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We derive the exact values of the universal amplitudes associated with the finite-size-scaling be-
havior of the free energy and interfacial free energies of the Potts model on a torus, by means of the
extended-scaling method. These amplitudes vary continuously with the value of the aspect ratio of
the torus. Our results make it possible to apply the type of finite-size-scaling techniques that are
standard in the context of transfer-matrix calculations to Monte Carlo simulations, and thus
enhance the effectiveness of these simulations in establishing the universality class of a phase transi-

tion.

I. INTRODUCTION

In this paper we derive the exact values of the univer-
sal amplitudes associated with the finite-size-scaling be-
havior of the free energy and interfacial free energies of
the Potts model on a torus. We use the so-called
extended-scaling method.”?> On a torus these universal
amplitudes are different from the recently obtained values
on semi-infinite strips (cylinders).3~® Our results, sum-
marized in Tables I-1IV will considerably enhance the
effectiveness of Monte Carlo simulations in numerical
studies of two-dimensional critical phenomena.’

Finite-size scaling plays an important role in numerical
investigations of two-dimensional (2D) critical phenome-
na. The most successful applications have been for two-
dimensional models on semi-infinite lattices (infinitely
long cylinders) using the transfer matrix formalism.®°
The interfacial free energies are defined as the difference
between the free energy per unit length for different
boundary conditions. For example, in the Ising model
the free energy of a Bloch wall is given by the difference
in free energy between a system with periodic and an-
tiperiodic boundary conditions. The interfacial (Bloch
wall) free energy 7 is finite in the ordered phase, vanishes
in the disordered phase, and scales at criticality as

nL)~A/L , (1.1

with L the circumference of the cylinder. The amplitudes
A are universal. They characterize the universality class
of the phase transition. This is an elementary conse-
quence of the scaling postulate.® However, it was not
realized until quite recently that the values of the A’s are
simply related to the critical exponents; 4 =2mx, with x
the critical dimension of the operator conjugate to the in-
terface imposed by the boundary condition. For exam-
ple, for cyclic boundary conditions (antiperiodic bound-
ary conditions in the Ising model) x is equal to the mag-
netic critical exponent x =xy. The simplest derivation
of these relations between universal amplitudes and criti-
cal exponents is the one using conformal invariance.’ In
Sec. III we derive them by the extended-scaling method,
which is more microscopic in nature. So now you simply
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look for the point where 7 scales with L to determine the
location of a critical point, and the value of 4 then im-
mediately tells you to which universality class this phase
transition belongs.

Our aim is to extend this type of finite-size-scaling
method to Monte Carlo (MC) simulations. In MC simu-
lations the lattice is not semi-infinite, but finite-by-finite; a
torus instead of a cylinder. On the torus the interfacial
free energies scale at criticality similar as on the cylinder,

n~A(s)/L , (1.2)

with L =L, =sL, the size of the torus, and s =L, /L,
the aspect ratio. However, the values of the amplitudes
A (s) are different from those on the cylinder. For exam-
ple, for the Ising model we will show that the universal
amplitude of the Bloch wall free energy is equal to
A(1)=In(14234)=0.9865 at s =1 (see Sec. V), instead
of A(0)=m/4 at s =0 (the infinite-cylinder limit). A (s)
varies continuously with the aspect ratio, see Fig. 1. Be-
fore we can implement our MC version of the finite-size-
scaling method we must determine the exact values of
these universal amplitudes A (s) for each universality
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FIG. 1. The universal amplitude of the g-state Potts model,
ch", as a function of the aspect ratio s for ¢ =2, 3, and 4. In
the s —0 limit A" approaches the value of the universal ampli-
tude on a cylinder, i.e., 27xy.
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class. In this paper we derive these values for the Potts
model universality class.

The disadvantage of transfer-matrix calculations is the
limitation to relatively small system sizes. For example,
on a typical present-day computer, the cylinder size L is
bounded to less than L =12 in systems with g =3 states
per site or per bond. The required computer memory
grows exponentially with L. Therefore, the transfer ma-
trix method is not an adequate tool to study systems with
g >4, nor systems that require a large lattice to exhibit
the structure of their ordered phases properly, e.g., in-
commensurate phases'® or commensurate phases with a
large unit cell. Monte Carlo simulations are more suited
for these types of problems, because simulations on large
lattices are relatively easy.

Knowledge about the values of the universal finite-
size-scaling amplitudes A (s) is more essential in MC
simulations than in transfer matrix calculations. In the
transfer matrix method the free energies can be obtained
numerically with machine accuracy. In MC simulations,
however, configuration-averaged quantities like order pa-
rameters, specific heats, and interfacial free energies have
a typical accuracy not better than 0.1%, due to statistical
fluctuations. To identify the universality class of a phase
transition from a finite-size-scaling analysis of, e.g., the
specific heat,

cL)~BL>" ", (1.3)

you need to fit two parameters: the amplitude B, which is
not universal, and the thermal critical exponent y which
is universal (you need to subtract a regular background
term as well). D =2 is the dimension of the system. This
remains true also for interfacial free energies as long as
the values of their universal amplitudes are unknown.
Then Eq. (1.2) does not yield enough information to iden-
tify the universality class of the transition, and you need
to perform a two-parameter fit on the first derivative of
with respect to temperature, d7n/dT ~ A (s)LyT‘l, or
magnetic field.

So the results of this paper enhance the effectiveness of
MC simulations. MC simulations become a more accu-
rate numerical tool to identify the universality class of a
phase transition. From now on we only need to perform
a one-parameter fit on the finite-size-scaling behavior of
1, Eq. (1.2). Details about our MC method, such as the
algorithm that we use to calculate the universal ampli-
tudes of interfacial free energies, will be presented else-
where, together with numerical results for the Ising and
three-state Potts model. We find that this new method
works very well.

The outline of this paper is as follows. In Sec. II we
classify all possible line defects for the Potts model on a
torus that can be generated by a gauge invariant seam.
All these line defects can be characterized by two permu-
tation operators G and G on, respectively, the meridian
and the longitudinal seam of the torus. Tables I-1V give
a complete list of these line defects for ¢ =2, 3, and 4.

