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We investigate three kinds of heat produced in a system and a bath strongly coupled via an interaction
Hamiltonian. By studying the energy flows between the system, the bath, and their interaction, we provide
rigorous definitions of two types of heat, QS and QB, from the energy loss of the system and the energy gain of
the bath, respectively. This is in contrast to the equivalence of QS and QB, which is commonly assumed to hold
in the weak-coupling regime. The bath we consider is equipped with a thermostat which enables it to reach an
equilibrium. We identify another kind of heat QSB from the energy dissipation of the bath into the superbath that
provides the thermostat. We derive the fluctuation theorems (FTs) for the system variables and various heats,
which are discussed in comparison with the FT for the total entropy production. We take an example of a sliding
harmonic potential of a single Brownian particle in a fluid and calculate the three heats in a simplified model.
These heats are found to equal, on average, in the steady state of energy, but show different fluctuations at all
times.
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I. INTRODUCTION

The nonequilibrium fluctuation theorem (FT) has been
proven originally for deterministic systems [1–3], later for
stochastic systems [4–10], and recently for quantum sys-
tems [11–14]. It takes into account thermodynamic quantities
such as heat and work, which are continuously produced
even in the steady state. Such quantities accumulated for
a long time exhibit huge fluctuations around their means,
which is especially prominent in small systems. Compared to
work, heat is intriguing because it is interpreted as an energy
exchange with a bath composed of infinitely many particles.
By assuming the master equation or the Langevin equation,
heat is found as a function of stochastic trajectories [15,16].

Recent studies, mostly quantum mechanical, have focused
on a system strongly coupled with a bath [17–33]. In spite of
extensive efforts, however, it is pointed out in Ref. [14] that
a consistent definition of heat for the strong-coupling regime
is currently not known and most of the studies are restricted
to a specific initial (product) state. A proper means to treat
the interaction energy or Hamiltonian between the system and
the bath is still missing. This limitation is also present in
classical approaches. In this study, we develop a theoretical
framework to rigorously deal with the system-bath interaction
for strongly coupled classical systems, which is expected to
extend to quantum systems.

In this paper, we investigate a general nonequilibrium
process in a classical system strongly coupled with a bath
where three forms of heat appear in both system and bath.
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We find that a difference among the three heats is manifested
in nonunique FTs and distinct distribution functions of the
fluctuations. Results are explicitly confirmed for a specific ex-
ample of nonequilibrium driven by a time-dependent protocol.

The remainder of this paper is organized as follows. In
Sec. II, a strong-coupling model is introduced with constituent
Hamiltonians and the equations of motion are given. In
Sec. III, we show that three heats appear naturally and the first
laws of thermodynamics for system and bath are expressed
in terms of three heats and work. In Sec. IV, the fluctuation
theorems of the entropy production and their variants with
different heats are derived along with the corresponding ther-
modynamic inequalities. In Sec. V, we consider a specific
example of a colloidal particle moving in a fluid under a
sliding harmonic potential. We show that its simplified version
can be mapped to an effective two-particle system, which
can be solved analytically. The thermodynamic inequalities
derived in Sec. IV are checked explicitly and the distinct
features of three heat fluctuations are demonstrated. Finally,
we summarize our results in Sec. VI.

II. MODEL FOR A STRONGLY COUPLED SYSTEM

We consider a general Hamiltonian for a system of par-
ticles coupled with a bath. The system variables are given
by a collection of momenta �p and positions �x, generally for
multiparticle systems. Similarly, the bath variables are given
by �pB and �xB for many bath particles. The Hamiltonian of the
total system H is composed of three parts,

HS = �p2

2μ
+ U (�x, λ(t )), HB = �p2

B

2m
+ UB(�xB),

(1)
HI = V (�x, �xB), with H = HS + HB + HI,
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where HS, HB, and HI stand for the Hamiltonians for the
system, the bath, and their interaction, respectively. Note that
the time-dependent protocol λ(t ) is prescribed only in the
system potential U and the interaction Hamiltonian V is a
pairwise potential between the system and bath particles. We
take the same mass μ for all system particles and m for all
bath particles, just for notational convenience.

We assume that the bath is equipped with a Langevin
thermostat provided by an ideal superbath. Then, the classical
equations of motion read

�̇x = ∂HS/∂ �p, �̇p = −∂ (HS + HI )/∂�x,
�̇xB = ∂HB/∂ �pB, (2)

�̇pB = −∂ (HB + HI )/∂�xB − γ �pB/m + �ξ (t ),

with the white noise �ξ (t ) satisfying 〈ξi(t )ξ j (t ′)〉 =
2γ β−1δi jδ(t − t ′) for the inverse temperature β and the
friction coefficient γ . In this way, the system and bath can
be strongly coupled via (not so weak) interaction potential
V , while the bath and superbath are weakly coupled via the
Langevin thermostat.

III. THREE HEATS

The energy change rate for each Hamiltonian can be easily
obtained from Eqs. (1) and (2) as

dHS

dt
= ∂U (t )

∂t
− ∂V

∂�x · �p
μ

,

dHB

dt
= − ∂V

∂�xB
· �pB

m
−
(

γ �pB

m
− �ξ

)
· �pB

m
, (3)

dHI

dt
= ∂V

∂�x · �p
μ

+ ∂V

∂�xB
· �pB

m
,

where we used the chain rules such as dHS/dt = ∂HS/∂t +
(∂HS/∂ �p) · �̇p + (∂HS/∂�x) · �̇x and so on. From the above rela-
tions, we can identify the rates of work and various types of
heat. First, the rate of work induced by the time-dependent
protocol λ(t ) in the system potential U is given as

Ẇ = ∂U

∂t
= ∂U

∂λ
λ̇, (4)

which is known as Jarzynski’s work [4,5].
We define the amount of energy loss of the system via the

interaction with the bath as a heat QS and the accompanying
energy gain of the bath as another heat QB. In general, QS and
QB are not identical due to the possible change of the interac-
tion energy during any process. Since the bath is thermostatted
to the superbath through the Langevin equation, the energy
is dissipated from the bath into the superbath surrounding it,
which is the third type of heat QSB considered in a recent
study [31]. Then, the rates of the three heats are identified
from Eq. (3) as

Q̇S = ∂V

∂�x · �p
μ

, Q̇B =− ∂V

∂�xB
· �pB

m
, Q̇SB =

(
γ �pB

m
− �ξ

)
· �pB

m
.

