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Comment on ‘‘Restricted curvature model with suppression of extremal height’’
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~Received 16 March 2003; published 21 November 2003!

Recently Jeong and Kim@Phys. Rev. E66, 051605~2002!# investigated the scaling properties of equilibrium
self-flattening surfaces subject to a restricted curvature constraint. In one dimension~1D!, they found numeri-
cally that the stationary roughness exponenta'0.561 and the window exponentd'0.423. We present an
analytic argument for general self-flattening surfaces inD dimensions, leading toa5Da0 /(D1a0) and d
5D/(D1a0), wherea0 is the roughness exponent for equilibrium surfaces without the self-flattening mecha-
nism. In case of surfaces subject to a restricted curvature constraint, it is known exactly thata053/2 in 1D,
which leads toa53/5 andd52/5. Small discrepancies between our analytic values and their numerical values
may be attributed to finite size effects.
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Fluctuation properties of equilibrium surfaces have be
studied extensively for the last few decades@1#. Surface
roughness is well documented and classified into a few
versality classes. The Edwards-Wilkinson~EW! class is ge-
neric and robust for equilibrium surfaces with local surfa
tension@2#. The EW surfaces can be described by the c
tinuum Langevin-type equation

]h~rW,t !

]t
52n¹2h~rW,t !1h~rW,t !, ~1!

whereh(rW,t) is the height at siterW and timet, h(rW,t) is an
uncorrelated Gaussian noise, andn represents the strength o
local surface tension.

The surface fluctuation widthW(L,t), defined as the stan
dard deviation of the surface heighth(rW,t) starting from a
flat surface of lateral sizeL, satisfies the dynamic scalin
relation

W~L,t !5La f ~ t/Lz!, ~2!

where the scaling functionf (x)→const forx@1 and f (x)
;xb (b5a/z) for x!1 @1,3#.

The EW universality class is characterized by the d
namic exponentz52 and the roughness exponenta5(2
2D)/2 (D: substrate dimension!. In the absence of loca
surface tension (n50), higher-order local suppression term
like ¹2mh (m52,3, . . . ) become relevant to determine th
scaling properties of surface roughness. In this case, the
ing exponents becomez52m anda5(2m2D)/2.

Recently, Kim, Yoon, and Park@4# introduced a global-
type suppression~self-flattening! mechanism which reduce
growing ~eroding! probability only at the globally highes
~lowest! point on the surface. They found that this globa
type suppression changes the scaling properties of the
surfaces:z'3/2 anda51/3 in one dimension~1D! and z
'5/2 anda50(log) in 2D. The one-dimensional roughne
exponenta51/3 characterizing the stationary surface flu
tuations could be derived exactly by mapping the surf
evolution model onto the static self-attracting random w
model @5,6#.
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More recently Jeong and Kim~JK! @7# investigated the
effect of the self-flattening mechanism on the so-called
stricted curvature~RC! model @8#. The RC model is known
to have no local surface tension term (n50) and its domi-
nant suppression term is of the fourth order (¹4h). Accord-
ingly, the ordinary RC model has the scaling exponentz
54 anda5(42D)/2. Using Monte Carlo simulations, JK
found for the one-dimensional self-flattening RC model th

z51.69~5!, a50.561~5!, and b50.332~5!. ~3!

Again, the self-flattening mechanism changes the sca
properties of the RC surfaces.

JK also studied the height-height correlation functi
G(r ), defined as the average of the square of height dif
ences at two sites separated by a distancer. They found an
extra length scalej ~window size! where the correlation
function starts to saturate. The correlation function in t
steady state satisfies the scaling relation

G~r !5L2ag~r /j! with j;Ld, ~4!

where the scaling functiong(x)→const forx@1 and f (x)
;x2a82k (a85a/d) for x!1. This type of a crossover sca
ing, due to the existence of a smaller length scale (d,1)
compared to the system size, has been previously ident
in the so-called even-visiting random walk~EVRW! models
~see Eq.~29! in Ref. @9#!. In fact, the EVRW model is inti-
mately related to the EW-type surface model with the se
flattening mechanism@4#. JK’s numerical estimates for th
exponents are

d'0.423, k'0.868, and a85a/d'1.33. ~5!