In this paper we use the so-called extended-scaling
method to determine the exact values of the universal
amplitudes of the free energy of the Potts model for all
these seam-type boundary conditions. In the past, ex-

tended scaling has already yielded the exact values of
many of critical exponents of the Potts model."? In this
method one aims to rewrite the Potts model partition
function in terms of the F-model partition function via a
sequence of intermediate representations. These map-
pings are well established by now,'""!"? but need to be
generalized to our more general boundary conditions.
We need to find the exact boundary conditions in the F
model that correspond to the boundary conditions in the
Potts model. The critical phase of the F model flows un-
der renormalization to the Gaussian model.!? Therefore,
the leading finite-size-scaling behavior in the F model is
identical to that in the Gaussian model with correspond-
ing boundary conditions. In other words the F model is
equivalent to a 2D Coulomb gas on a lattice, where
charges that differ by a multiple of 4 are equivalent,' and
interact at large distances in the same manner as in a con-
ventional 2D continuum Coulomb gas. For the Potts
model on a cylinder this Coulomb gas has condenser-type
boundary conditions with surface charges.'>

First, in Sec. III we discuss the cylinder geometry.
This serves as an introduction of the more intricate torus
geometry. We give a microscepic derivation of the
universal finite-size-scaling amplitudes on a cylinder.
Most of them were known earlier from conformal invari-
ance’™® and some also from the extended-scaling
method.’

In Sec. IV we obtain our general formula for the free
energy of the Potts model on a torus, Egs. (4.8) and (4.9).
Our derivation is similar to the one by di Francesco,
Saleur, and Zuber,'* who recently calculated the partition
function of the Potts model [and also of the O(#) model]
for periodic boundary conditions. Our formula is the
generalization to all types of (gauge invariant) seam-type
boundary conditions.

In Sec. V we explicitly evaluate Eq. (4.9) and determine
the values of the universal amplitudes for ¢ =2, 3, and 4.
The results are summarized in Tables II-IV at the end of
this paper. We also compare our results at g =2 with the
Onsager solution of the Ising model.'*

Finally, the Appendix contains a summary of topologi-
cal properties of clusters, lakes, and polygons on a torus,
and our notation and sign conventions. These are essen-
tial to the discussion in Sec. IV.

II. THE ¢-STATE POTTS MODEL WITH INTERFACES

We consider the g-state Potts model on a torus with
seam-induced interfaces. We classify such line defects by
the properties of the seams. Consider the generalized g-
state Potts Hamiltonian

H= 3 Kbo,,G,, 0,). (2.1)
(rr)
The Potts spins 0,=1,2, .. .,q are defined on the sites r

of a lattice .£, see Fig. 2. For convenience we use a
square lattice, but the results of this section apply to arbi-
trary 2D lattices. § is the Kronecker delta function. The
G,, are the permutation operators defined on the bonds
(r,r') of L. G, acts on spin o,. It has a directional
sense; G, =G, i.e.,
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FIG. 2. The Potts-spin lattice .L and its dual lattice D). The
sites r of the Potts-spin lattice .£ are denoted by solid circles and
the sites R of the dual lattice D by open circles. The operators
G, are defined on the bonds between r and r’. The dashed
lines denote the (0,1) and (1,0) seam.

6(Ur’Gr,r’(Tr")ZS( Gr',rarior‘) .

In the conventional g-state Potts model the operators G
are absent; they are all equal to the identity operator
G =1. Our purpose is to use G to induce line defects.

There are several convenient representations of the
permutation operators G, for example,

G(3;5;6,7;1,2,4) . (2.2)

The semicolons separate subsets of spin states. G per-
mutes the spin states inside each subset cyclically from
left to right, according to the order of these states in the
string between the semicolons. In the standard terminol-
ogy of group theory, the permutation operators G for the
g-state Potts model form a group called the symmetric
group of degree g and the above subsets are called cycles.
Equation (2.2) applies to a g =7 state spin model. This G
does not change spin state 3 and 5, permutes the spin
states 67, and permutes cyclically through the spin
states 1 -2 —4—1.

We define n; as the number of such subsets with i spin
states (the number of i cycles). For the operator Eq. (2.2),
these numbers are

ni,n,,N3,Ny,...,07}=1{2,1,1,0,...,0]} .
1NNy, Ny 7

Notice that
> in;=gq . (2.3)

An alternative representation of the permutation opera-
tors is in terms of g X ¢ matrices, with in each row and
column only one nonzero element equal to 1. For exam-
ple,

00010
0 0O0O0°1
G(2,51,3,4)=(1 0 0 0 O (2.4)
00100
01000

We define z(w) as the number of spin states for which
G“0=o0. In the matrix notation, Eq. (2.4),

z2(w)=TrG", (2.5)

and in terms of the numbers of i-cycles n,,

z(w)= zq: in;8(w,i (mod i)) . (2.6)

i=1

We use the G’s to induce interfaces in the
ferromagnetic-ordered phase of the Potts model. On a
torus these interfaces are closed contours wrapped
around the torus, so-called nonhomotopic contours. (The
Appendix contains a summary of topological aspects of
clusters and polygons on a torus.) We want to avoid
pointlike defects. Therefore, the configuration of G,,
must satisfy

& G, =1 2.7)
C(0,0)

along every homotopic contour C(0,0) (closed path with
zero winding numbers). The contour follows the bonds
(r,r') of lattice L. A configuration where the G’s around
an elementary plaquette R, see Fig. 2, do not obey Eq.
(2.7) contains a dislocation-type point defect located at R.

The Potts model partition function is invariant under
local gauge transformations, where the g states of spin o,
are permuted as o,—G'o, and the operators at the
bonds that emerge from r are modified accordingly as
G(r,r')—>G'G(r,r').

Assume that Eq. (2.7) is satisfied. Then it is possible to
fix the gauge in such a way that all G’s are equal to the
identity operator I except along two seams. The two
seams are closed loops that follow the bonds of the dual
lattice D, see Fig. 2; the meridian seam has winding num-
bers (0,1) and the longitudinal seam has winding numbers
(1,0). After we fix the gauge the only remaining G+41 are
located at bonds (r,r’) that cross the two seams. Accord-
ing to Eq. (2.7), all the bonds that cross the seam have the
same G. Moreover, the G of the meridian seam must
commute with the G of the longitudinal seam, [G,G =0,
to satisfy Eq. (2.7) along contours around the intersection
point R of these two seams.

We associate a directional sense to.each seam by plac-
ing an arrow on it, see Fig. 2. This allows us to specify
the directional sense of the operator G (r,r’) associated
with the seam. Site r (') will always be to the left (right)
of the seam with respect to the direction of the arrow on
the seam. The two seams are completely characterized
by their winding numbers and these arrows. Their shape
and exact location are arbitrary. For example, the meri-
dian seam in Fig. 3 moves from (a) to (b) by the gauge
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FIG. 3. Gauge invariance of seams on a torus.

transformation G’ =G ~! applied to all the sites inside the
shaded area between (a) and (b).