(5)

Finally, the energy-balance relations are expressed in terms
of work and heats from Eq. (3) as

dHS

dt
= Ẇ − Q̇S,

dHB

dt
= Q̇B − Q̇SB,

dHI

dt
= Q̇S − Q̇B,

dH

dt
= Ẇ − Q̇SB. (6)

The final equation for the total Hamiltonian is obtained by
summing up the three other energy-balance equations, which
obviously represents the thermodynamic first law of the total
system with the input work energy and the output heat to the
superbath. We emphasize that the superbath is necessary to
keep the total system from incessant heating up by external
driving, as expected in many realistic situations.

All other energy-balance equations are also easily under-
stood. Note that work is done only on the system through
the time-dependent protocol, and thus appears in the energy-
balance equation for the system only. In the usual weak-
coupling regime where the interaction Hamiltonian HI is very
small, one may recover the equivalence between two heats
Q̇S and Q̇B [third equation in Eq. (6)]. However, this weak-
coupling limit may become singular in some special cases,
which will be discussed in Sec. V D.

The three heats are different by definition in Eq. (5).
In a transient period, the three heats take different values,
depending on the initial condition. In the long-time limit, if a
(energy) steady state exists, we get 〈dHS/dt〉 = 〈dHB/dt〉 =
〈dHI/dt〉 = 0, and, consequently, the average steady-state
rates of the three heats become identical to each other, i.e.,
〈Q̇S〉 = 〈Q̇B〉 = 〈Q̇SB〉 = 〈Ẇ 〉. However, even in the steady
state, fluctuations of the three heats (and also work) do not
have to be identical in general.

Next, we will show how the three heats behave differently
with a focus on associated FTs and their fluctuations.

IV. FLUCTUATION THEOREMS FOR ENTROPY
PRODUCTION AND THEIR VARIANTS

We examine the FT for our model. The total system (sys-
tem and bath) is a many-particle system, of which the part
(bath) is in contact with the ideal superbath. The standard
integral FT for the total entropy production �S accumulated
during a finite time interval still holds as

〈e−�S〉 = 1 with �S = −� ln ρ + βQSB, (7)

where ρ is the probability distribution function (PDF) of
the total system and the Boltzmann constant is set to be
unity. The entropy production �S is simply the sum of the
Shannon entropy change of the total system and the Clausius
entropy production to the superbath [9], which indicates a
weak coupling between the total system and the superbath.
However, this trivial FT is not very informative in that the
total system PDF depend on many degrees of freedom of the
bath particles (�xB, �pB), which could not be inferred only from
the system dynamics of (�x, �p). Thus, it would be useful to
express the FT in terms of the system variables only with
other energetic quantities such as the various heats and work
discussed in the last section.

Let q = (�x, �p, �xB, �pB) be a state vector of the total system
with qS = (�x, �p) for the system and qB = (�xB, �pB) for the
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bath, respectively. The marginal PDF for the system is defined
as

ρS(qS) = TrBρ(q), (8)

where TrB is the trace over the bath variable qB. Then, the
Bayes’ rule leads to

ρ(q) = ρS(qS)ρ(qB|qS), (9)

where ρ(qB|qS) is the conditional PDF of qB for a given
qS. The marginal system PDF ρS(qS) can be measured ex-
perimentally or in numerical simulations when the system is
sufficiently simple, e.g., a single- or a few-particle system.
However, it is impossible to measure ρ(qB|qS) in realistic
situations with many bath particles, except for some limiting
cases where ρ(qB|qS) can be approximately estimated or
guessed.

Let us imagine a reference state represented by the PDF

ρ̃(q) = ρS(qS )̃ρ(qB|qS), (10)

where ρ̃(qB|qS) is a guessed (estimated) conditional PDF of
the bath state qB for a given system state qS. Of course,
ρ̃(q) would be different from the true PDF ρ(q), in general.
For convenience, we consider two typical reference states
equipped by

ρ̃(qB|qS) = Z−1
B eβH̃S e−β(HB+HI ), (11a)

ρ̃(qB|qS) = Z−1
B e−βHB , (11b)

where the bath equilibrium partition function ZB = TrBe−βHB .
We have an extra factor in the case of Eq. 11(a), called the
additional system Hamiltonian H̃S(qS), which originates from
the conditional probability normalization of TrBρ̃(qB|qS) =
1. Thus, we find

e−βH̃S = Z−1
B TrBe−β(HB+HI ). (12)

One can see easily that H̃S vanishes when HI = 0, where two
reference states coincide with each other.

The case given by Eq. 11(a) is a special type recently con-
sidered by Seifert [30], which describes a local equilibrium
of a bath state for a given system state. If the total system
is in equilibrium, then Eq. 11(a) is exact and the marginal
system PDF becomes ρS(qS) ∝ e−βH eff

S with H eff
S = HS + H̃S,

indicating that the strong coupling induces an additional term
in the system Hamiltonian. The case given by Eq. 11(b)
corresponds to the usual assumption of the product state
of the system and bath in the weak-coupling case with the
equilibrium bath.

The difference between the true and a reference state can
be measured by the relative entropy between the two PDFs as
D(ρ||̃ρ) = ln[ρ/ρ̃]. Then, with Eq. (10), we get

ln ρ = ln ρS + ln ρ̃(qB|qS) + D(ρ||̃ρ). (13)

Then, the total entropy production �S in Eq. (7) can be
rewritten for each case as

�S = −� ln ρS + β(QS − �H̃S) − �Da, (14a)

�S = −� ln ρS + βQB − �Db, (14b)

where �Da,b are the relative entropy changes for the types
14(a) and 14(b), respectively. In this derivation, we used

energy-balance relations in Eq. (6) such as �HB = QB −
QSB and �(HB + HI ) = QS − QSB. Then, the thermodynamic
second law, 〈�S〉 � 0, can be written with different average
quantities as

〈� ln ρS〉 + β(〈QS〉 − 〈�H̃S〉) − 〈�Da〉 � 0, (15a)

〈� ln ρS〉 + β〈QB〉 − 〈�Db〉 � 0, (15b)

〈� ln ρ〉 + β〈QSB〉 � 0, (15c)

where the equality holds for nonthermostatted bath (QSB =
0), due to 〈� ln ρ〉 = 0 for the Liouville dynamics. Neverthe-
less, the above expressions still require the knowledge of the
relative entropy change �D or the total PDF ρ, which cannot
be accessible without knowing the true PDF ρ(qB|qS) of the
bath.

One can get around this and extract some useful informa-
tion when the initial state is not arbitrary but of our reference
states given by Eq. 11(a) or Eq. 11(b). Moreover, these initial
states can be easily prepared in real experiments. A similar
strategy has been exploited in deriving the Jarzynski and
Crooks FT for work with an equilibrium initial state for the
total system [4–6].

