along either the up or down directionnally) at the critical temperature. It is observed thajrows
while other spins on the 1D chain flip easily because thermagéxponentially from 18to 10 as J,/J, is increased. For a
fluctuations are still strong compared with local interactionsgiven value ofJ,/J;, 7is shown to depend algebraically on
For the whole spins to be aligned below the critical temperaP: 7~ P~7. We stress that these features are not restricted
ture, all clusters should have the same spin orientation; othmerely to the region near the critical temperature; they per-
erwise, some spinévhich do not have long-range interac- sist at all temperatures below the critical temperature, as
tions) may confuse between spin clusters of different spinshown in Fig. 3. In fact they areven more conspicuous at
directions. However, it is not probable for a spin in the clus-low temperaturesthis manifests the sharp contrast with the
ter to have opposite directions, due to the strong long-rangeonventional critical slowing down, present only near the
interactions at such low temperatures. This yields low acceperitical temperature in systems on regular latticEs.
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108 . ; dating is much higher than that of usual single-spin updating
because the energy difference involves only the short-range
interactions. Still single-spin updating is also allowed, so that
ergodicity of the system remains intact. Further, the probabil-
4 ity to be selected as a cluster is taken always the same for
=100 ] every relevant spin, which guarantees the detailed balance
e condition. The new algorithm is thus expected to help the
system to reach the correct equilibrium quickly, yielding ap-
propriate results efficiently.
1 . . To demonstrate the efficiency of the new algorithm, we
0 2 4 6 employ it to probe the case of strong long-range interactions
(@) Jotd; (J,/3,=5) where the conventional algorithm is practically
10'2 : inapplicable. To find the critical temperature at given values
of P and J,/J;, we examine the scaling behaviors of the
magnetizatiorm, susceptibilityy, specific heaC, and Bind-
er's cumulan{11]. Typically, we consider the system of size
up toN=12 800 and take the average over 100 different net-
work realizations as well as the thermal average over 5
X 10* MC steps after equilibration at each temperature.

We write the finite-size scaling forms asm
=N"A"h([t|N7), x=N""g(|t|N"*), andC=N*"f(|t|N'") with
appropriate scaling functions and critical exponeptsy, 8,

0.01 0.1 1 and v, where t=(T-T,)/T, is the reduced temperature.
Finite-size scaling analyses of these quantities obtained for
N=1600, 3200, 6400, and 12 800 unanimously support a
phase transition of the mean-field type, with exponents
=1, «=0, B=1/2, andv=2. The critical temperature turns
out to agree well with the value obtained from the unique
crossing point of Binder’s cumulant. It is thus concluded that
7= 70229 with 7,=13 anda=2.6.(b) Algebraic decrease afwith the system undergoes a finite-temperature transition of mean-
P for J,/3,=5.0. The solid line corresponds to the power-law decayfleld hature forJZ/_J1>0 ?”dp?& 0. .
7= 7P~ With 7=0.8 ando=7.1, Here shortcut interactions are essential for the 1D system
to display long-range order. The critical temperattgél; is

One can understand the exponential growthr@f terms  expected to increase ds/J; is raised. In simulations, how-
of the inverse updating probability. For large valuesofl,, ever, T./J; does not keep increasing with/J; beyond a
flipping one spin in a pair which interact strongly with each certain value depending dn In Fig. 4, we present the phase
other will give much influence to the relaxation process. Thediagram of the system with randes 1, for various values of
probability of this update is given b at temperaturd, P. In this case ok=1, analytic results have been reported for
where the energy changeE=J,—cJ; depends on the neigh- similar systems: A replica-symmetric solution has been de-
boring spin states through integerSince the temperature is veloped on the networks constructed by superimposing ran-
measured in units af;, the inverse of the updating probabil- dom graphs onto a one-dimensional rifg8. Subsequently,
ity leads to the relaxation time in the form~€®%271, where  combinatorics has been used to treat quenched disorder on
ais a constant. On the other hand, as the link addition probthe networks, where each node is restricted from having
ability P is increased, the characteristic path lenigtif the  more than one shortcifi0]. Those networks coincide with
system in general reduces in an algebraic WEZ/; this al-  our network only in the limitP— 0. For finite P, in contrast
lows information to travel more efficiently and thus givesto the latter, we allow each node to have more than one
rise to the algebraic decrease oWwith P. shortcut in the construction, which is more realistic and nec-

