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Active width at a slanted active boundary in directed percolation
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The widthW of the active region around an active moving wall in a directed percolation process diverges at
the percolation thresholdpc as W.Ae2n i ln(e0 /e), with e5pc2p, e0 a constant, andn i51.734 the critical
exponent of the characteristic time needed to reach the stationary statej i;e2n i. The logarithmic factor arises
from screening the statistically independent needle shaped subclusters in the active region. Numerical data
confirm this scaling behavior.@S1063-651X~99!00509-7#

PACS number~s!: 64.60.Ht, 05.70.Ln, 68.35.Rh
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I. INTRODUCTION

Directed percolation~DP! has emerged as one of the g
neric absorbing state type dynamic processes. It descr
epidemic processes, e.g., forest fires and various type
surface catalysis processes@1–5#. Such processes include
so-called absorbing state, typically the vacuum, from wh
it cannot escape. The relevant tunable parameter is the pr
gation probabilityp. The system undergoes a phase transit
from the absorbing phase at smallp, where the stationary
state is the absorbing state, into an active stationary pha
largep, where the system refuses to die. The scaling prop
ties at DP dynamic phase transitions have been known
almost two decades, and it is now realized that DP criti
behavior is the generic universality class for dynamic
sorbing state type processes@1#.

At DP type critical points the equilibration timej i di-
verges. It scales asj i;j'

z compared to the spatial correla
tion length j' , with dynamic exponentz51.581 @6#. For
example, starting from a single seed, the survival probab
obeys the scaling form

Ps~e,t !5b2xsPs~b1/n'e,b2zt !, ~1!

with e5pc2p the distance from the critical point. This lead
to

Ps;eb expS 2t

j i
D , ~2!

with exponentb5xsn' . The exponential factor reflects tha
deep inside the absorbing phasePs decays exponentially in
time. The equilibration time diverges at the DP critical po
as j i;e2n i with z5n i /n' . At pc the survival probability
decays as a power law,Ps(t);t2d with d5xs /z5b/n i .

A recent direction of research in this topic concerns
scaling properties near boundaries@7–10#. Those studies ad
dress absorbing and reflective walls. The scaling proper
are modified by surface type critical exponents. In particu
the survival probability for a seed near the boundary ob
PRE 601063-651X/99/60~3!/2496~5!/$15.00
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the same scaling form as above, but with a new interf
critical exponentx, and therefore a modified value forb.

In this study we discuss the scaling properties near ac
boundaries. Consider a stationary active vertical wall in
system. All sites in the wall are alive. The critical expone
b is not an issue, because the system remains active nea
wall for all p. However, in the absorbing phase the cloud
active sites near the wall has a specific stationary state wi
which is expected to diverge asW;j';e2n'. Widths like
this diverge with bulk exponents.

Assume that this wall is slanted, with an arbitrary ang
uÞ90° with respect to the horizontal direction~see Fig. 1!.
In the space-time interpretation of the configurations,
wall moves with a constant velocity. It acts as a slan
active curtain rod. A curtain of active sites hangs down fro
it as illustrated in Fig. 1. Forp,pc the curtain has a finite
width l' and lengthl i5 l' tan(u).

In this study we address how the stationary state width
this slanted curtain scales near the DP critical point. Naiv
this seems a simple question. One would expect that
curtain width diverges with the same exponent as the eq
bration time scale,W;e2n i, i.e., with the same exponent a
the length of a curtain hanging down from a horizontal c
tain rod (u50) @15,11#. The latter is equivalent to asking fo
the survival probability in the setup without any walls whe
all sites are active in the initial state.

This expectation is based on the anisotropic scaling pr

FIG. 1. The curtain of active sites at the active slanted bounda
2496 © 1999 The American Physical Society
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erties. Consider a system with a rod at angleuÞ0. The hori-
zontal and vertical bulk lengths diverge with different exp
nents, asj i;j'

z . Therefore, a system atpc2p5e and wall
angleu is equivalent by renormalization to a system with
smaller wall angle u8 at e85b21/n'e with tan(u8)
.bz21 tan(u). The scaling properties ofW should not de-
pend on the angleu, since the rod renormalizes towards t
horizontal position. We should expect the same scaling
havior as atu50. However, a recent numerical study@11#
seems to contradict this.