We now derive alternative FTs depending on the choice of
initial states. Consider a quantity �A as

�A ≡ −� ln ρS + β(QS − �H̃S), (16)

which appears in Eq. (14) as a part of �S. Note that this
quantity does not require the knowledge of the bath PDF. With
the initial condition prepared with the reference state 11(a)
and for a finite time interval t = [0, τ ], we find an alternative
FT as

〈e−�A〉a =
∫

Dq(t ) e−�A�[q(t ); λ(t )]
ρS(0)e−β[HB(0)+HI (0)]

ZBe−βH̃S(0)

=
∫

DqR(t ) �[qR(t ); λR(t )]
ρS(τ )e−β[HB(τ )+HI (τ )]

ZBe−βH̃S(τ )

= 1, (17)

where 〈·〉a is the path average with the initial state
of reference type 11(a) and �[q(t ); λ(t )] is the stan-
dard conditional probability for the path {q(t ), t = [0, τ ]}
under the protocol λ(t ) [10,34]. The second equal-
ity comes from the well-known Schnakenberg relation
�[q(t ); λ(t )]/�[qR(t ); λR(t )] = eβQSB [7,8,15,34] with the
conditional probability �[qR(t ); λR(t )] for the time-reverse
path {qR(t ), t = [τ, 0]} under the time-reverse protocol
[λR(t ) = λ(τ − t )] and the unit Jacobian between two path-
integral variables. In addition, we used the energy-balance re-
lation �(HB + HI ) = QS − QSB again from Eq. (6). The final
equality comes from the probability normalization because
the second integral represents the sum of all possible path
probabilities in the time-reverse process with its initial state
of the same reference type 11(a).

Similarly, we find another alternative FT with the initial
condition prepared with the reference state 11(b) as

�B ≡ −� ln ρS + βQB, 〈e−�B〉b = 1. (18)

The FT for �A in Eq. (17) has been recently found by
Seifert [30] in the case without the superbath, and the FT for
�B has been known awhile for quantum systems [32]. As
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the FT variables in both cases concern the system dynamics
only with energy (heat) variables, these FTs are much more
useful than the FT for the total entropy production in Eqs. (7)
and (14). However, the choice of the initial condition is
crucial, just like in the Jarzynski relation for work [4,5].

The corresponding inequalities are given as

RA = 〈−� ln ρS + β(QS − �H̃S)〉a � 0, (19a)

RB = 〈−� ln ρS + βQB〉b � 0. (19b)

Theses inequalities can also be directly derived from Eq. (15)
by setting the initial state identical to the reference state,
i.e., ρ(0) = ρ̃. Then the relative entropy D(ρ||̃ρ) is simply
zero at the initial time (t = 0). The relative entropy at later
time t may not be zero because the true PDF ρ(t ) does
not maintain its form of reference states in general as soon
as the evolution starts. Therefore, we find RA − 〈�S〉a =
〈Da(τ )〉a � 0, where the last inequality comes from the well-
known non-negative property of a relative entropy. Similarly,
RB − 〈�S〉b = 〈Db(τ )〉b � 0. Thus, the above inequalities in
Eq. (17) are obtained from the inequalities for the total entropy
production in Eq. (15). It is interesting to note that RA and RB

are useful in practice at the cost of information loss, which
yields a looser bound by the amount of the relative entropy at
the final time than the exact bound given by the total entropy
production.

One should also notice that RA and RB do not necessarily
increase with the interval time τ , i.e., they may go up and
down with increasing τ even though their non-negativity is
maintained. This is also simply because the true PDF would
deviate from the reference form after the evolution starts.
The similar behavior is found for the dissipated work in the
Jarzynski FT and also some quantum FT variables [31]. We
will show these interesting properties explicitly for an exactly
solvable simple model in the next section.

V. NONEQUILIBRIUM MOTION UNDER
A SLIDING POTENTIAL

We take a concrete example to demonstrate the difference
among the three heats. Consider a Brownian colloidal particle
submerged in a fluid bath. This colloid interacts with bath
particles nearby through a finite-range interaction. Perturbed
bath particles via interaction with the colloid relax fast into
equilibrium and new bath particles begin to interact as the
colloid moves through the bath. For an analytic approach,
we mimic this situation by considering only a finite number
n of bath particles moving along with the colloid through
strong harmonic interactions [35]. All other noninteracting
bath particles are in equilibrium and will not be taken into
account.

For simplicity, we only consider the one-dimensional
model and assume no bath potential (UB = 0). The sys-
tem and bath state are given by qS = (x, p) and qB =
(x1, . . . , xn, p1, . . . , pn), respectively. Note that we dropped
the state variables of all other bath particles which do not
interact with the colloid. The interaction potential between
the colloid and the ith bath particles is chosen as Vi = κ (x −
xi )2/2, which is long ranged enough to keep interacting bath
particles near the colloid.

In order to study not only equilibrium but also nonequi-
librium steady states, we apply a time-dependent protocol on
the colloid by introducing a sliding harmonic potential with a
constant velocity u given by U (x, λ(t )) = k(x − ut )2/2 with
λ(t ) = ut . This protocol for a Brownian particle has been
extensively studied experimentally and theoretically [36–42]
for a single-particle Langevin system.

The total Hamiltonian is given as

H = p2

2μ
+ k

2
(x − ut )2 +

n∑
i=1

p2
i

2m
+

n∑
i=1

κ

2
(x − xi )

2, (20)

where HS, HB, and HI can be easily identified. The equations
of motion are obtained from Eq. (2) as

ẋ = p

μ
, ṗ = −k(x − ut ) − κ

n∑
i=1

(x − xi ),

(21)
ẋi = pi

m
, ṗi = −κ (xi − x) − γ

pi

m
+ ξi,

where the interacting bath particle index i runs from 1 to n.