Accordingly, it is concluded that the true equilibrium state essary for the small-world network to have an exponential
may not be obtained within moderate MC steps when longtail in the degree distribution. Further, one end of each added
range interactions are substantially stronger than local oneshortcut is determined sequentially, which makes our net-
To circumvent this problem and to obtain the equilibriumwork have less numbers of large-degree nodes than the
state efficiently, we propose a modified updating methodormer (superimposed randometwork. Accordingly, the
which is efficient in simulations of such a system. The slowstandard small-world network used in this study lies in be-
relaxation originates from the fact that flipping a spin inter-tween the two types of network in Ref®,10]. Since spins
acting (strongly via a shortcut is hardly probable, even on those nodes which have more links facilitate more spins
though the free energy reduces if accepted. Therefore, wheo order, the critical temperature of the system on the small-
a spin in a cluster linked via shortcuts is selected duringvorld network should be lower than that in R¢L0] and
sequential update, we also consider, with probability onehigher that that in Ref.9], and such a difference is expected
half, the possibility of flipping all the spins in the cluster to grow asP andJ, are increased. It is indeed observed in
simultaneously. Note that the probability of such cluster upFig. 4 that the phase boundary of the system on the small-

(0

FIG. 3. Relaxation timer (in units of the MC step at low
temperatureT /2, estimated from the relatiom—mg,~ U7 with
J,/J; and P varied. (a) Exponential increase of with J,/J; for
P=0.1, reflecting that the updating probability is an exponentially
decreasing function al,/J;. The solid line represents the best fit:
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FIG. 4. Phase diagram of the Ising model on a small-world FIG. 5. Phase diagram of the Ising model on a small-world
network, where the region below each boundary represents the onetwork with rangek=2. Simulation data for various values Bf
dered phase for the corresponding value of the addition probabilityre depicted by symbols on lines; the latter are merely guides to the
P. Simulation data for various values Bfare depicted by symbols eye. ForP=0.3, the phase boundary intersects $heO line at a
on lines; the latter are merely guides to the eye. Analytic results iffinite value ofJ,, manifesting the presence of a phase transition.
Refs.[9,10] are also plotted, with the same kinds of thick and thin This exhibits that a small-world network with local links deleted
lines, respectively, for each value Bf They coincide with numeri- has a threshold value oP below which no long-range order
cal results wherP is small and/od, is sufficiently smaller thad,. emerges.

For J,/J, large, our data locate between the two analytic results in . . . ) )
the phase diagram. long-range interactions via shortcuts are in general different

from local interactions. It has been demonstrated that long-
world network locates in between the boundary obtained iffange interactions via added shortcuts help spins to order,
Ref.[10] and that in Ref[9], particularly in case thal, is  aising the critical temperature at first and having it saturated

substantially larger thad;, and P is not very small(p ~ €ventually. Of particular interest is the case of strong long-
=0.09 range interactions, relative to the local ones, where each

. : cluster may play the role of temporarily quenched random-
We also consider the system with rarige2, where local ness. The system then tends to be trapped in a local mini-

interactions are present between the next-nearest neighbq(3 .\ inhibited from relaxation to the global minimu(ie
as well as the nearest neighbors, and perform extensive simi, ijiprium); this results in very slow relaxation, making
lations, the results of which are displayed in Fig. 5. AS €X-gimyations inefficient. This is in contrast with the Ising

pected, the region of the ordered phase in the phase diagraffyje| on conventional regular or disordered lattices, where
is increased compared with the casel. Except for this,  goyere inhomogeneity in the interaction strength is absent
V\{hgn P is small(P<0.3), the overall fe{;\t.ures are entirely and equilibrium is reached quickly at all temperatures except
similar to those of the cask=1: The critical temperature i e critical region without any erratic behavior. To circum-
increases withl,/J;, eventually saturating to a finite value. \ent this problem, we have developed a modified updating
In the case thaP=0.3, on the other hand, one observes any qqrithm, assisting the system to reach equilibrium quickly.
order-disorder transition on thf=0 line; _thls corresponds Any dynamical system on a small-world network with strong
to the small-world ngtwork whose local links are all de|et9d|ong-range interactions is expected to behave similarly, and
so that there remain only randomly added shortcuts Withhe mogified algorithm developed here may be used to obtain
fraction P. In comparison with the casB<0.3, where no  (gquilibrium) thermodynamic properties efficiently. Finally,
ordered phase exists on this line, the percolation problem i \yoyid be of interest to investigate the case that long- and
manifested in the resulting random graph. Namely, the SySgpyort-range interactions have opposite sigh#J; <0). The