Kwon et al. @11# studied a model with two absorbin
states. It undergoes a dynamic phase transition which
longs to the directed Ising~DI! universality class when the
two absorbing states are symmetric, and belongs to the
rected percolation universality class when a symmetry bre
ing field is introduced. They studied the interface dynam
of the active domain between two asymmetric absorb
states. As one absorbing state dominates over the other
interface is driven into the unpreferred absorbing region w
a constant velocity. Therefore they expected the width of
active domain to scale like the horizontal width of the act
curtain in the above setup for ordinary DP models. A sim
power-law fit of their data suggests that the active dom
width scales asW;e2x with x.2.00(5), which does not
agree with the DP exponentn i.1.734.

In this paper we address the same issue more directly.
insert a slanted active wall into the most basic model for D
the one studied originally by Kinzel and co-workers@12,13#,
see Sec. II. We find a similar anomalous value for the wi
exponent.W;e2x scales asx.1.95(5). In Sec. III we de-
velop a qualitative scaling theory. It predicts that the curt
width scales with the conventional exponentn i but with an
additional logarithmic factor asW.Ae2n i ln(e0 /e). In Sec.
IV we show that the numerical Monte Carlo data fit this for
well. In Sec. V we illustrate how DP type processes w
slanted walls can be studied in the master equation form
ism. Our finite size scaling~FSS! results, using exact numer
cal enumeration of the eigenvalue spectrum, show that apc
the width of the slanted curtain diverges asW;Lz with sys-
tem size. This confirms the absence of a new indepen
exponent. The logarithmic factor arises only in thee depen-
dence.

II. NUMERICAL RESULTS FOR THE CURTAIN WIDTH

Consider the square space-time lattice shown in Fig
All bonds run under 45°. The black~open! circles represen
the active~inactive! sites. Time evolves from top to bottom

FIG. 2. Lattice structure near the active boundary.
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in half units t→t1 1
2 . Bonds between nearest neighbor sit

at t andt→t1 1
2 are being created with probabilityp but only

if the upper site is active. Each bond activates the lower s
Kinzel studied this model in detail with master equation ty
FSS in the early 1980s@12#. The critical exponents and th
location of the DP transition are known quite accurately. F
example, the latest series expansion results put the DP p
transition atpc'0.6447@6#.

We modify the boundary conditions in this model to a
commodate an active wall. The lattice is semi-infinite, bou
to the left by the wall, which runs away underu545° as
shown in Fig. 2. 45° is its natural angle for the curtain r
for this specific lattice. We can restrict ourselves to this an
because the scaling properties of the curtain width should
depend on the angle according to the anisotropic scaling
gument outlined above. Moreover, the angle is a continu
parameter in the model by Kwonet al. @11# and their results
show no angle dependence.

We perform Monte Carlo simulations with as initial con
figuration an active wall in an inactive bulk. The horizont
curtain width is defined as the distance of the last active
from the rod in each time slice. Forp,pc , the width grows
initially approximately linear in time, until it saturates at th
stationary state value which varies withe5pc2p. Figure 3
shows the active width versuse on a logarithmic scale. The
line is quite linear over the two decades shown. The slop
clearly distinct from the expected valuen i'1.734 and close
to the value found by Kwonet al. @11#. In Fig. 4 we perform

FIG. 3. Log plot of active width versuspc2p from straight
Monte Carlo simulations on unlimited system sizes. The solid l
represents the data. The dashed straight lines of slopes22 and
21.734 are guides to the eyes.

FIG. 4. Estimates for the active width exponentx. In fit ~a!, W is
assumed to scale asW;e2x, in ~b!, asW;e2x ln e, and in~c!, as
W;e2x(ln e1ln 2).
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a more careful FSS analysis of the same data. We fit
numerical data from two nearby points,e25A2e1, to the
form W.ae2x and plotx as a function ofe, the exponentx
appears to be around 1.95. This fit is remarkably stable,
shows virtually no power-law type corrections to scalin
Taken out of context it is strongly suggestive of a new ind
pendent critical exponent. The other curves in Fig. 4 relat
the FSS analysis assuming an additional logarithmic fa
as discussed in the next two sections.

III. INDEPENDENT CLUSTER APPROXIMATION

Figure 1 shows a typical curtain configuration in a Mon
Carlo simulation at ap just below the percolation threshol
pc . The most striking features are the needles in the curt
Isolated clusters are expected to be needlelike. The cor
tion length in the time direction diverges faster than in t
spatial direction, asj i;j'

z . Therefore, active clusters~when
grown from a single seed! become needle shaped near t
percolation threshold. Figure 1 gives the impression t
close topc , the curtain consists of a set of weakly interacti
needle shaped clusters when viewed from length sc
larger thanj' .