A. Decoupling by coordinate transformation

Due to the simple linear nature of the equations of motions
in Eq. (21), we can decompose the (n + 1)-particle coupled
dynamics into decoupled effective dynamics. To this end, we
introduce the center-of-mass (CM) coordinates for n interact-
ing bath particles as

xcm ≡ 1

n

n∑
i=1

xi, pcm ≡
n∑

i=1

pi, (22)

leading to pcm = (nm)ẋcm. All other reduced (relative) bath
coordinates are defined as

x′
i ≡

∑i
j=1 x j − ixi+1√

i(i + 1)
, p′

i ≡
∑i

j=1 p j − ipi+1√
i(i + 1)

, (23)

for i = 1, . . . , n − 1.
Then, the equations of motion for the system and a repre-

sentative bath particle at the CM coordinates are given as

ẋ = p

μ
, ṗ = −k(x − ut ) − nκ (x − xcm ),

(24)
ẋcm = pcm

nm
, ṗcm = −n κ (xcm − x) − n γ

pcm

nm
+ ξcm,

where ξcm = ∑
i ξ is the total noise acting on the CM, satisfy-

ing 〈ξcm(t )ξcm(t ′)〉 = 2nγ β−1δ(t − t ′). This implies that the
colloid effectively interacts with a single bath particle of mass
nm at the CM coordinate, subject to the friction coefficient
nγ and the harmonic interaction strength nκ . The equations
of motion for the other n − 1 reduced bath coordinates are
given as

ẋ′
i = p′

i

m
, ṗ′

i = −κx′
i − γ

p′
i

m
+ ξ ′

i , (25)

where ξ ′
i ≡ [

∑i
j=1 ξ j − iξi+1]/

√
i(i + 1), satisfying 〈ξ ′

i (t )
ξ ′

j (t
′)〉 = 2γ β−1δi jδ(t − t ′). One can also easily show that

ξCM and ξ ′
i are not correlated. As evidenced in Eq. (25),

each reduced bath coordinate is independent from each other
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and also from the CM and colloid coordinate. Thus, the
total system is completely decoupled into an interacting two-
particle system (colloid and CM) and (n − 1) noninteracting
single-particle system (reduced bath coordinate).

The Hamiltonian for the interacting two-particle system
H (2) can be written as

H (2)
S = p2

2μ
+ k

2
(x − ut )2, H (2)

B = p2
cm

2nm
,

H (2)
I = nκ

2
(x − xcm )2, with H (2) = H (2)

S + H (2)
B + H (2)

I .

(26)

For the reduced bath system, we have the Hamiltonian H (n−1)

for n − 1 particles as

H (n−1)
B =

n−1∑
i=1

p′2
i

2m
, H (n−1)

I =
n−1∑
i=1

κ

2
x′2

i , (27)

with

H (n−1) = H (n−1)
B + H (n−1)

I ,

where the term with the subscript I comes from the interaction
term in the original Hamiltonian of Eq. (20). The reduced
bath system is a collection of n − 1 noninteracting harmonic
oscillators. In this description, we have one colloidal particle
for the system, one (CM) particle for the interacting bath,
and n − 1 (reduced) particles for the noninteracting bath. We
note that the Hamiltonians in different representations have
relations as

HS = H (2)
S , HB = H (2)

B + H (n−1)
B ,

HI = H (2)
I + H (n−1)

I , with H = H (2) + H (n−1). (28)

B. Interacting two-particle system

All essential and nontrivial features are embedded in the
interacting two-particle dynamics with the Hamiltonian H (2)

in Eq. (26). We denote a state vector of this two-particle
system as �q = (x, p, xcm, pcm ). It is convenient to introduce
a shifted state vector �r = (x − ut, p, xcm − ut, pcm ). Then,
Eq. (24) can be written as

�̇r = −F · �r − �u + �η, (29)

where F is a 4 × 4 matrix, and �u, �η are four-component
vectors, given as

F =
(

FS FI

FI FB

)
, �u =

⎛⎜⎝u
0
u
0

⎞⎟⎠, �η =

⎛⎜⎝0
0
0
ξcm

⎞⎟⎠,

with the 2 × 2 block matrices given as

FS =
(

0 −1/μ

k + nκ 0

)
, FB =

(
0 −1/(nm)

nκ γ /m

)
,

FI =
(

0 0
−nκ 0

)
.

Note that �r = �q − �ut and Eq. (29) describe an equilibrium
dynamics at �u = 0. Single-particle systems (overdamped and
underdamped) driven by a sliding harmonic potential have

been studied extensively in the literature [39–43]. We use a
similar strategy to exactly solve our two-particle interacting
system in this study.

First, we decompose the shifted state vector �r into the
deterministic part �d = 〈�r〉 and the stochastic part �z = �r − �d .
Then, we get the two decoupled equations as

�̇d = −F · �d − �u , �̇z = −F · �z + �η. (30)

The deterministic part can be easily solved as

�d (t ) = −F−1(I − e−Ft ) · �u, (31)

where we take the initial condition �d (0) = �0 for simplicity,
implying 〈x(0)〉 = 〈p(0)〉 = 〈xcm(0)〉 = 〈pcm(0)〉 = 0.

The stochastic part describes the famous multivariate
Ornstein-Uhlenbeck process, which has been well stud-
ied [44–46]. In our case, F is trivial in the sense that it does
not contain any nonequilibrium source, so we expect a simple
equilibrium relaxation process. The PDF for its evolution is
given as

P(�z, t ) =
√

β4 det At

(2π )4
exp

[
−β

2
�z · At · �z

]
, (32)

with

A−1
t = A−1

eq − e−Ft
(
A−1

eq − A−1
0

)
e−Ftt , (33)

where Aeq and A0 correspond to the matrices for the equi-
librium distribution and an initial Gaussian distribution, re-
spectively [44,46]. As expected, the PDF approaches the
Boltzmann distribution as t → ∞ with Aeq, which can be
decomposed as

Aeq = AS + AB + AI, (34)

where

AS =
(

S 0
0 0

)
with S =

(
k 0
0 1/μ

)
,

AB =
(

0 0
0 B

)
with B =

(
0 0
0 1/(nm)

)
, (35)

AI =
(

K −K
−K K

)
with K =

(
nκ 0
0 0

)
,

and 0 is the 2 × 2 null matrix. It would be very useful later
to realize that each component corresponds to one of the
Hamiltonian components in Eq. (26) such as

H (2) = 1
2 �r · Aeq · �r, H (2)

S = 1
2 �r · AS · �r,

H (2)
B = 1

2 �r · AB · �r, H (2)
I = 1

2 �r · AI · �r. (36)

The PDF for the two-particle system ρ (2) is given as

ρ (2)(�q, t ) = P(�r − �d (t ), t ) = P( �q − �ut − �d (t ), t ), (37)

where the function P is given in Eq. (32). As t goes to ∞,
the PDF reaches the Boltzmann distribution with its center
moving as 〈 �q〉 = �ut + �d (t ). In the long-time limit, �d (t ) satu-
rates [see Eq. (31)], so the PDF center moves with the constant
velocity u.
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The PDF of the total system including n − 1 noninteracting
bath particles is simply given by product as

ρ(�q, t ) = ρ (2)(�q, t )
n−1∏
i=1

ρHO(x′
i, p′

i, t ), (38)

where ρHO is a distribution function for a single harmonic
oscillator in Eq. (27).