tem is percolating only when its connectivity, givenk®, is e istence of ferromagnetic and antiferromagnetic interac-
higher than 2,~0.6. It is pleasing that this value agrees yj,nqin general introduces frustration into the system, which,
WL the known expression for the threshold ngUFQ,:l together with the randomness associated with the long-range
~V(k-1)/k [7]. We have also performed simulations of the ¢onnections, may lead truly) glassy behaviof14]. A de-
system withk=3, to obtain fully consistent results. It is of i4jled investigation of how such a glass system relaxes de-

interest that the threshold value is smaller than that of th‘?)ending on the valud,/J; and comparison with the other
Erdés-Reny(ER) random graplf13], which reflects that our  55es are left for further study.

random graph is still more regular than the ER graph.
In summary, we have studied via extensive numerical This work was supported in part by the KOSEF Grant No.
simulations the Ising model on a small-world network, whereR01-2002-000-00285-0 and by the BK21 Program.

036103-4



SLOW RELAXATION IN THE ISING MODEL ON A ... PHYSICAL REVIEW E 71, 036103(2005

[1] For reviews, see, e.g., Scien@84, 79 (1999; M. E. J. New- etter, Physica A170, 282 (1991); S. N. Dorogovtsev, A. V.
man, J. Stat. Physl01, 819(2000; D. J. Watts Small Worlds Goltsev, and J. F. F. Mendes, Phys. Re6& 016104(2002);
(Princeton University Press, Princeton, 1999. H. Strogatz, M. Leone, A. Vazquez, A. Vespignani, and R. Zecchina, Eur.
Nature (London 410, 268 (2001); R. Albert and A.-L. Phys. J. B28, 191(2002; A. Ramezanpour, Phys. Rev. @,
Barabasi, Rev. Mod. Phys4, 47 (2002; S. N. Dorogovtsev 066114(2004.

and J. F. F. Mendes, Adv. Phy§1, 1079(2002.

[9] T. Nikoletopoulos, A. C. C. Coolen, I. Pérez Castillo, N. S.
[2] D. J. Watts and S. H. Strogatz, Natufeondon 393 440

Skantzos, J. P. L. Hatchett, and B. Wemmenhove, J. Phys. A

(1998. 37, 6455(2004).
[3] M. Gitterman, J. Phys. A33, 8373(2000; A. Pgkalski, Phys.  [10] J. V. Lopes, Y. G. Pogorelov, J. M. B. Lopes dos Santos, and
Rev. E 64, 057104(200); H. Hong, B. J. Kim, and M. Y. R. Toral, Phys. Rev. E70, 026112(2004.

Choi, ibid. 66, 018101(2002.
[4] B. J. Kim, H. Hong, P. Holme, G. S. Jeon, P. Minnhagen, and
M. Y. Choi, Phys. Rev. E64, 056135(2001).

[11] See, e.g.Applications of the Monte Carlo Method in Statisti-
cal Physics edited by K. Binder(Springer-Verlag, Berlin,
1987; K. Binder and D. W. Heermanmionte Carlo Simula-

[5] H. Hong, M. Y. Choi, and B. J. Kim, Phys. Rev. &5, 026139 tion in Statistical PhysicéSpringer-Verlag, Berlin, 1992

(2002. [12] M. E. J. Newman, D. J. Watts, Phys. Lett. 263 341(1999.
[6] L. G. Morelli, G. Abramson, and M. N. Kuperman, Eur. Phys. [13] B. Bollobas, Random Graphs(Academic Press, London,

J. B 38, 495(2004); P. N. McGraw and M. Menzinger, Phys. 1985.

Rev. E 68, 047102(2003. [14] Note the difference from the usual case that the long-range
[7]1 A. Barrat and M. Weigt, Eur. Phys. J. B3, 547 (2000. interactionJ, itself is randomly distributed, taking to values
[8] The Ising model has also been examined analytically and nu-  +J; the resulting spin-glass phase has been exanimedui-

merically on other types of complex network. See R. T. Scal- librium. See Ref[9].

036103-5