In this Comment, we present an analytic argument that p
dicts the values of the scaling exponentsa andd associated
with the stationary properties of surface fluctuations. W
consider a general equilibrium surface growth model,
stationary roughness exponent of which is known exactly
a0. The partition function for equilibrium self-flattening su
faces of lateral sizeL can be written as@4#
©2003 The American Physical Society01-1
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ZL~K !5(C
e2KH(C), ~6!

where the summation is over all possible height configu
tions C subject to a given constraint,K is a temperaturelike
parameter, andH(C) is the height excursion width~the glo-
bally maximum height minus the globally minimum heigh!
for a given configurationC. Global suppression for self
flattening dynamics is simply the metropolis-type evoluti
algorithm with this partition function to reach the equilib
rium @4#. For the EW surfaces, one can take the surf
height configurations subject to the restricted solid-on-so
constraint, where the step heights are allowed to take fi
values. In the case of the RC surfaces, the local curva
¹2h is restricted to be finite.

One can decompose the configurational space into se
with a constant excursion widthH. Then, the partition func-
tion can be rewritten as

ZL~K !5E
0

`

dHvL~H !e2KH, ~7!

where vL(H)dH is the number of configurations with th
height excursion width betweenH and H1dH. One can
define VL(H) as the number of configurations with th
height excursion width less thanH as

VL~H !5E
0

H

dH8v~H8!, ~8!

and it is clear thatVL(`)5ZL(K50).
We estimateVL(H) as follows. Consider a flat surfac

between two walls separated by a distanceH and parallel to
the surface. The surface starts to fluctuate, following its
dinary evolution dynamics. Whenever the surface hits eit
of the two walls, the number of possible configurations
side the walls reduces by a constant factor, compared to
no-wall case (H5`). This entropic reduction can b
roughly translated as

VL~H !'VL~`!exp@2aNc#, ~9!

whereNc is the typical number of contacts between the wa
and the surface in the stationary state anda is a positive
constant ofO(1). In this estimate, the entropic reduction du
to each contact is assumed to be uncorrelated. Typic
there will beO(1) contacts over a block of lateral size,,
within which the stationary surface widthW0(,);,a0 is of
the same order of magnitude as the wall distanceH, i.e.,

Nc;~L/, !D;LD/HD/a0. ~10!

With the above estimates, the partition function for nonz
K becomes
05360
-

e
d
te
re

rs

r-
r

-
he

s

ly,

o

ZL~K !5ZL~0!E
0

`

dHS ]

]H
e2aLD/HD/a0De2KH,

5ZL~0!KE
0

`

dHe2KH2aLD/HD/a0. ~11!

This integral can be evaluated by the saddle point metho
the limit of largeL. The maximum contribution comes from

H* ;S LD

K D a0 /(D1a0)

. ~12!

The stationary surface fluctuation width should be prop
tional to this typical height excursion width, so we pred
that

W;K2a0 /(D1a0)La, ~13!

with a5Da0 /(D1a0).
The length scale, arising naturally in our argumen

should be proportional to the window sizej in the correla-
tion function. Inside this length scale, the surface does
feel the global self-flattening suppression. As our leng
scale, is explicitly related to the wall distance in Eq.~10!,
we can also predict that

,* ;j;Ld, ~14!

with d5D/(D1a0).
In summary, for the general self-flattening equilibriu

surfaces, we predict that

a5
Da0

D1a0
,d5

D

D1a0
, and a85

a

d
5a0 , ~15!

wherea0 is the stationary roughness exponent for the eq
librium surfaces without the self-flattening mechanism.

For the EW surfacesa051/2 in 1D, which lead toa
51/3 andd52/3. These results agree with those by the ot
analytic ~healing time! arguments@9,10# and those by the
numerical simulations@11#. For the RC surfacesa053/2 in
1D, which lead toa53/5 andd52/5. The short range be
havior governing the value ofk should be identical to the
ordinary RC model, so we also expect thatk51. These re-
sults have small discrepancies from the JK’s numerical
sults in Eqs.~3! and~5!. We believe that this may be due t
rather small sizes used in their numerical simulations. T
RC surfaces havea05(42D)/2 in D dimensions, soa
5D(42D)/(41D) andd52D/(41D). It may be interest-
ing to check these predictions for the RC self-flattening s
faces inD52 and 3.

At the upper critical dimensions (D52 for the EW and
D54 for the RC surfaces!, the surface roughness becom
logarithmic (a050) and the self-flattening mechanism in
duces only corrections to scaling in the surface fluctuatio
The dominant correction seems to be independent of sys
size L @4#, but its functional dependence onK is not fully
1-2
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explored. In higher dimensions, the EW (D.2) and the RC
(D.4) surfaces are asymptotically flat (a0,0). The self-
flattening mechanism induces power-law-type correction
scaling as given in Eq.~15!.

We could not present any analytic explanation for the
namic exponentsz andb. This may be due to the lack of
continuum-type equation to govern the self-flattening mec
e

nts
r,
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nism. It would be very interesting to find such an equati
which contains a global coupling term in space.

We thank J.M. Kim and H.-C. Jeong for bringing the
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