This gauge invariance implies that all possible line de-
fects are characterized by two commuting permutation
operators G and G along a (0,1) and (1,0) type seam.
Seams with more complicated winding numbers do not
lead to new types of line defects. This confirms that all
these line defects can be characterized in terms of bound-
ary conditions. The torus becomes a flat plane with
boundary conditions characterized by G and G, by
cutting it along the two seams. Periodic (P) boundary
conditions correspond to G =I. Cyclic (C) boundary
conditions [o—o+1(modg)] correspond to G
=G(1,2,3,...,q). The other types of G’s correspond to
various types of twisted (T) boundary conditions. In the
Ising model (g =2), cyclic boundary conditions G(1,2),
are identical to antiperiodic (AP) boundary conditions.

Table I lists all the possible operators G for g =2, 3,
and 4, and their characteristic numbers, n; and z(w).
The commuting pairs of G and G for ¢ =2, 3, and 4 are
listed in Tables II-IV. For ¢ =2 and ¢ =3, only G =1,
G, or G ~! commute with G.

TABLE 1. List of the permutation operators G for ¢ =2, 3,
and 4. z(w) and the number of i cycles, n;, of G are defined in
Eqgs. (2.2)-(2.6). 27x is the universal finite-size-scaling ampli-
tude of the interfacial free energy induced by a boundary condi-
tion of type G on a cylinder [see Eq. (3.15)].

q G {n;,ny, ... ,ng} z(w) x€
2 I {2,0} 2
c {0,1} 28(w,2mod2) 1
3 I {3,0,0} 3
c {0,0,1} 38(w,3mod3) Z
T {1,1,0} 1+ 28(w,2mod2) =
4 I {4,0,0,0} 4
C {0,0,0,1} 48(w,4mod4) i
T, {0,2,0,0} 45(w,2mod2) 3
T, {1,0,1,0} 14 38(w,3mod3) =
T, {2,1,0,0} 2+ 28(w,2mod2) -

III. THE ¢-STATE POTTS MODEL ON A CYLINDER

We use the extended-scaling method"? to derive the
finite-size-scaling properties of the Potts model on a
cylinder with line defects. We use the mapping of the
Potts model into the body-centered solid-on-solid
(BCSOS) model'""2 and the equivalence between the crit-
ical phase of the BCSOS model and the Gaussian model'
to derive the finite-size-scaling behavior of the free energy
and the interfacial free energies. Our results are in accor-
dance with recent results of the conformal theory.’~° The
extended-scaling method is microscopic in nature.
Therefore, this derivation is a microscopic confirmation
of the validity of the conformal ansatz for the Potts mod-
el. It is a generalization of the earlier results of Refs. 1
and 5. This section serves also as a basis for the more in-
tricate discussion of the g-state Potts model on a torus
(Sec. IV).

Consider the g-state Potts model, Eq. (2.1), on a
cylinder with a line defect of type G,

ch= S exp (K Y 80,,G,,0,)
fo} (rr)

(3.1

We assume that Eq. (2.7) is satisfied (no pointlike defects).
G is the permutation operator that remains along the
seam after we fix the gauge as explained in Sec. II. G
characterizes the type of line defect. The boundary con-
ditions at the top and the bottom of the cylinder do not
need to be specified, because the cylinder will be con-
sidered infinitely long. But for clarity it is useful to as-
sume that the nearest-neighbor coupling constants inside
the bottom layer and the top layer of the cylinder are
infinitely strong.'

We generalize the conventional sequence of mappings
that leads to the reformulation of the Potts model as a
BCSOS model,!"!2 to a Potts model with line defects.
The first step is to reformulate the Potts model as the
random-cluster model using the high-temperature graph
expansion of the Potts model'®

zqG= h (I‘[> [1+vd8(0,,G, 0,)]
fol {nr
nl Nnhc

q

This is a type of bond-percolation model. The summa-
tion is over all possible graph configurations where
nearest-neighbor bonds of the lattice are occupied or
empty. N, is the number of occupied bonds. Each occu-
pied bond represents a factor 8(o,,G, ,0,) in the high-
temperature expansion, and contributes a factor
v =exp(K)—1 to the Boltzmann weight. N, is the num-
ber of clusters in the graph. Each disconnected site also
counts as a cluster. Each island-type cluster (those that
do not wrap around the cylinder) contributes a factor g to
the Boltzmann weight. N, . is the number of cylinder
clusters (those that wrap around the cylinder, see the Ap-
pendix). Each of them contributes a factor n, to the
Boltzmann weight. The number of unpermuted spin
states n, of the permutation operator G, see Egs. (2.2)
and (2.5), counts how many of the g spin states obey
Go=o.

= 3 »heg (3.2)

graphs
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The next step is to count the number of clusters in
terms of the number of coastlines between clusters and
lakes, i.e., in terms of polygons on the surrounding lattice
&,!! see Fig. 4. In a planar graph and also on a cylinder
the number of polygons (coastlines) N, is related to the
number of clusters N, the number of bonds N,, and the
number of sites N, as N, =2N.— N, + N, (see Appendix).
The number of nonhomotopic polygons N, (those that
wrap around the cylinder) is equal to N, =2N ., be-
cause each cylinder cluster has two coast lines. Therefore
Eq. (3.2) can be rewritten as
Nopp /2

) (3.3)

ny

q

N, /2 N, N, /2
zi=q"" 3 1"g
graphs
with t =v/Vyq.

Next we switch to the F model (six-vertex model) rep-
resentation. Place arrows on the polygons, and count the
factors Vg and V/n, by local phase factors. Assign a
phase factor exp[i(6/4)y] to turns of the polygons over
an angle 6. These turns take place at the sites S of the
surrounding lattice . Notice that at each site S two
polygons meet, and that the number of arrows pointing in
and out is the same (see Fig. 4). Each polygon forms a
closed loop. The arrows can be placed in two ways,
clockwise or counterclockwise. Therefore the turns add
up to a total angle +27 for each polygon. So the phase
factors attribute a total weight V'g to each polygon if we
define y as

Vg

cos
2

T
5 y (3.4)

Ignore the boundary condition for a moment. In the
arrow formulation ZqG is equivalent to the partition func-
tion of the six-vertex model, i.e., the trace over all possi-
ble arrow configurations on the bonds of lattice & with
the condition that at each vertex site S the flux of in- and
out-pointing arrows is equal (see Fig. 5). At the critical

o o Q o o
v
7
R L’
o o o o o
N
7
7, /7,
/ AN
o of o o o
), hy
7,
h 7S hs
\ \h4
o g o o o
/
¢
N
o [e] (e} [o] [e]

FIG. 4. Polygon representation of the random-cluster model.
The polygons follows the bonds of the surrounding lattice §.
The shaded (unshaded) areas surrounded by polygons (coast-
lines) are called the clusters (lakes) in the random-cluster model
formulation. The height variables A, of the BCSOS model are
defined on the faces of the surrounding lattice &. The dashed
line denotes a seam in the polygon representation.

