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The widthW of the active region around an active moving wall in a directed percolation process diverges at
the percolation threshold, asW=Ae" "I In(e;/€), with e=p.—p, € a constant, andy=1.734 the critical
exponent of the characteristic time needed to reach the stationarygta¢e”l. The logarithmic factor arises
from screening the statistically independent needle shaped subclusters in the active region. Numerical data
confirm this scaling behaviofS1063-651X99)00509-7

PACS numbgs): 64.60.Ht, 05.70.Ln, 68.35.Rh

[. INTRODUCTION the same scaling form as above, but with a new interface
critical exponent, and therefore a modified value f@.

Directed percolatiofDP) has emerged as one of the ge- In this study we discuss the scaling properties near active
neric absorbing state type dynamic processes. It describdmundaries. Consider a stationary active vertical wall in the
epidemic processes, e.g., forest fires and various types sf/stem. All sites in the wall are alive. The critical exponent
surface catalysis processgls-5]. Such processes include a B is not an issue, because the system remains active near the
so-called absorbing state, typically the vacuum, from whichwall for all p. However, in the absorbing phase the cloud of
it cannot escape. The relevant tunable parameter is the propaetive sites near the wall has a specific stationary state width,
gation probabilityp. The system undergoes a phase transitionwhich is expected to diverge 8~ ¢, ~ ¢~ "L. Widths like
from the absorbing phase at small where the stationary this diverge with bulk exponents.
state is the absorbing state, into an active stationary phase at Assume that this wall is slanted, with an arbitrary angle
largep, where the system refuses to die. The scaling properg+ 90° with respect to the horizontal directigsee Fig. L
ties at DP dynamic phase transitions have been known fdn the space-time interpretation of the configurations, the
almost two decades, and it is now realized that DP criticalvall moves with a constant velocity. It acts as a slanted
behavior is the generic universality class for dynamic ab-active curtain rod. A curtain of active sites hangs down from

sorbing state type procesgds. it as illustrated in Fig. 1. Fop<p. the curtain has a finite
At DP type critical points the equilibration timg di-  width I, and lengthlj=I, tan(6).
verges. It scales a§~ ¢! compared to the spatial correla-  In this study we address how the stationary state width of

tion length ¢, , with dynamic exponenz=1.581[6]. For this slanted curtain scales near the DP critical point. Naively
example, starting from a single seed, the survival probabilitythis seems a simple question. One would expect that the

obeys the scaling form curtain width diverges with the same exponent as the equili-
bration time scaleWw~ e~ "1, i.e., with the same exponent as
Py(€,t)=b %P (b¥"1e,b™ %), (1)  the length of a curtain hanging down from a horizontal cur-

tain rod (¢=0) [15,11]. The latter is equivalent to asking for
with e=p.— p the distance from the critical point. This leads the survival probability in the setup without any walls where
to all sites are active in the initial state.
This expectation is based on the anisotropic scaling prop-
—t
P~ el exp{ g—) , 2)

with exponentB=xsv, . The exponential factor reflects that
deep inside the absorbing phaBg decays exponentially in
time. The equilibration time diverges at the DP critical point
as §~e "l with z=v /v, . At p. the survival probability
decays as a power law(t) ~t~° with =xs/z= /.

A recent direction of research in this topic concerns the
scaling properties near boundar[&s-10]. Those studies ad- i
dress absorbing and reflective walls. The scaling properties Aﬁ ;’.‘3 i {
are modified by surface type critical exponents. In particular, o
the survival probability for a seed near the boundary obeysFIG. 1. The curtain of active sites at the active slanted boundary.
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FIG. 2. Lattice structure near the active boundary. €

FIG. 3. Log plot of active width versup.—p from straight
Monte Carlo simulations on unlimited system sizes. The solid line
represents the data. The dashed straight lines of slegzsand
—1.734 are guides to the eyes.