The marginal system PDF ρS(�qS, t ) with �qS = (x, p) can
be easily obtained by tracing out all the bath coordinates in
Eq. (38) as

ρS(�qS, t ) =
√

β2 det Ŝt

2π
exp

[
−β

2
�zS · Ŝt · �zS

]
, (39)

where �zS is the stochastic part of �qS defined as �zS = [x − ut −
d1(t ), p − d2(t )] with the subscript i denoting the ith vector
component of �d in Eq. (31). The covariance matrix [Ŝ−1

t ]i j =
〈zi(t )z j (t )〉ρS for i, j = 1, 2 [44,46] should be identical to
the covariant matrix [A−1

t ]i j for the two-particle system in
Eq. (32). Note that the PDF for all other noninteracting har-
monic oscillators is traced out without affecting the marginal
system PDF.

C. Average work and heats

The expression for the nonequilibrium work can be ob-
tained from Eq. (4) as

W =
∫ τ

0
dt

∂U

∂λ
λ̇ = −ku

∫ τ

0
dt (x − ut ). (40)

Note that x − ut is the first component of the shifted state
vector �r = �z + �d . Then, the average work can be calculated
easily as

〈W 〉 = −ku
∫ τ

0
dt d1(t )

= −ku[{F−1τ − (F−1)2(I − e−Fτ )} · �u]1, (41)

where we used d1(t ) from Eq. (31) and 〈�z〉 = 0 from Eq. (32).
In the long-time limit (τ → ∞), the first term dominates and
we get the constant average work production rate as

〈Ẇ 〉 � nγ u2. (42)

We will show later that the heat production rate is also a con-
stant and equal to the work production rate in the long-time
limit. This implies that there exists the energy-balance steady
state where the work production rate and heat production rate
can be balanced with no internal energy change on average,
even though there is no true steady state from the PDF point
of view.

We utilize the energy-balance equation in Eq. (6) to get the
expression for the three heats as

Qα = W − �Ĥα, (43)

where Ĥα = HS, HS + HI, H for α = S, B, SB, respectively.
We can rewrite Ĥα in decoupled coordinates using the Hamil-
tonian relations in Eq. (28) as

Ĥα = Ĥ (2)
α + Ĥ (n−1)

α , (44)

with

Ĥ (2)
S = H (2)

S , Ĥ (n−1)
S = 0,

Ĥ (2)
B = H (2)

S + H (2)
I , Ĥ (n−1)

B = H (n−1)
I ,

Ĥ (2)
SB = H (2), Ĥ (n−1)

SB = H (n−1). (45)

Note that Ĥ (2)
α and Ĥ (n−1)

α are completely independent of each
other with different coordinates.

In order to obtain the average values of the heats 〈Qα〉,
we only need to calculate the average Hamiltonian change
〈�Ĥα〉 because the average work was already obtained in
Eq. (41). First, we calculate the contribution from the two-
particle Hamiltonian, i.e., 〈�Ĥ (2)

α 〉. Using Eq. (36), Ĥ (2)
α can

be rewritten in the form of 1
2 �r · Âα · �r, with

ÂS = AS , ÂB = AS + AI , ÂSB = Aeq. (46)

Then, we get〈
�Ĥ (2)

α

〉 = �
〈

1
2 [�z(t ) + �d (t )] · Âα · [�z(t ) + �d (t )]

〉
= 1

2
�d (τ ) · Âα · �d (τ ) − 1

2 TrÂα

(
A−1

τ − A−1
0

)
, (47)

where we used �d (0) = 0 and the covariance matrix [A−1
t ]i j =

〈zi(t )z j (t )〉. Together with the expression for the average work
in Eq. (41), we have the exact expression for 〈QS〉 because
Ĥ (n−1)

S = 0. With the further assumption that the reduced bath
is in equilibrium with H (n−1) at t = 0, then 〈�Ĥ (n−1)

α 〉 = 0,
and thus we have the exact expressions for the other two heats,
〈QB〉 and 〈QSB〉.

In the long-time limit, the internal energy changes in
Eq. (47) saturate and do not increase linearly in time τ . Thus,
the leading term in τ for all average heats 〈Qα〉 comes from
the work production 〈W 〉, leading to the expected result for
the work and heat production rate in the long-time limit as

〈Ẇ 〉 � 〈Q̇S〉 � 〈Q̇B〉 � 〈Q̇SB〉 � nγ u2. (48)

As we have the exact expressions for the total PDF in
Eq. (38) and 〈QSB〉 = 〈W 〉 − 〈�ĤSB〉 with Eqs. (41) and (47),
we can exactly calculate the time evolution of the average
total entropy production 〈�S〉 with a given initial condition.
Furthermore, we can also calculate the time evolution of RA =
〈�A〉a in Eq. (17), which is expected to behave nonmonoton-
ically with time, as discussed in Sec. IV. To see this behavior
explicitly, we take a simple initial PDF as

ρ(q, 0) ∝ exp[−β ′HS − β(HB + HI )]. (49)

As HI + HB = H (2)
I + H (2)

B + H (n−1) from Eq. (28), the initial
PDF is simply a product PDF of the two-particle PDF and
the reduced bath particle PDF. The reduced bath is in equi-
librium with the inverse temperature β, but the two-particle
system is not in equilibrium for β ′ �= β. As the dynamics of
the two-particle system and the reduced bath are completely
decoupled, the reduced bath remains in equilibrium at later
times, implying 〈−� ln ρ〉 = 〈−� ln ρ (2)〉 and 〈�H (n−1)

B 〉 =
〈�H (n−1)

I 〉 = 0. Therefore, with this initial condition, the av-
erage heats are exactly given by 〈Qα〉 = 〈W 〉 − 〈�Ĥ (2)

α 〉 with
〈�Ĥ (n−1)

α 〉 = 0.
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FIG. 1. RA (red, upper line) and 〈�S〉 (blue, lower line) in units
of kB vs γ̄ τ̄ , with dimensionless parameters γ̄ ≡ γ /

√
mk and τ̄ ≡

τ/
√

m/k, in the presence of the sliding harmonic potential with
the dimensionless speed ū ≡ u

√
βm. We set n = 2, β ′ = 1.5β, ū =

0.02, γ̄ = 30, μ = m, and κ = k. RA is always non-negative and not
smaller than 〈�S〉. The difference between the two quantities is given
by the relative entropy 〈Da(τ )〉. In contrast with 〈�S〉 that always
increases with time τ , RA shows a nonmonotonic behavior in time.
This nonmonotonicity is significant for small values of u and n. For
large u and n, the positive heat production linearly proportional to
time τ becomes dominant and the nonmonotonous behavior becomes
negligible.