SOOCOOK

FIG. 5. Vertex states of the six-vertex model.

line of the Potts model, ¢ =1, the Boltzmann weights w;
of this F model, are given as'' ws=w¢=1, and
a)1=a)2=a)3=w4=exp( “"J), With

Ty l=2+Vg)72.

exp(+J)=2cos (3.5)

This corresponds to the exactly soluble F model.'® Vary-

ing J corresponds to moving along the critical line of the
g-state Potts model in the direction of g. We restrict our-
selves to ¢ =1, because we need to determine the finite-
size-scaling properties at criticality only.

The local phase factors introduced above count a fac-
tor Vg for each homotopic polygon, but add up to
1+ 1=2 for nonhomotopic polygons. Each nonhomoto-
pic polygon must have a weight V/n,. Therefore, we will
associate a phase factor to the polygons each time they
cross the seam. Strictly speaking this seam in the F mod-
el is different from the one in the Potts model. In the
Potts model representation the seam follows the bonds of
the lattice D dual to the Potts-spin lattice L. The seam
in the polygon representation follows the bonds of the lat-
tice dual to the surrounding lattice & (the dashed line in
Fig. 4).

In Sec. II we introduced an orientational sense to the
seams by placing an arrow on them. Such an arrow al-
lows us to distinguish locally between the areas that are
globally to the left and to the right of the seam in the F
model. This is important because the shape of the seam
is arbitrary. It can bend backwards. Associate to each
polygon an extra weight o (@~ !) each time it crosses the
seam with its arrow pointing from the left to the right
(from the right to the left), with o =exp[i(7/2)a].

These phase factors do not contribute to the weights of
homotopic polygons, because homotopic polygons cross
the seam an equal number of times in both directions.
Nonhomotopic polygons pick up one of these phase fac-
tors, because they cross the seam one more time in one of
the two directions. So the nonhomotopic polygons ob-
tain a weight \/nl if we define a as

Vin,
2

cos (3.6)

Ta
2

Recall (see Table I) that for periodic boundary conditions
n,=gq, and, therefore, that a=y. For cyclic boundary
conditions n; =0 and a=1. For twisted boundary condi-
tionsn,=1,2,...,g —2anda=4%,1,1,0,....

Thus far we obtained that the partition function of the
Potts model on a cylinder with a line defect of type G is
proportional to the partition of the F model with a line
defect of type a;

Z8«Zp(J,a) , (3.7
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with J given in Eq. (3.5) and « given in Eq. (3.6). The «
sign used here and later in this paper indicates that we
drop some bulk contributions (that scale as N,), but keep
all finite-size-scaling contributions.

The F model is equivalent to the so-called body-
centered solid-on-solid (BCSOS) model which describes
the roughening transition of crystal surfaces.!” Introduce
height variables A4, on the faces of the F-model lattice §.
This lattice has a two-sublattice structure: the sites of the
original Potts-spin lattice .£ form one sublattice and the
sites of its dual lattice 2 the other sublattice (see Fig. 4).
The heights 4, on sublattice .L have integer values and
the heights hg on sublattice 2 have half-integer values.
Each arrow configuration in the F model maps into a
height configuration in the BCSOS model as follows.
Look along a bond in the direction of the arrow. Then
the height on the left is lower by 1 than the height on the
right. Notice that the height between two nearest-
neighbor sites r and »’ must differ by +1

This maps Eq. (3.7) into the BCSOS Hamiltonian

HScsos=— S J[(h—h3)*+(hy—h,)]
s

—imalh, —hy) . (3.8)
The first summation is over all sites S of lattice &, and h,,
h,, hy, and h, are the four heights surrounding each site
S, see Fig. 4. The line defect G in the Potts model be-
comes an imaginary interaction iwa(h, —h,). The seam
in the F model runs along the bonds of the BCSOS lattice
(the dual of &). Label the column heights along the seam
as h;, with i =1,2,3,... . Let h, (h,) be the column
height at the top (bottom) of the cylinder at the seam.
The weight w=expl[i(7/2)a] associated with each
polygon crossing of the seam becomes

exp[ —i(7/2)a2(h;  ,—h;)]

when rewritten in terms of the height differences. Added
together they give exp[ —ima(h,—h,)]. So the critical

J

(exp[ —imath,—h))]) ;0 = (exp[—imalg,

where L, and L, are the height and circumference of the
cylinder.

In the 2D Coulomb-gas formulation of the BCSOS
model,"? the imah, and —imah, operator represent
boundary charges 7a and —ma at the top and bottom of
the cylinder."”> If we assume that the Potts model cou-
pling constant K is infinite in the top and bottom layer of
the cylinder, then the top and bottom layer are equal-
potential planes, and the exponent in Eq. (3.12) is simply
the energy of two condenser plates at distance L, with
surface charge densities ma/L, and —7a/L,.

The final result is that the finite-size-scaling part of the
partition function of the critical Potts model behaves as

‘¢b)])Hg:exp

Potts model on a cylinder is equivalent to a BCSOS mod-
el on a cylinder with periodic boundary conditions, but
with boundary charges +7a at the top and the bottom of
the cylinder,l‘5

ZGngcsos(-’)

—Zﬂcsos(exp[—lﬁa ])Ho ’ (3.9)
where the superscript 0 denotes a BCSOS model without
boundary charges (¢ =0). So Eq. (3.1) has now been re-
formulated in terms of a correlation function in the
BCSOS model.

In the high-temperature phase of the BCSOS model
(the critical line of the Potts model for g < 4) the discrete-
ness of the column heights is irrelevant. To obtain the
scaling-limit behavior we may relax the constraint that
the height variables A  are (half) integers and replace
them by Gaussian variables ¢, which take real values.
See Ref. 12 for details of this renormalization procedure
from the BCSOS model to the Gaussian model. So the
scaling-limit behavior of the BCSOS model is equivalent
to that of the Gaussian model

Kg 5
= 3 exp —72;,[(4’”3[—95:)

19,1

+(4, 5, —90"] (3.10)

The value of the Gaussian coupling constant K, follows
from the Baxter solution of the eight-vertex model'® o
the Lieb solution of the F model;'®

K,=mx=m(2—y), (3.11)

g
with y defined in Eq. (3.4).