erties. Consider a system with a rod at ang#e0. The hori-
zontal and vertical bulk lengths diverge with different expo-
nents, af‘pgj . Therefore, a system at.—p= e and wall
angle 6 is equivalent by renormalization to a system with a

smaller wall angle ¢’ at e'=b Yie with tan(®') iy palf unitst—t+ 3. Bonds between nearest neighbor sites
=b® “tan(¢). The scaling properties OV should not de-  5¢¢ andt—t+ are being created with probabiliybut only
pend on the anglé, since the rod renormalizes towards the i the ypper site is active. Each bond activates the lower site.
horizontal position. We should expect the same scaling begjnze| studied this model in detail with master equation type
havior as at9=0. However, a recent numerical Stuflyl]  Egs in the early 1980KL2]. The critical exponents and the
seems to contradict this. _ _location of the DP transition are known quite accurately. For
Kwon etal. [11] studied a model with two absorbing eyample, the latest series expansion results put the DP phase
states. It undergoes a dynamic phase transition which b&s,nsition atp,~0.6447[6].
longs to th(_e directed Isin¢DI) univgrsality class when the _ We modify the boundary conditions in this model to ac-
two absorbing states are symmetric, and belongs to the dgommodate an active wall. The lattice is semi-infinite, bound
rected percolation universality class when a symmetry breaky, he |eft by the wall, which runs away undée=45° as
ing field is introduced. They studied the interface dynamicshown in Fig. 2. 45° is its natural angle for the curtain rod

of the active domain between two asymmetric absorbing, his specific lattice. We can restrict ourselves to this angle
states. As one absorbing state dominates over the other, @ s the scaling properties of the curtain width should not
interface is driven into the unpreferred absorbing region Wlﬂ‘uepend on the angle according to the anisotropic scaling ar-

a constant velocity. Therefore they expected the width of theyment outlined above. Moreover, the angle is a continuous
active domain to scale like the horizontal width of the aCt'Veparameter in the model by Kwaet al.[11] and their results

curtain in the above setup for ordinary DP models. A simplegpov no angle dependence.
power-law fit of theirigata' suggests that the active domain v perform Monte Carlo simulations with as initial con-
width scales adV~ e * with x=2.00(5), which does not figuration an active wall in an inactive bulk. The horizontal

agree with the DP exponem{=1.734. _ curtain width is defined as the distance of the last active site
. In this paper we _addres; the same issue more directly. Weom the rod in each time slice. Fr<p., the width grows
insert a slanted active wall into the most basic model for DPjnjsiajly approximately linear in time, until it saturates at the

the one studied originally by Kinzel and co-workgl®,13, ~ giationary state value which varies with-p,— p. Figure 3

see Sec. Il. We find a similar anomalous value for the Widtrghows the active width versuson a logarithmic scale. The
exponentW~e* scales ax=1.955). In Sec. lll we de- |ine is quite linear over the two decades shown. The slope is
velop a qualitative scaling theory. It predicts that the C“rta'nclearly distinct from the expected valug~1.734 and close

width scales with the conventional exponentbut with an 5 the value found by Kwoet al.[11]. In Fig. 4 we perform
additional logarithmic factor a8V=Ae "l In(e/e). In Sec.

IV we show that the numerical Monte Carlo data fit this form 2
well. In Sec. V we illustrate how DP type processes with A——t | —t
slanted walls can be studied in the master equation formal- L9 4
ism. Our finite size scalingFS9 results, using exact numeri- 1.8
cal enumeration of the eigenvalue spectrum, show thpt at L7 BeRSA
the width of the slanted curtain diverges\&s-L? with sys- % 16k Fx vex
tem size. This confirms the absence of a new independent KoL TH—— .
exponent. The logarithmic factor arises only in theepen- 15 )'é b
dence. 14 K
13 1 I I 1 Tx |
0 0.02 004 006 0.08 01 0.12
II. NUMERICAL RESULTS FOR THE CURTAIN WIDTH €

Consider the square space-time lattice shown in Fig. 2. FIG. 4. Estimates for the active width exponantn fit (a), Wis
All bonds run under 45°. The bladlopen circles represent assumed to scale &8~ ¢ %, in (b), asW~e *In¢, and in(c), as
the active(inactive sites. Time evolves from top to bottom W~ e *(In e+In 2).
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a more careful FSS analysis of the same data. We fit thdssume that has the same asymptotic form as the single
numerical data from two nearby points,=\2¢;, to the seed survival probability, in E¢2), and that the maximum
form W=ae * and plotx as a function ofe, the exponenx  of the distribution occurs in this range of The transforma-
appears to be around 1.95. This fit is remarkably stable, antion to the coarse-grained=x/¢, ~xe”+ variable changes
shows virtually no power-law type corrections to scaling.the critical exponent inside the exponential factor

Taken out of context it is strongly suggestive of a new inde- A

pendent critical exponent. The other curves in Fig. 4 relate to P=Befe e, (7)

the FSS analysis assuming an additional logarithmic factor ) ) ,
as discussed in the next two sections. \(Nl)trll A; v— v, , andb~tan(¢). Inserting this form into Eq.
6) leads to