This PDF also satisfies the initial condition of type
Eq. 11(a), which guarantees RA � 0 shown in Eq. (17). We
can evaluate H̃S from Eq. (12), which turns out to be a constant
independent of the system state in our simple model [47], and
thus 〈�H̃S〉 = 0 in Eq. (17). Thus, we can calculate the time
evolution of RA from the marginal PDF ρS in Eq. (39) and
〈QS〉 = 〈W 〉 − 〈�Ĥ (2)

S 〉 with Eqs. (41) and (47).
Finally, the initial condition for the two-particle system

is deduced from Eq. (49) as ρ (2)(�q, 0) ∝ exp[−β ′H (2)
S −

β(H (2)
B + H (2)

I )], which yield

A0 = β ′

β
AS + AB + AI, (50)

which will be used in the calculation of 〈�Ĥ (2)
α 〉 in Eq. (47).

We also use the simplified expression for the average Shannon
entropy change in the harmonic system such as

〈−� ln ρS〉 = −�

[
1

2
ln det Ŝτ − β

2
TrŜτ Ŝ−1

τ

]
= 1

2

[
ln det Ŝ−1

τ − ln det Ŝ−1
0

]
, (51)

and similarly for 〈−� ln ρ (2)〉.
Our numerical results are shown in Fig. 1, which is con-

sistent with the expectation such that RA � 〈�S〉 and RA

is not monotonous, in particular for weak nonequilibrium
with small values of u and n. As u and n increase, the heat
production is dominant in the entropy production, and thus
the nonmonotonicity of RS weakens.

For completeness, we report the explicit form of the aver-
age relative entropy 〈Da〉 = RA − 〈�S〉 as

〈Da(ρ(τ )||̃ρ(τ ))〉 = 1

2
ln

det Aτ

det Ŝτ

det Ŝ0

det A0

+ β

2
Tr
(
A−1

τ −A−1
0

)
(AI + AB)

+ β

2
�d (τ ) · (AI + AB) · �d (τ ). (52)

D. Three heat distributions

We now investigate fluctuations of the three heats in
Eq. (43). The generating function for the heat distribution is
given as

Gα (λ) = 〈e−βλQα 〉 = 〈e−βλ(W −�Ĥα )〉
= 〈

eβλ(W −�Ĥ (2)
α )
〉
(2)

〈
eβλ�Ĥ (n−1)

α

〉
(n−1)

≡ G (2)
α (λ, u) · G (n−1)

α (λ), (53)

where 〈·〉(2) and 〈·〉(n−1) are the average over two-particle state
variables �q and over reduced bath coordinates {x′

i, p′
i} for t =

[0, τ ], respectively. The u dependence comes from the two-
particle system Hamiltonian in Eq. (26).

With the initial condition taken in Eq. (49) (β ′ = β), the re-
duced noninteracting bath particles are always in equilibrium,
independent from the evolution of the two-particle system.
Thus, the generating function for the reduced system should
be factorized as

G (n−1)
α (λ) = gα (λ)n−1, (54)

where

gα (λ) = 〈
eβλ�Ĥ i

α

〉
, (55)

with

Ĥ i
S = 0 , Ĥ i

B = κ

2
x′2

i , Ĥ i
SB = κ

2
x′2

i + 1

2m
p′2

i . (56)

Note that for a Langevin system with no explicit time
dependence in Hamiltonian H (τ ) = H (q(τ )) for state q,

〈eβλH (τ )−βλH (0)〉

=
∫

dqτ

∫
dq0

∫
D[q(t )]eβλH (τ ) �[q(t )]

e−β(1+λ)H (0)

Z (β )

−→ Z (β(1 + λ))

Z (β )

Z (β(1 − λ))

Z (β )
as τ → ∞, (57)

where �[q(t )] is the path probability, Z is the partition func-
tion, and it is used that the final PDF becomes Boltzmann as
τ → ∞, independent of an initial PDF. Using this formula,
we find

G (n−1)
α (λ) = 1

(1 − λ2)
1
2 d (n−1)

α

, (58)

where d (n−1)
α is the number of the degrees of freedom

in Ĥ (n−1)
α , which is equal to 0, n − 1, 2(n − 1) for α =

S, B, SB, respectively.
The most difficult task is to compute G (2)

α (λ, u), for which
we can extend the results from the recent study on a single-
particle Langevin system in the underdamped case under the
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same moving potential [43]. In Eq. (53), βλĤ (2)
α in the expo-

nent effectively alters the PDFs at t = 0 and t = τ . Note that
Ĥ (2)

α for the two-particle system is a function of �r = �q − �ut , as
can be seen in Eq. (36). For �r = �z + �d (t ), the path integral is to
be performed over stochastic variables �z(t ). We can separate
H (2) in two parts, i.e., z-dependent and -independent parts, as

Ĥ (2)
α (�r(t )) = 1

2
�d (t ) · Âα · �d (t )

+ �d (t ) · Âα · �z(t ) + 1
2�z(t ) · Âα · �z(t )

= fα (t ) + �d (t ) · Âα · �z(t ) + H (2)
α (�z(t )), (59)

where Âα = AS, AS + AI, Aeq for α = S, B, SB, respectively,
consistent with the definition of Ĥ (2)

α in terms of Hα . Then,
using the formula in Eq. (57), we can rewrite the two-particle
generating function in the long-time limit as

G (2)
α (λ, u) = eβλhα (τ ) Zα (β, λ)

Z (β )

Zα (β,−λ)

Z (β )

×
〈
exp

[
�d (τ ) · Â · �zτ + βλku

∫ τ

0
dt zx(t )

]〉ren

(2)

,

(60)

where

hα (τ ) = fα (τ ) + ku
∫ τ

0
dtdx(t ).

Here, the superscript “ren” means the renormalized path in-
tegral due to the alteration of the initial distribution and the
constraint on the final distribution, written as

〈F[�z(t )]〉ren
(2) =

∫
d�zτ

∫
d�z0

∫
D[�z(t )]

Z (β )eβλĤ (2)
α (�zτ )

Zα (β,−λ)

×�[�z(t )]F[�z(t )]
e−β[H (2) (�z0 )+λĤ (2)

α (�z0 )]

Zα (β, λ)
.

(61)

Here, Zα (β,±λ) [Z (β ) = Zα (β, 0)] is the partition function
due to an altered PDF for t = 0 (+λ) or t = τ (−λ), given as

Zα (β, λ) =
∫

d�z e−β[H (2) (�z)+λĤ (2)
α (�z)] =

√
(2π/β )4

det(Aeq + λÂα )
.