This identification allows us to calculate the scaling-
limit behavior of BCSOS model correlation functions,
such as Eq. (3.9):

2= , (3.12)
LK,
|
2 L
G L) !
Z; <Z,(K,)exp > a LK, (3.13)

The interfacial free energies ¢ associated with the opera-
tor G (see Table I) is defined as

z;
7= Lhm —Ll 1n—Z"G , (3.14)
— ¢ 1

q

where Z; P is the partition function with periodic bound-
ary condmons a=gq. The umversal amplitudes 4 ¢ of
the interfacial free energies 7¢ behave according to Eq.
(3.13) as
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1_ .2
A%= lim LZnG=27r(i-—y——)—

(3.15)
Ly— 4x

=2mxC .

The explicit values of x© for the different boundary
conditions are listed in Table I. They are the critical di-
mensions of Potts model operators associated with the in-
terfaces characterized by G. For example, the magnetic
operator of the Potts model is associated with the cyclic
boundary condition. The extended-scaling relation for
the magnetic critical exponent x, was obtained in Ref. 1
via the same set of mappings from the scaling behavior of
the spin-spin correlation function. Indeed Eq. (3.15)
gives the extended-scaling relation for x; when a=1 (see
also, Ref. 4, where the values of x ¢ listed in Table I are
derived from the conformal theory).

From Eq. (3.13) it follows that the free energy per unit
volume scales as

1
fi=-
‘ LILZ

Inz$

3a?

X

L_!_
L3
The factor 7/6 is the finite-size-scaling contribution of
the Gaussian model with periodic boundary conditions
(no boundary charges on an infinitely long cylinder). For
a Potts model with periodic boundary conditions, Eq.
(3.16) simplifies to

(3.16)

v
"fbulk - 6

+...

P_ _T .
fq _fbulk 6 L%

T 1
=fbu1k*‘6‘¢'z§“+ T, (3.17)
with ¢ =1—3y?/x the definition of the central charge of
the conformal theory.’

IV. THE POTTS MODEL ON A TORUS

We derive the universal finite-size-scaling amplitudes
for the Potts model on a torus. The discussion is similar,
but more intricate than for the Potts model on a cylinder
in Sec. ITII. On a cylinder the clusters and lakes that wrap
around the cylinder can only have winding numbers (1,0).
On a torus many more types of clusters and lakes are pos-
sible. We distinguish between islands, ponds, cylinder
clusters (CC’s), cylinder lakes (CL’s), torus clusters
(TC’s), and torus lakes (TL’s) (see Fig. 6). These types of
clusters and lakes are distinguished by the winding num-
bers (w,,w,) of the contours that you can draw on them.
In our notation, contours and polygons are closed non-
self-intersecting loops, while loops and walks are allowed
to self-intersect.

On island-type clusters [Fig. 6(a)] and pond-type lakes
[Fig. 6(c)] it is possible to draw only (0,0) type contours.
On cylinder clusters and cylinder lakes [Fig. 6(b)], it is
possible to draw only one type of contour with nonzero
winding numbers (w;,»,). On a torus cluster [Fig. 6(c)],
and a torus lake [Fig. 6(a)], it is possible to draw two in-
dependent contours with winding numbers (0,1) and (1,0).
Topological aspects play an important role in this sec-
tion. For clarity, the topological properties of clusters

FIG. 6. Clusters and lakes on a torus. (a) A configuration
with one torus lake (only islands); (b) a configuration with one
cylinder cluster and one cylinder lake with winding numbers
(1,2); (c) a configuration with one torus cluster (only ponds).

and contours on a torus are summarized in the Appendix,
together with our notation and sign conventions.

Consider the g-state Potts model, Eq. (3.1), on a torus
with permutation operators G (r,r’') along the meridian
seam (0,1) and G(r,r’) along the longitudinal seam (1,0).
G and G commute, [G,G ]=0. They characterize all pos-
sible seam-induced line-defect structures (see Sec. II and
Tables II-1V).

The random-cluster model formulation of the Potts
model on a torus is more complicated than on a cylinder
because the various types of clusters have different
weights. Consider the trace over the spin states in Eq.
(3.2). The weight of a cluster is equal to the number of
spin states o for which ([JG)o =0 is satisfied simultane-
ously along every possible closed walk across the cluster.
The product is over all G operators that you encounter
along the path. Along (0,0) walks the product is equal to
the identity operator [see Eq. (2.7)]. Therefore, island-
type clusters have again a weight g. On a cylinder cluster
(CC) with winding numbers (w,,w,) all walks are super-
positions of (0,0) and (w,,w,) type contours. Therefore,
cylinder clusters have a weight

C(G,G;0,,0,)=Tr(G"'G ),
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whichm is the number of spin states that satisfy
GG 0 =0. On a torus cluster (TC) all walks are su-
perpositions of the (0,0), (0,1), and (1,0) type contours.
Therefore, torus clusters have a weight T(G,G ), equal to
the number of spin states that satisfy simultaneously
Go=0 and Go=o.

The combinations G=1, G, and G ! play a special
role. They represent the complete set of line defects for
g =2 and 3 (see Tables II-IV). For these combinations
the cluster weights C and T are easily expressed in terms
of the characteristic parameters z () and n, defined in
Egs. (2.2)-(2.6).

C(G,I;0,,0,)=z(w,),
C(I,G;0,,w,)=z(w,) ,
C(G,G0,0,)=z(0,4+w,) ,
C(G,G Lo,0)=2(0,—0,) ,
and
T(G,D=T(,G)=T(G,G)=T(G,G )=z(1)=n, .
(4.2)

Thus, in the random cluster model formulation the
partition function of the Potts model on a torus reads

Nnhc

C(G,G;0,,0,)
q

& N, N
ZqGG: 2 v bq c
{CC’s}

N, N -1 ~ N, N
+ X vl TGG)+ I v'igc.
{TC's} {TL's}

(4.3)

Compare this with Eq. (3.2). N,  is the number of
cylinder clusters. All the cylinder clusters (and cylinder
lakes) in a configuration have the same winding numbers
(see the Appendix). In Eq. (4.3) the configurations are di-
vided into three types. The first summation is over all
configurations with cylinder clusters, the second over all

1

Nohe 72

C(G,G;0,,0,)
q

ZGG

5 N2

s thqu/z

{CC's|

The temperature parameter, t =v/V'q, represents a
difference in energy per unit area between clusters and
lakes. This energy difference vanishes along the critical
line of the Potts model. ¢ =1 is the critical line when L is
a self-dual lattice (the square lattice). At criticality we
can complete the switch from cluster configurations to
polygon (coast line) configurations, because the
Boltzmann weight becomes fully determined by the num-
ber of coast lines of each type.

