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Recently Jeong and KiifPhys. Rev. B66, 051605(2002 ] investigated the scaling properties of equilibrium
self-flattening surfaces subject to a restricted curvature constraint. In one dimétiSjoithey found numeri-
cally that the stationary roughness exponent0.561 and the window exponeidt=0.423. We present an
analytic argument for general self-flattening surface®idimensions, leading tae=Day/(D + ag) and &
=D/(D+ «ag), Whereay is the roughness exponent for equilibrium surfaces without the self-flattening mecha-
nism. In case of surfaces subject to a restricted curvature constraint, it is known exactyy @@ in 1D,
which leads tax=3/5 andé=2/5. Small discrepancies between our analytic values and their numerical values
may be attributed to finite size effects.
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Fluctuation properties of equilibrium surfaces have been More recently Jeong and KirJK) [7] investigated the
studied extensively for the last few decaddg. Surface effect of the self-flattening mechanism on the so-called re-
roughness is well documented and classified into a few unistricted curvaturédRC) model[8]. The RC model is known
versality classes. The Edwards-Wilkins@&W) class is ge- to have no local surface tension term={0) and its domi-
neric and robust for equilibrium surfaces with local surfacenant suppression term is of the fourth ord&#h). Accord-
tension[2]. The EW surfaces can be described by the coningly, the ordinary RC model has the scaling exponents
tinuum Langevin-type equation =4 anda=(4—D)/2. Using Monte Carlo simulations, JK

found for the one-dimensional self-flattening RC model that
ah(r,t)

pm = —vV2h(r,H)+ (T 1), (1) z=1.695), a=0.56%5), and 8=0.3325). (3

Again, the self-flattening mechanism changes the scaling
f properties of the RC surfaces.
JK also studied the height-height correlation function
The surface fluctuation widtW(L ,t), defined as the stan- G(r), defined as the average of the'square of height differ-
L s . ences at two sites separated by a distancehey found an
dard deviation of the surface heightr,t) starting from a o5 ength scalet (window size where the correlation
flat surface of lateral sizé, satisfies the dynamic scaling f,nction starts to saturate. The correlation function in the

relation steady state satisfies the scaling relation

whereh(r ,t) is the height at site and timet, 7(r,t) is an
uncorrelated Gaussian noise, ancepresents the strength o
local surface tension.

WL D=L L), @ G(r)=L2g(r/¢) with &~L? (@)

v~vk)1(%r((agiej;:)alflgrgxfinlct[fgg.x)—>const forx>1 andf(x) Wherg the scaling functiog(x) —const forx>1 and f(x)

The EW universality class is characterized by the dy-~X>* ~“(a’'=alé) for x<1. This type of a crossover scal-
namic exponentz=2 and the roughness exponemt=(2  iNg, due to the existence of a smaller length scale{)
—D)/2 (D: substrate dimensionin the absence of local compared to the system size, has been previously identified
surface tensioni=0), higher-order local suppression terms in the so-called even-visiting random walkVRW) models
like V2™h (m=2,3, . ..) become relevant to determine the (Se€ Eq.(29) in Ref.[9]). In fact, the EVRW model is inti-
scaling properties of surface roughness. In this case, the scaltately related to the EW-type surface model with the self-
ing exponents becorme=2m and a=(2m—D)/2. flattening mechanisni4]. JK's numerical estimates for the

Recently, Kim, Yoon, and Parfd] introduced a global- €Xponents are
type suppressiofself-flattening mechanism which reduces
growing (eroding probability only at the globally highest 0~0.423, «~0.868, and a'=alé~1.33. (9
(lowesd point on the surface. They found that this global-
type suppression changes the scaling properties of the EW this Comment, we present an analytic argument that pre-
surfaces:z~3/2 anda=1/3 in one dimensionlD) andz  dicts the values of the scaling exponentand § associated
~5/2 ande=0(log) in 2D. The one-dimensional roughnesswith the stationary properties of surface fluctuations. We
exponenta=1/3 characterizing the stationary surface fluc-consider a general equilibrium surface growth model, the
tuations could be derived exactly by mapping the surfacestationary roughness exponent of which is known exactly as
evolution model onto the static self-attracting random walka. The partition function for equilibrium self-flattening sur-
model[5,6]. faces of lateral sizé& can be written a$4]
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ZL(K):; e KH(O) (6) ZL(K):ZL(O)f dH(,y_He_aLD/HD/ 0) e KH
0

where the summation is over all possible height configura- =ZL(O)KJ dHeKH-aLP/HPe (11)
tions C subject to a given constraing is a temperaturelike 0