(62)

In Eq. (60), the renormalized path integral Iα (λ, u) is to be
performed for the exponential of linear terms in �z(t ) and can
be carried out by using the cumulant expansion. As a result,
we find

ln Iα (λ, u) = 1

2
�d (τ ) · ÂαC̃α (τ, τ )Âα · �d (τ )

+βλku
∫ τ

0
dt[ �d (τ ) · ÃαC̃α (τ, t )]1

+ (βλku)2

2

∫ τ

0
dt
∫ τ

0
dt ′[C̃α (t, t ′)]11, (63)

where [·]1, [·]11 denote the first component of a vector and
(1,1) element of a matrix. In this equation, C̃α (t, t ′) is the

renormalized correlation function (matrix) obtained from

〈e�l (t )·�z(t )+�l (t ′ )·�z(t ′ )〉ren
(2)

=e
1
2
�l (t )·C̃α (t,t )·�l (t )e

1
2 [�l (t ′ )·C̃α (t,t )·�l (t ′ )+�l (t )·C̃α (t,t ′ )·�l (t ′ )+�l (t ′ )·C̃α (t ′,t )·�l (t )],

where the α dependence comes from the alteration of PDFs
due to Ĥ (2)

α . Then, we can find, for t > t ′,

C̃α (t, t ′) = β−1
[
e−F(t−t ′ )A−1

eq − λBα (t, t ′)
]

+β−1λ
[
A−1

eq − Bα (t, t )
]

× Dα (t, t ′)
[
A−1

eq − Bα (t ′, t ′)
]
, (64)

with

Bα (t, t ′) = e−Ft (Aeq + λÂα )−1ÂαA−1
eq e−Ftt ′

,

Dα (t, t ′) = e−Ft (τ−t )Aeq(Aeq − λÂα )−1Âαe−Ft (τ−t ′ ),

where it becomes the original correlation function for λ = 0.
After some algebra, Eq. (60) can be computed using

Eqs. (62)–(64) in the long τ limit, where we neglect terms
having e−Fτ and e−Ftτ . As a result, the generating function for
the two-particle system is given as

G (2)
α (λ, u) � e−nτwλ(1−λ)−nwbαλ3/[2(1+λ)]

(1 − λ2)
1
2 d (2)

α

, (65)

for d (2)
α is the number of degrees of freedom in Ĥ (2)

α , where
we defined the work rate per bath particles as w = β〈Ẇ 〉/n =
βγ u2 for τ → ∞ from Eq. (42). Noting Ĥ (2)

α = H (2)
S , H (2)

S +
H (2)

I , H (2), then d (2)
α = 2, 3, 4 for α = S, B, and SB, respec-

tively. For simplicity, we only show terms of order up to O(τ ),
keeping divergent terms for λ = ±1. We find the coefficient
for divergence in the exponent as

bα =

⎧⎪⎨⎪⎩
nγ

k + μ

nγ
for α = S

(k+nκ )γ
κk + μ

nγ
for α = B

(k+nκ )γ
κk + μ+nm

nγ
for α = SB.

(66)

Finally, the generating function can be obtained as
G (2)

α (λ, u)G (n−1)
α (λ) with Eq. (58).

From the inverse-Fourier transformation of Gα (λ), we have
the integral representation of the heat distribution function
for dimensionless heat rate q defined as βQ = βq〈W 〉|τ→∞ =
nτwq as

Pα (q) =
∫ i∞

−i∞

dλ

2π i

e−nτw[λ(1−λ)−qλ]−nwbαλ3/[2(1+λ)]

(1 − λ2)να
, (67)

where να = (d (n−1)
α + d (2)

α )/2 is given as

να =
⎧⎨⎩1 for α = S

1 + n
2 for α = B

1 + n for α = SB.

(68)

For the equilibrium case with u = 0 (w = 0), the heat
distribution function can be exactly obtained. Starting from
equilibrium, the total system remains in equilibrium so that
there is no average heat production. However, fluctuations still
occur, even in equilibrium. In this case, the above q is not a
relevant variable. We define a dimensionless heat as r = βQ.
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FIG. 2. Plots for Peq
α (r) for r = βQ (heat in units of β−1). The

distributions become broader for larger n. For the same n, Peq
SB is

the broadest and Peq
S is the sharpest. Peq

S (r) = e−|r|/2 is independent
of n.

For the long-time (τ ) limit, the equilibrium heat distribution
function for r can be found as

Peq
α (r) =

∫ ∞

−∞

dλ

2π

eirλ

(1 + λ2)να
= (|r|/2)να−1/2

√
π�(να )

Kνα−1/2(|r|),

(69)

where Kμ(z) is the modified Bessel function of the second
kind, defined for z > 0 as

Kμ(z) = �(μ + 1/2)(2z)μ√
π

∫ ∞

0
dt

cos t

(t2 + z2)μ+1/2
. (70)

Figure 2 shows a clear difference in three heat distributions
in the equilibrium state depending on n, having zero mean
as expected. Peq

S (r) = e−|r|/2 is independent of n, which
can be understood because the system effectively interacts
with a single representative particle at the center-of-mass
position. We remark that it is equal to that for the single-
particle Langevin system [43], which supports the physical
relevance of our finite-number-bath model in the long-time
behavior. The broadness of Peq

B (r) with larger n can be simply
understood because the observable r is the total heat for the
bath including noninteracting n reduced bath particles.

It is interesting to note that the three heat PDFs are quite
different even in the long-time limit and, furthermore, do not
depend on any parameter, including the coupling constant κ

characterizing the strength of the interaction Hamiltonian HI.
It implies that the difference between the three PDFs does not
go away even in the conventional weak-coupling limit (κ →
0). A very slow relaxation mode is induced by vanishing
κ so that the energy transfer between the system and bath
becomes extremely slower than the dynamics of the system
variable (x, p), which is not desirable in the conventional
weak-coupling models. Therefore, our simple model may not
describe realistic situations for a very small κ .

For the nonequilibrium case, we evaluate the integral in
Eq. (67) in the long-time limit. The difference between the
three heat PDFs is encoded in bα and να . The leading order
result is independent of the details of power-law singularities
associated with να and bα , which yields the large deviation

FIG. 3. Plots of lnPα (q)/(nτ̄ ) vs q by interpolating the curves
in three piecewise regions. The dimensionless parameters are τ̄ =
τ/

√
m/k, q = βQ/(nw̄τ̄ ), w̄ = γ̄ ū2 in the long-time limit. We plot

the curves for the parameter values of ū = 1, γ̄ = 1, μ = m, and
κ = k. The dashed line is the n−1 large deviation function.

function (LDF) as

lnPα (q) ∼ max
λ

nτw[qλ − f (λ)], (71)

where f (λ) = λ(1 − λ) for − 1 < λ < 1, and ∞ otherwise.
Thus, the three PDFs in nonequilibrium situations are equiv-
alent up to the leading order, where the nonzero heat rate is
dominant. This feature is very different from the equilibrium
case where the average heat rate is zero. In order to identify
the difference in the three PDFs, we should calculate the
next order, which arises from the singularities around λ =
±1. We use the modified saddle-point approximation devel-
oped to deal with singularities in the saddle-point integra-
tion [42,48,49].