The second and third summations in (4.4) correspond
to the summation over all configurations with only homo-
topic polygons. The set of configurations with one torus
cluster (only ponds) is dual to the set with one torus lake
(only islands) under reversal of the cluster-lake labels (see
the  Appendix). So each homotopic polygon
configuration gives rise to one of the torus-cluster

+s tN”qN”/ZT(G,G)+ s Iqu
{TC's}

configurations with one torus cluster, the third over all
configurations with one torus lake (all clusters are is-
lands). This separation is possible because a
configuration must contain one torus cluster, or one torus
lake, or (an equal number of) cylinder clusters and
cylinder lakes. These three types of clusters and lakes
cannot coexist together, and a configuration can contain
at most one torus cluster or one torus lake (see the Ap-
pendix).

Next, we need to reformulate this in terms of polygon
configurations on the surrounding lattice §. The
polygons are the coastlines between clusters and lakes. It
is convenient to think of the clusters as continuum-type
objects (see Fig. 6) but in reality the clusters have a lattice
structure. Each site r of lattice .L is part of a cluster, and
each site R of lattice D is part of a lake (see Fig. 4). The
Euler relation states that in any configuration
N,=N,—Ny+N,, with N; the number of sites in lattice
L, and N, the number of independent nonhomotopic con-
tours on the clusters (see the Appendix).

In configurations with only island-type clusters [the
third term in Eq. (4.3)] [see Fig. 6(a)], N, is equal to the
number of ponds inside the clusters (the torus lake does
not count). The number of coastlines N, is equal to
N,=N_+N, (see the Appendix). In configurations with
cylinder clusters [the first term in Eq. (4.3)] [see Fig. 6(b)],
N, is equal to the number of ponds plus the number of
cylinder clusters. The number of nonhomotopic coast-
lines N, (those that wrap around the torus) is equal to
Nohp =2N,p, (each cylinder cluster has two nonhomoto-
pic coastlines). The total number of coast lines N, is
again equal to N,=N_ +N,. In configurations with one
torus cluster [the second term in Eq. (4.3)] [see Fig. 6(c)],
N, is equal to the number of ponds minus 1 (all lakes are
ponds) plus 2 (the torus cluster counts twice). So the
number of coast lines N, is equal to N,=N_+N,—2 (see
the Appendix).

Thus, in the polygon representation the partition func-
tion of the Potts model on a torus reads

Np /2

{TL's}

[
configurations in the Potts model on lattice .£L and one of
the torus-lake configurations in the dual Potts model on
the dual lattice D.

The first summation in Eq. (4.4) corresponds to the
summation over all possible configurations with an even
(nonzero) number of nonhomotopic polygons. The set of
configurations with cylinder clusters is self-dual under re-
versal of the cluster-lake labels (see the Appendix). The
number of cylinder clusters in a configuration is equal to
the number of cylinder lakes. So each nonhomotopic
polygon configuration gives rise to one configuration with
cylinder clusters in the Potts model on lattice .£ and one
in the dual Potts model on lattice .

Thus in the case of a self-dual lattice .£, Eq. (4.4)
simplifies at criticality, t =1, as
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~ Nonn 72
C(G,G;a)l,wz) P

q

~ N_/2 N_/2
¢ =9 > q”f

{ N"hp =even|

The first summation is over all possible configurations
with an even number of nonhomotopic polygons. For
convenience we include the N nhp=0 configurations, i.e.,
all configurations with only homotopic polygons in this
summation as well, and subtract their contributions in
the second summation accordingly.

Next we reformulate the Boltzmann weights of the
polygons in terms of local phase factors by introducing
arrows on the polygons. Again the phase factors
exp[i(6/4)y] associated with the local turns of the
polygons over an angle 6 [see Eq. (3.4)], count the
weights Vg of the homotopic polygons. Again these
phase factors fail to count the weights C of the nonhomo-
topic polygons. In analogy with Eq. (3.6) we rewrite the
weights C as

C(G,G;0,,w0,)]"?
_L ;" 22l M

COoSs

izta(G,G;wl,wz)

and assign a phase factor
exp[+i(7/2)a(G,G;0,,0,)]

to each nonhomotopic polygon according to the two pos-
sible directions of its arrow. Although the final result,
Eq. (4.8), does not depend on it, we need to introduce a
sign convention to identify the two phase factors to the
two possible arrow directions on the nonhomotopic
polygons. By convention we identify the exp[ +i (7/2)a]
phase factor with the arrow that points in the direction
with positive @, and with positive w, for a (0,1) polygon.
Recall that the signs of the winding numbers are defined
with respect to the directions of the arrows on the meridi-
an and longitudinal seams (see the Appendix).

In the F model the configurations are characterized by
two polarizations, P, and P,. P, is the net polarization
of the arrows along the meridian seam, and P, the net
polarization along the longitudinal seam. P, and P, are
topological numbers independent of the shape and loca-
tion of these two seams (gauge invariance). P; is 1 times
the net number of arrows that point through the seam
from the left to the right with respect to the direction of
the arrow on the seam. P, and P, are integers, because
the number of nonhomotopic polygons N, is even.

We need to associate these polarizations to the phase

J

P,.PEZ

+HTG,G)—1] 3 ¢

S z7 " {cos[mg(P,,P,)a(G,Gw,,0,)]+ [ T(G,G)— 1]cos[mg(P,,P;)]} .

N_/2

{Nonp =01

nhp

factors (4.6). The polygons have the following topologi-
cal properties (see the Appendix): (i) the winding num-
bers of nonhomotopic polygons are coprime, (ii) nonho-
motopic polygons can coexist on a torus if and only if
their winding numbers are the same, and (iii) homotopic
polygons do not contribute to the polarizations. This im-
plies that a configuration in the F model with a nonzero
polarization (P, P,) can contain only one type of nonho-
motopic polygon with winding numbers (w;,®,) such
that

(i=12), 4.7
with g(P,P,) equal to the greatest common divisor of
P, and P,. To be consistent with our sign convention
g(P,,P,) must have the same sign as P,. By definition
g(P,,0)=P, and g(0,P,)=P,.

The set of configurations with P,=P,=0 is special.
Not only does it include all the configurations where all
the polygons are homotopic, it also includes all types of
configurations with nonhomotopic clusters. Consider
any configuration with cylinder clusters. The number of
nonhomotopic polygons (the coast lines of these cylinder
clusters) is even. So it is possible to draw arrow
configurations on these polygons such that P, =P, =0.