IIl. INDEPENDENT CLUSTER APPROXIMATION 1— e*beA: BePe™ bned (8

Figure 1 shows a typical curtain configuration in a Monte
Carlo simulation at @ just below the percolation threshold
p.. The most striking features are the needles in the curtain. _
Isolated clusters are expected to be needlelike. The correla- bnle/*=In
tion length in the time direction diverges faster than in the
spatial direction, aSH~§j . Therefore, active clustefsthen  |n original units this reads
grown from a single seg@decome needle shaped near the
percolation threshold. Figure 1 gives the impression that
close top., the curtain consists of a set of weakly interacting
needle shaped clusters when viewed from length scales
larger than¢, . The characteristic probability depends on the wall angle as

In this section we pursue the implications of the assumpe,~ 1/tan(¢). The most probable widtiV scales with the
tion that such needles are completely uncorrelated. In thagxpected exponent; but contains an additional logarithmic
approximation the probability that the curtain extends over gactor.
horizontal distancé is given by the probability that a needle Asymptotically the most probable and the average widths
longer than7=1tan(¢) hangs down from the curtain rod coincide. Equatiori4) can be approximated in the continuum
vertically above that site. La® be that probability. It must [|imit as
have the same form as the survival probability from a single

and, after expanding the exponential on the left hand side, to

B
b

+(B—4)In(e). €)

~ _ €p
W=Ae "l In<?>. (10)

seed, Eq(2). The actual value of the exponeBitturns out to 1dP, P(n)

be irrelevant in this section, but it must be identical to the p_w dn =1- P(n+1) +P(n). (1)
single seed value, according to a time reversal symmetry

argument 14]. Close top, and for largen, whereP obeys Eq(7), we can

The spatial coordinate needs to be coarse grained, becauséegrate this

the needles can only be uncorrelated beyond the horizontal

. v - _ _ A B A
correlation lengthé, ~ e "L. Definen=x/¢, as the coarse p (n)NeX;{(l_ebe )n— — efdgbne )
grained discrete spatial coordinate and recall that " b
=xtan(d) is the corresponding vertical distance from the B
curtain rod to the same point. The probability for the curtain ~ ghne® ex;< _ _EﬁAebneA), (12)
to have widthn factorizes in the independent needle approxi- b

mation as o . .
This distribution decays exponentially on both sides of the

most probable value and becomes sharp at the critical point,
Pw(n)=P(n) H [1-P(n")]. 3 e—0. We checked explicitly that the most probable and av-
n'>n erage coincide in this limit, and scale asymptotically with the
. ) ) ) o same logarithmic factor, as in E¢LO).
This equation can be rewritten into a derivative form
IV. LOGARITHMIC CORRECTIONS TO SCALING
ANALYSIS

Pu(n+1)—Py(n) P(h+1)—P(n)[1-P(n+1)]
Pu(n+1) P(n+1) ' o : . :
(4) The logarithmic factor in the independent needle approxi-
mation formula for the curtain width
The maximum of the distribution obeys the relation

_ €0
~ ~ f—g V| I —
P (F—1)= P (T) 5 W(e)=Ae "l n( E) (13

does not change the asymptotic exponent. It is still equal to
v| . However, the finite size scaling approach to this value is
1 1 very singular. A conventional FSS analysis involves the con-
SE—— (6) struction of approximants for the critical exponenby fit-
P(n) P(n—-1) ting the values ol at nearbye to a pure power-law form,

and can be written as
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W~ €~ *. This is equivalent to defining(e) as a derivative 1.6
and yields for the above logarithmic form 15
e dW 1 14 14 1=
=—— — =y + —F. o
X" Wde " in(egle) (14 g
1.2 |-
This function approaches; in a singular manner. In the 1.1k
interval 0.0k €/ €7<<0.3, X seems to converge convincingly 1k \*\K_
with a linear correction to scaling term to an effective expo- 1 | I
nent which is about 0.2 too large. One would have to go to 0‘90 0.04 0.08 0.12 0.16

extremely smalk’s to see the true convergence. The power-
law fit in Fig. 4 shows signs of this.