parameter, antt (C) is the height excursion widttthe glo- o _ i
bally maximum height minus the globally minimum height Th|s_|nf[egral can be evaluat_ed by the sgdd_le point method in
for a given configuratiorC. Global suppression for self- the limit of largeL. The maximum contribution comes from
flattening dynamics is simply the metropolis-type evolution 5
algorithm with this partition function to reach the equilib- H*~(L_
rium [4]. For the EW surfaces, one can take the surface K
height configurations subject to the restricted solid-on-solid

constraint, where the step heights are allowed to take finitghe stationary surface fluctuation width should be propor-
values. In the case of the RC surfaces, the local curvaturgonal to this typical height excursion width, so we predict

ag/(D+ag)

(12

V2h is restricted to be finite. that
One can decompose the configurational space into sectors
with a constant excursion widtH. Then, the partition func- W~K ~@0/(P+ag)_a (13

tion can be rewritten as

with =D aqy/(D + «y).

The length scalef arising naturally in our argument
should be proportional to the window siZein the correla-
tion function. Inside this length scale, the surface does not
feel the global self-flattening suppression. As our length

where o (H)dH is the number of configurations with the scale¢ is explicitly related to the wall distance in E€L0),
height excursion width betweeH and H+dH. One can e can also predict that

define ), (H) as the number of configurations with the
height excursion width less that as 0* ~E~L2 (14)

ZU(K) = f:deL<H>e-K“, @

Hoo with 6=D/(D + ay).
QL(H):L dH w(H"), ® In summary, for the general self-flattening equilibrium
surfaces, we predict that

and it is clear thaf)| («)=2Z,(K=0). Da, D
We estimate(), (H) as follows. Consider a flat surface a

between two walls separated by a distahtcand parallel to

the surface. The surface starts to fluctuate, following its or- _ ) _

dinary evolution dynamics. Whenever the surface hits eithefVhereag is the stationary roughness exponent for the equi-

of the two walls, the number of possible configurations in-liPrium surfaces without the self-flattening mechanism.

side the walls reduces by a constant factor, compared to the FOr the EW surfacesyy=1/2 in 1D, which lead tox
no-wall case KH=w=). This entropic reduction can be =1/3ands=2/3. These results agree with those by the other

roughly translated as analytic (healing time arguments[9,10] and those by the
numerical simulation$11]. For the RC surfacea,=3/2 in

1D, which lead toa=3/5 and5=2/5. The short range be-
havior governing the value ot should be identical to the
ordinary RC model, so we also expect that 1. These re-
whereN, is the typical number of contacts between the wallssults have small discrepancies from the JK’s numerical re-
and the surface in the stationary state anis a positive  sults in Egs(3) and(5). We believe that this may be due to
constant of0(1). Inthis estimate, the entropic reduction due rather small sizes used in their numerical simulations. The
to each contact is assumed to be uncorrelated. TypicallfRC surfaces havery=(4—D)/2 in D dimensions, sox

o
“D+ay,’’ Dtag and a’=5=ap, (19

Q (H)=Q (»)exd —aN], 9

there will beO(1) contacts over a block of lateral size =~ =D(4—D)/(4+D) andé=2D/(4+D). It may be interest-
within which the stationary surface widily(¢)~ €20 is of  ing to check these predictions for the RC self-flattening sur-
the same order of magnitude as the wall distarcée., faces inD=2 and 3.

At the upper critical dimensionsD(=2 for the EW and
D=4 for the RC surfacgsthe surface roughness becomes
logarithmic (¢g=0) and the self-flattening mechanism in-
duces only corrections to scaling in the surface fluctuations.
With the above estimates, the partition function for nonzeroThe dominant correction seems to be independent of system
K becomes sizeL [4], but its functional dependence dfis not fully

N~ (L/€)P~LP/HP a0, (10)
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explored. In higher dimensions, the EMM$2) and the RC  nism. It would be very interesting to find such an equation
(D>4) surfaces are asymptotically flaxd<<0). The self- which contains a global coupling term in space.

flattening mechanism induces power-law-type corrections to ) o )
scaling as given in Eq15). We thank J.M. Kim and H.-C. Jeong for bringing their

We could not present any analytic explanation for the dy-Work [7] to our attention. This work was supported by Grant
namic exponentg and 8. This may be due to the lack of a No. 2000-2-11200-002-3 from the Basic Research Program

continuum-type equation to govern the self-flattening mechaof KOSEF.
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