Thus, in the F-model formulation each nonhomotopic
polygon configuration characterized by winding numbers
(w,,w,) is distributed over the configurations with polar-
izations (P, P,) that satisfy Eq. (4.7), and also over a
subset of the configurations with P; =P, =0. The nonho-
motopic polygons obtain the correct weights if we assign
a phase factor exp[imag(P,,P,)] to the partition func-
tion of the F model with polarization (P,P,).
2g(P,P,) is equal to the net number of arrows on the
nonhomotopic polygons that point in the direction with
positive ;.

The second term in Eq. (4.5) can be considered as a
special case of the above. There the summation is re-
stricted to all configurations with only homotopic
polygons. The nonhomotopic polygon configurations ob-
tain a zero weight if we choose a=1 regardless of the
values of (w,w,) [see Eq. (4.6)].

Thus in the F-model formulation the partition function
of the Potts model on a torus reads,

(4.8)

. . . PP, . s . . ..
The summation is over all integer values of P, and P,. Z ' ? is the partition function of the F model with periodic

. . . . PP Zp,, -
boundary conditions, with a given polarization (P,,P,). We used that Z;'" 2=Z, " Z.

P,

In the BCSOS model formulation of the F model (see Sec. III) the arrows represent steps in a crystal surface. The po-
larizations (P,,P,) represent boundary conditions where the surface has a fixed average tilt in both directions. The
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high-temperature phase of the BCSOS model, i.e., the critical line of the Potts model for g <4, flows under renormaliza-
tion to the Gaussian model, Egs. (3.10) and (3.11). The tilt angles are, conserved under the renormalization transforma-

tion. Therefore, the leading finite-size-scaling contribution of each Z F

ZqGGoc
P,.P,ELZ

with Z: P2 the partition function of the Gaussian model
with the step boundary conditions: ¢(x +L,y)

=¢(x,y)+ P, and ¢(x,y +L,)=¢(x,y)+P,, with L, and
L, the meridian and longitudinal lengths of the torus. As
before the o« sign only indicates that we drop some bulk
contributions but keep all the finite-size-scaling contribu-
tions.

These Gaussian partition functions are easily evalu-
ated:

PP

zZ,"? K

;00 =exp Tg SP + 11’2 (4.10)
g

where s=L,/L, is the aspect ratio. The finite-size-
scaling part of Z2° is proportional to'°

172
, (4.11)

K

1
Z0,0 4
* n? | 27s

4

with 7 the Dedekind eta function®®

71=exp H {l—exp —2msn) (4.12)

12

Equation (4.9) includes the earlier result of di Fran-
cesco et al.'® for periodic boundary conditions,
G =G =1. Our result, Eq. (4.9), is the generalization of
this to all possible seam-type boundary conditions for the
Potts model on a torus. It is also interesting to compare
Eq. (4.9) with the operator content of the ¢ =2 and ¢ =3
state Potts model as predicted from the conformal
theory.*

V. FINITE-SIZE SCALING FOR THE ¢-STATE
POTTS MODEL ON A TORUS

In the previous section we obtain the exact expression,
Eq. (4.8), for the partition function of the g-state Potts
model on a torus with general boundary conditions in the
BCSOS model (F model) representation. Equation (4.9)
where we replace the F-model partition functions by
Gaussian model partition functions gives the leading
finite-size-scaling behavior. In this section we evaluate
Eq. (4.9) explicitly at ¢ =2, 3, and 4 for the specific

Sz, {cos[mg(P,Py)a(G,G;01,,)]+ 1 T(G,G)—1]cos[mg (P}, P)]] ,

2 is the same as in the Gaussian model, i.e.,

(4.9)

[
boundary conditions listed in Table I. Moreover, we
compare our results at ¢ =2 with the exact solution of
the Ising model on a torus.'*

On a torus the universal amplitudes of the interfacial
free energies are defined in a similar way as on a cylinder,
Egs. (3.14) and (3.15),

5.1

at fixed aspect ratio s =L, /L,. Z=Z/'is the partition
function of the Potts model with periodic boundary con-
ditions. Z“ maps into Z° under a rotation of the lat-
tice over an angle of 90°, i.e., by replacing s by 1/s. It fol-
lows that 4.7%s)=s>A47%(1/s).

For later convenience we define

P,,P
— 1°42
[n,m]l=1 3 zZ, (Kg) s
PIEnZ
P,emZ

(5.2)

with n and m positive integers. [n,m] can be written in
terms of the Jacobi’s theta functions 6, (Ref. 20)

03(z)= 3 exp(—mzn?), (5.3)
n€Zz
as
1 xn?
nml= 0 s|0 s, (5.4)
[ ] 2 7’2 3 2 3 me

by using Egs. (4.10)-
tion formula?®

(4.12), and the Jacobi’s transforma-

1
0:(2)==6;

1 (5.5)
4

Notice that [m,n] is equivalent to [n,m] under replace-
ment of s by 1/s.

First consider the Ising model (¢ =2). From Egs. (3.4)
and (3.11) it follows that y = and K, =mx=37. For
periodic boundary conditions it follows from Egs. (4.1)
and (4.2) that C(I,];w,,0,)=q9 =2 and T(I,I)=q =2.
So a=y =1 [see Egs. (3.4) and (4.6)]. Then, Eq. (4.9) can

be evaluated explicitly as

|
PP
Zr,« 3 |cos %g(Pl,Pz) +1cos[mg(P,,P;)] |Z5" "2
P,,Pzez
P 1 PP
= |3 % ZGl Z: —;— _-5 2 . 2 ZGI 2
g(P,,Py)=0 g(P,Py,)=1,2,3 P,.P,E4L P.P,EZ P ,P,E4L
(mod4) (mod4)
1 Pl'Pl
=2 -3 3 |Zs" *=4[44]1-[1,1] (5.6)
P,.P,E4Z P,.P,EZ
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Expressed in terms of the theta functions this becomes

4s
3

3s

ZP  «—
2« 4

- 0, 15—2 0,(125s)—6, 0,

(5.7)

There are only three more types of boundary conditions
in the Ising model on a torus. These three partition func-
tions can be written as

zoh <27, +202,11-4[4,2],
Z}S «Zf ,+2[1,2]1-4[2,4], (5.8)
ZEG « —ZF ) —2[2,11+4[4,2]-2[1,2]+4[2,4] .

z5!, and Z!S, are the partition functions with an-
tiperiodic boundary conditions along one of the two
seams. ZC , is the partition function with antiperiodic
boundary conditions in both directions. Notice that
zf ,=25+250+25S

In Fig. 1 the universal amplitude ALl is plotted as
function of s. Notice that in the limit of small s (the limit
in which the torus reduces to a cylinder) A4 C’2 ap-
proaches the value of 7 /4, in accordance with Eq. (3.15).