In this section we pursue the implications of the assum
tion that such needles are completely uncorrelated. In
approximation the probability that the curtain extends ove
horizontal distancel is given by the probability that a need
longer thant5 l tan(u) hangs down from the curtain ro
vertically above that site. LetP be that probability. It must
have the same form as the survival probability from a sin
seed, Eq.~2!. The actual value of the exponentb turns out to
be irrelevant in this section, but it must be identical to t
single seed value, according to a time reversal symm
argument@14#.

The spatial coordinate needs to be coarse grained, bec
the needles can only be uncorrelated beyond the horizo
correlation lengthj';e2n'. Definen5x/j' as the coarse
grained discrete spatial coordinate and recall that
5x tan(u) is the corresponding vertical distance from t
curtain rod to the same point. The probability for the curta
to have widthn factorizes in the independent needle appro
mation as

Pw~n!5P~n! )
n8.n

@12P~n8!#. ~3!

This equation can be rewritten into a derivative form

Pw~n11!2Pw~n!

Pw~n11!
5

P~n11!2P~n!@12P~n11!#

P~n11!
.

~4!

The maximum of the distribution obeys the relation

Pw~ ñ21!5Pw~ ñ! ~5!

and can be written as

1

P~ ñ!
2

1

P~ ñ21!
51. ~6!
e
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Assume thatP has the same asymptotic form as the sin
seed survival probability, in Eq.~2!, and that the maximum
of the distribution occurs in this range ofn. The transforma-
tion to the coarse-grainedn5x/j';xen' variable changes
the critical exponent inside the exponential factor

P.Bebe2bneD
, ~7!

with D5n i2n' , andb;tan(u). Inserting this form into Eq.
~6! leads to

12e2beD
5Bebe2bñeD

~8!

and, after expanding the exponential on the left hand side

bñueuD. lnS B

b D1~b2D!ln~e!. ~9!

In original units this reads

W̃.Ae2n i lnS e0

e D . ~10!

The characteristic probability depends on the wall angle
e0;1/tan(u). The most probable widthW̃ scales with the
expected exponentn i but contains an additional logarithmi
factor.

Asymptotically the most probable and the average wid
coincide. Equation~4! can be approximated in the continuu
limit as

1

Pw

dPw

dn
512

P~n!

P~n11!
1P~n!. ~11!

Close topc and for largen, whereP obeys Eq.~7!, we can
integrate this

Pw~n!;expS ~12ebeD
!n2

B

b
eb2De2bneDD

;ebneD
expS 2

B

b
eb2De2bneDD . ~12!

This distribution decays exponentially on both sides of
most probable value and becomes sharp at the critical po
e→0. We checked explicitly that the most probable and a
erage coincide in this limit, and scale asymptotically with t
same logarithmic factor, as in Eq.~10!.

IV. LOGARITHMIC CORRECTIONS TO SCALING
ANALYSIS

The logarithmic factor in the independent needle appro
mation formula for the curtain width

W~e!.Ae2n i lnS e0

e D ~13!

does not change the asymptotic exponent. It is still equa
n i . However, the finite size scaling approach to this value
very singular. A conventional FSS analysis involves the c
struction of approximants for the critical exponentx by fit-
ting the values ofW at nearbye to a pure power-law form,
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W;e2x. This is equivalent to definingx(e) as a derivative
and yields for the above logarithmic form

x52
e

W

dW

de
5n i1

1

ln~e0 /e!
. ~14!

This function approachesn i in a singular manner. In the
interval 0.01,e/e0,0.3, x seems to converge convincing
with a linear correction to scaling term to an effective exp
nent which is about 0.2 too large. One would have to go
extremely smalle ’s to see the true convergence. The pow
law fit in Fig. 4 shows signs of this.

The two other curves in Fig. 4 show the FSS estimates
the exponentn i according to the form Eq.~13! with e051 or
e050.5. e0 is unknown, but likely of order one. Both curve
converge towards the conventional valuen i51.734. This is
strong evidence for the presence of the logarithmic facto

V. FINITE SIZE SCALING AT THE PERCOLATION
THRESHOLD

The logarithmic factor originates from the screening
independent needles. It should not play a role in the FS
the percolation threshold itself, because therej' diverges,
and the independent needle concept becomes meaningl

So the curtain width must scale asW;Lz at pc , if it is
really true that no independent new exponent is involved.
confirm this we present in this section numerical data fr
master equation type finite size scaling using exact enum
tion. We also performed Monte Carlo simulations but pre
to present our master equation data since this method
quires a technical novelty.