The two other curves in Fig. 4 show the FSS estimates for giG. 5. Finite size scaling exponenfor (X) the characteristic
the exponent; according to the form Eq13) with ep=1 or  active width,W~LZ, and for (+) the time to reach the stationary
€0=0.5. € is unknown, but likely of order one. Both curves statet~L? at the percolation threshold in the transfer matrix setup.
converge towards the conventional valye=1.734. This is  The data virtually coincide.
strong evidence for the presence of the logarithmic factor.

whether sitex—1 was active at the previous time-1
V. FINITE SIZE SCALING AT THE PERCOLATION and/or at this moment in time:, This setup requires screw-
THRESHOLD like boundary conditions. The forest fire runs under an angle.
In this new interpretation the active wall represents a fully
ctive initial configuration.
The energy gap in the spectrum of the time evolution
operator(transfer matrixis related to the curtain width in the
%Ilowing manner. Let|l) be the initial state of the master

daquation,|0> the absorbing state, ari be the transfer ma-
rix. The stochastic nature of the transfer matrix implies that

1/L

The logarithmic factor originates from the screening of
independent needles. It should not play a role in the FSS a
the percolation threshold itself, because thérediverges,
and the independent needle concept becomes meaningles

So the curtain width must scale 8¢~L* at p., if it is
really true that no independent new exponent is involved. T
confirm this we present in this section numerical data front : . . o
master equation type finite size scaling using exact enumerd€ disordered stai®) is a left eigenvector with eigenvalue
tion. We also performed Monte Carlo simulations but preferho=1. Definea, as the projection operator which returns

to present our master equation data since this method r@ne(zerg when sitex is active(inactive. The curtain width
quires a technical novelty. is associated with the probability distribution for si¢o be

A moving wall is inconvenient in simulations. The lattice active at timet but after that never again. This takes the form

is finite by necessity and the moving wall requires a much

bigger lattice than the one actually used by the process. This = _ A NEAte—td At

) . . . . . x,t)= lim (D|[(1—ay) T]F ‘a,Tl). 1
is a handicap in particular for master equation calculations () (DIL( o T] <D (15
where one evaluates the rate at which the stationary state is
being reached by letting time go to infinity at each lattice o _ _
sizeL. Those systems’ sizes are typically smaks20 in our ~ The operator (+a,)T has\,=1 as largest eigenvalue since
case, because phase space scales exponentially witbm-

pared to Monte Carlo simulations the master equation 23 _

method trades system size for numerical accuracy, and the [(1-2,T]|0)=[0) (16)
ability to perform detailed corrections to scaling analysis.

The accuracy of the two methods is typically comparableand because attaching a projection operatof tannot re-

except for specific issues, like the logarithmic factor in thegyit jn an eigenvalue larger than the largesTirLet(L,| be

previous sections, which require intrinsic large lattice sizes e corresponding left eigenvecttwhich can be evaluated
The solution to the moving wall problem is to distinguish numerically. Inserting this leads to

between the time and spatial directions of the dynamic pro-

cess,e, and éH, and the ones used in the master equation. . - .

There is no need for them to coincide. We choose a setup P(x,t) = (Lyla T [1)=(Laad N )N\ 1) ~exd —t/&],
where the master equation’s time and space directions are (17)
redirected in the following manner. Lines of constant time

are parallel togj—e, , such that the moving wall coincides with &=In(\,) and\, the next largest eigenvalue f

with thet=0 line. Lines of constant position are parallel to  This illustrates that the curtain width scales in the same

thex axis, which in the dynamic process represented lines omanner as the characteristic tiieneeded to reach the sta-

constant time. tionary state, when the latter is measured in this space-time
The following skewed dynamic rule implements this twisted coordinate system. Figure 5 shows the FSS estimates

space-time rotation. Consider a square space-time latticor the dynamic exponerttaccording toé,~L* andW~LZ

(Fig. 2 rotated over 45°). Each site in the master equatiomoth converge clearly to the DP dynamic exponentl.58.

time slicet is updated sequentially from right to left. The This confirms that no new independent curtain width expo-

probability for sitex at time 7 to be active depends on nent is present.

tF—>w
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VI. FINAL REMARKS t+1 requires that you yourself or at least one of your neigh-
The analvsis presented in this paper explains the anom bors is already sick at time Consider an initial condition
ysis p bap b at everybody is sick at time=0. A stationary local ob-

lous scaling of the width of the slanted curtain boundary in . .

erver will conclude that below the percolation threshold the
DP type processes. The needles screen each other, and thgt. . . - .

ifetime of the epidemic scales ds-e~"I. A moving ob-

leads to an extra logarithmic factor according to the indepen- o =
dent needle approximation. Our numerical data confirm th&€™Ve" concludes it diverges faster,tase " In(e/e).
validity of this assumption.
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