The saddle point λ∗ is found from the extremum condition
for the logarithm of the integrand of Eq. (67), given as

0 = −2λ∗ + 1 − q − bαλ∗3

2τ (1 + λ∗)2
− 2ναλ∗

nτw(1 − λ∗2)
, (72)

where the most divergent terms are kept near λ = ±1. The
saddle point λ∗ occurs for −1 < λ∗ < 1. We find the heat
distribution functions for three piecewise regions in q as
follows:

(1) For λ∗ far from ±1 and −1 < λ∗ < 1, the singular
terms at λ∗ = ±1 in Eq. (72) can be neglected, so λ∗ =
(1 − q)/2 and −1 < q < 3. Equation (67) can be carried out
by the regular saddle-point approximation for large τ .

(2) For λ∗ � 1, we define δλ+ = λ∗ − 1 < 0. Then, the
saddle-point condition leads to

δλ+ � 1

4

[
−(q + 1) −

√
(q + 1)2 + 8να

nτw

]
, (73)

for which there are two cases: (1 + q)2 � 8να

nτw
and (1 +

q)2 � 8να

nτw
. The latter is restricted to a very narrow region,

so we only consider the former case with

δλ+ � − 4να

nτw|q + 1| , (74)

for q < −1 and |q + 1| � 1. The usual saddle-point approx-
imation is not useful because (1 − λ2)−να in the integrand
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cannot be expanded about λ∗ � 1. We use a new variable v =
1 + (λ − λ∗)/δλ+, so that (1 − λ)−1 = −(δλ+v)−1 which is
treated exactly. Then, we get

Pα (q) � eτnwq

|δλ+|να−1(−2να )

∫ 1+i∞

1−i∞

dv

2π i

e4ναv

vνα
, (75)

where the multiplicative factor leads to the logarithmic cor-
rection of O(ln τ ) to the LDF and the remaining integral is of
O(1), which is negligible.

(3) For λ∗ � −1, we define δλ− = λ∗ + 1 > 0, and the
saddle-point condition leads to

2δλ− − (q − 3) + bα

2τ (δλ−)2
= 0. (76)

We omit the narrow region for q − 3 � δλ−. For q − 3 �
δλ−, we get

δλ− =
[

bα

2τ (q − 3)

]1/2

(77)

for q − 3 � [bα/(2τ )]1/3. Similarly to the case for q < −1,
we introduce variable u = 1 + (λ − λ∗)/δλ−, so that (1 +
λ)−1 = (δλ−u)−1 using a new variable u. Then, we find

Pα (q) � e−τnw(p−2)

(δλ−)να−12να

∫ 1+i∞

1−i∞

du

2π i

enw
√

τ (q−3)/2(u+1/u)

uνα
.

(78)

The integral over u can be found by using the standard
saddle-point approximation for the saddle point u∗ = 1 given
from d (u + 1/u)/du|u=u∗ = 0. It gives rise to the correction
of O(τ 1/2) to the LDF.

We finally find the heat distribution functions for three
piecewise regions: (1) far from λ∗ = ±1 corresponding to
−1 < q < 3 (center); (2) λ∗ � 1 corresponding to q < −1
(left wing); (3) λ∗ � −1 corresponding to q > 3 (right wing),
given as

Pα (q) =

⎧⎪⎨⎪⎩
exp

[− nτ
4 w(1 − q)2 − 1

2 ln(wτ )
]

; − 1 < q < 3

exp[nτwq + (να − 1) ln(wτ )] ; q < −1, |q + 1| � (
nwτ
8να

)−1/2

exp
[−nτw(q − 2) + n

√
2w2bατ (q − 3) + 1

2

(
να − 3

2

)
ln[w2bατ (q − 3)]

]
; q − 3 � (

2τ
bα

)−1/3
.

(79)

The LDF is found in the leading order as shown in the terms
proportional to τ in the exponent, which is consistent with
Eq. (71). The corrections to the LDF manifest the difference in
the three heat distributions. Figure 3 shows the three heat dis-
tributions, for which the curves in three piecewise regions are
interpolated for the purpose of guidance. The LDF is drawn by
a broken curve. The most significant corrections to the LDF
appear in the right wing for q > 3, which originates from the
so-called everlasting initial memory of having an excessive
value for Ĥα in Eq. (5), which was reported as a characteristic
of nonequilibrium heats in previous works [42,48–51].

We find in Fig. 3 or Eq. (79) that PB(q) becomes slightly
flatter for smaller κ , due to increasing bB in Eq. (66). This
can be understood as an influence from increasing distance
fluctuations of bath particles around the system due to the
weak interaction (small κ). On the other hand, PS(q) for the
system trapped by the harmonic potential (finite k) remains
unchanged. A clearer difference is expected for the heat
distribution functions for finite τ . We note that the κ → 0
limit is singular because bα diverges, which also indicates that
our model does not show the proper weak-coupling regime in
the simple κ → 0 limit.

VI. SUMMARY

We find the three different heats in system and bath flowing
in different directions, which were conventionally regarded as
the same quantity flowing from one place to another. We show
clear differences between them by rigorously treating the
interaction Hamiltonian, especially shown in �HI = QS −

QB. These differences can be regarded as an indication of a
strong coupling between the system and bath. The three dif-
ferent heats are manifested in the various fluctuation theorems
and distinguish themselves in their fluctuations even with the
same average value in the long-time limit. The theoretical
expectations are explicitly confirmed from the calculation for
the typical example with a sliding harmonic potential.

The weak-coupling regime is usually believed to be
reached by a perturbation approach for small HI, for which
one might expect PS(q) � PB(q) in the extreme limit. How-
ever, it is not the case, at least for our example. In both the
equilibrium and nonequilibrium cases, the three heat PDFs
remains different even in the extreme κ → 0 limit. We suspect
that this simple limit by itself does not guarantee the stan-
dard weak-coupling limit in general theoretical models, and
additional assumptions such as timescale separations should
be incorporated.

The appearance of the three different heats or the two
different heats for the nonthermostatted bath seems to be
inevitable as we handle the interaction Hamiltonian rigorously
for the strong-coupling case. It would be interesting to extend
our classical study on various heats to quantum systems.
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