A moving wall is inconvenient in simulations. The lattic
is finite by necessity and the moving wall requires a mu
bigger lattice than the one actually used by the process.
is a handicap in particular for master equation calculati
where one evaluates the rate at which the stationary sta
being reached by letting time go to infinity at each latti
sizeL. Those systems’ sizes are typically small,L<20 in our
case, because phase space scales exponentially withL. Com-
pared to Monte Carlo simulations the master equat
method trades system size for numerical accuracy, and
ability to perform detailed corrections to scaling analys
The accuracy of the two methods is typically comparab
except for specific issues, like the logarithmic factor in t
previous sections, which require intrinsic large lattice siz

The solution to the moving wall problem is to distinguis
between the time and spatial directions of the dynamic p
cess,ê' and êi , and the ones used in the master equati
There is no need for them to coincide. We choose a se
where the master equation’s time and space directions
redirected in the following manner. Lines of constant tim
are parallel toêi2ê' , such that the moving wall coincide
with the t50 line. Lines of constant position are parallel
thex axis, which in the dynamic process represented line
constant time.

The following skewed dynamic rule implements th
space-time rotation. Consider a square space-time la
~Fig. 2 rotated over 45°). Each site in the master equa
time slice t is updated sequentially from right to left. Th
probability for site x at time t to be active depends o
-
o
-

r

f
at

s.

o

a-
r
e-

h
is
s
is

n
he
.
,

.

-
.
p
re

of

ce
n

whether sitex21 was active at the previous timet21
and/or at this moment in time,t. This setup requires screw
like boundary conditions. The forest fire runs under an an
In this new interpretation the active wall represents a fu
active initial configuration.

The energy gap in the spectrum of the time evoluti
operator~transfer matrix! is related to the curtain width in the
following manner. LetuI & be the initial state of the maste
equation,u0& the absorbing state, andT̂ be the transfer ma-
trix. The stochastic nature of the transfer matrix implies th
the disordered stateuD& is a left eigenvector with eigenvalu
l051. Define âx as the projection operator which return
one~zero! when sitex is active~inactive!. The curtain width
is associated with the probability distribution for sitex to be
active at timet but after that never again. This takes the for

P~x,t !5 lim
tF→`

^Du@~12âx!T̂# tF2tâxT̂
tuI &. ~15!

The operator (12âx)T̂ hasl051 as largest eigenvalue sinc

@~12âx!T̂#u0&5u0& ~16!

and because attaching a projection operator toT̂ cannot re-
sult in an eigenvalue larger than the largest inT̂. Let ^Lxu be
the corresponding left eigenvector~which can be evaluated
numerically!. Inserting this leads to

P~x,t !5^LxuâxT̂
tuI &.^Lxuâxul1&l1

t ^l1uI &;exp@2t/j t#,
~17!

with j t5 ln(l1) andl1 the next largest eigenvalue ofT̂.
This illustrates that the curtain width scales in the sa

manner as the characteristic timej t needed to reach the sta
tionary state, when the latter is measured in this space-t
twisted coordinate system. Figure 5 shows the FSS estim
for the dynamic exponentz according toj t;Lz andW;Lz.
Both converge clearly to the DP dynamic exponentz51.58.
This confirms that no new independent curtain width exp
nent is present.

FIG. 5. Finite size scaling exponentz for (3) the characteristic
active width,W;Lz, and for (1) the time to reach the stationar
state,t;Lz, at the percolation threshold in the transfer matrix set
The data virtually coincide.
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VI. FINAL REMARKS

The analysis presented in this paper explains the ano
lous scaling of the width of the slanted curtain boundary
DP type processes. The needles screen each other, an
leads to an extra logarithmic factor according to the indep
dent needle approximation. Our numerical data confirm
validity of this assumption.

The same mechanism must apply to other dynamic p
cesses, like directed Ising type absorbing state dynamics,
also to other quantities. Consider the following example.
rected percolation describes epidemic growth processes w
out immunization, where the probability to be sick at tim
an
a-

that
-
e

-
nd
-
th-

t11 requires that you yourself or at least one of your neig
bors is already sick at timet. Consider an initial condition
that everybody is sick at timet50. A stationary local ob-
server will conclude that below the percolation threshold
lifetime of the epidemic scales ast;e2n i. A moving ob-
server concludes it diverges faster, ast;e2n i ln(e0 /e).
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