Our exact expressions for the finite-size-scaling behav-
ior, Egs. (5.6) and (5.8) agree with the results of the On-
sager solution of the Ising model. Ferdinand and Fish-
er'* [see Eq. (3.37) in their paper], found the following ex-
pressions for the scaling parts of the four partition func-
tions:

VASRE: [62 )+ 05(s)+04(s)] ,
qu’:Cz oc _[92(5)+63(S)—94(5)] ’

(5.9)
zot, oc*-—[—ez $)405(s)+0,(5)] ,

ZCC;CC'—"]‘[OZ 63(S)+04(s)] >

where 6, and 6, are different types of Jacobi’s 6 func-
tions, defined as

G w X
ZqGGng‘Ofﬂde,exp —TSP%

2
~exp |— | |exp 2—:1; +1[T(G,G)—1]exp

The factor outside the bracket originates from the small s
expansion of the eta function in Zg'o [see Eq. (4.11)]. As
expected we recover Egs. (3.13) and (3.16). The second
term in the above equation (torus-cluster contributions)

04(z)= 3 (—1)"exp(—mzn?),
n€Z
(5.10)
1
0,(z)= ‘/_ —=b |-

We checked numerically that the coefficients of the ex-
pansion in powers of exp(—/12s) in Egs. (5.6) and (5.8)
are identical to those in Egs. (5.9). We leave it to an in-
terested reader to find an analytical proof of the
equivalence.

Consider the three-state Potts model (¢ =3).
Egs. (3.4) and (3.11) it follows that y=1 and
K, =mx =3m. At this value of g there are three different
types of G operators: I, C, and T (see Table I). It is
straightforward to evaluate the finite-size-scaling parts of
the partition functions of the six commuting pairs G,G in
the same manner as in Eq. (5.6). The results are listed in
Table III. Similar to the Ising case, the following relation
holds ZP 3—Z 3+Z 3+Z 3+Z In Fig. 1
the umversal amplitude Aq 123 is plotted as function of s.

Finally consider the four-state Potts model (g =4).
From Egs. (3.4) and (3.11) it follows that y =0 and
K,=mx=2m. Now there are five different types of G
operators: I, C, T, T, and T, (see Table I). The parti-
tion functions of the 15 commuting pairs G, G, and the
corresponding universal amplitudes are listed in Table
IV. Notice that

From

LT, T, T0 T4 T,

zt =z, +z +z Torfo +Z,2,°+2,%,
ch':’4 is plotted in Fig. 1.

In the limit of zero aspect ratio, s —0, Eq. (4.9) reduces
to Eq. (3.13) for the cylinder. In thlS limit only the P, =0
sector contributes in Eq. 4.9). Z, P1'"2 Vanishes unless
P, =0, see Eq. (4.10). This means that only nonhomoto-
pic polygons of type (1,0) contribute. These are indeed
the only types of nonhomotopic polygons that are al-
lowed on a cylinder. The weight V'C of these polygons is
simply equal to C(G,G; 1,0)=n,. In the limit of small s
the summation over P, in Eq. (4.9) can be converted into
a Gaussian integral,

{explimaP)+L[T(G,G)—1]explimP,)}

11
o (5.11)

can be neglected. Notice that || <1 [see Eq. (4.6)]. At
a=1 the torus-cluster contributions come into play but

only change the overall factor from unity to
HT(G,G)+1].
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TABLE II. Finite-size-scaling contributions of the partition functions, Z,
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GG

=2

of the Ising model on a

torus. See Egs. (5.2)-(5.4) for the definition of [n,m]. The values of the universal finite-size-scaling am-
plitudes, 4.5, (s), are listed for the aspect ratios s =1, +V'3, and 1.

G G z55, 56,(1) 455,(1v3) A%5,(1)
I I 4[4,4]1—[1,1]

C I 44,41 [1,1]+2[2,1]—4[4,2] 0.9865 0.9716 0.8709
o C —4[4,4]+[1,1]1-2[2,1]+4[4,2] 1.3695 1.2009 0.8889

—2[1,2]1+4[2,4]

TABLE III. Finite-size-scaling contributions of the partition functions, Zqu 3 of the three-state Potts
model on a torus. See Egs. (5.2)-(5.4) for the definition of [n,m]. The values of the universal finite-
size-scaling amplitudes, 4, C;(s), are listed for the aspect ratios s =1, V'3, and 1.

G G z59, A%5, (1) ASS,(Iv3) 488

I I 606,6]1—3[3,31+2(2,2]—[1,1]

c I 6[6,61—3[3,31+2[2,2]—[1,1] 1.1874 1.1560 0.9807
+3[3,1]-6[6,2]

C c(Cc)  —=3[66]+2[3,3]1—[2,2]+4[1,1] 1.6348 1.4290 1.0051
—3[3,1]43[6,2]— 3[1,3]+3[2,6]

T 1 606,61+3[3,3]—2[2,2]—[1,1] 0.6224 0.5854 0.4325

T T —6[6,61—3[3,31+2[2,2]+[1,1] 0.7571 0.6600 0.4360

—2[2,1]1+6[6,3]—2[1,2]+6[3,6]

TABLE IV. Finite-size-scaling contributions of the partition functions, Zfi of the four-state Potts model on a torus. See Egs.
(5.2)-(5.4) for the definition of [n,m] The values of the universal finite-size-scaling amplitudes, 4%,
tioss =1, 7V'3,and .

(s), are listed for the aspect ra-

G G VASH A7) AZ8,(3V3) A754(5)
1 1 6(2,2]—[1,1]
c 1 2[2,2]—[1,1]+4[4,1]—4[4,2] 1.4197 1.3421 1.0202
c cc 402,2]+[1,1]-2(2,1]-2[1,2] 1.7535 1.5295 1.0302
T, 1 ~2[2,2]—[1,1]+4[2,1] 1.4197 1.3421 1.0201
T, T, 6[2,2]+3[1,1]—4[2,1]-4[1,2] 17357 1.5149 1.0275
T, I —[1,1]+3(3,1] 0.8409 0.7738 0.5320
T, T\(T7") 203,31+ 41,1]1— 2[3,1]— 2([1,3] 0.9679 0.8420 0.5348
T, I —2[2,2]—[1,1]+2[2,1]+4[4,2] 0.4766 0.4336 0.2884
T, T, 8[4,4]+6[2,2]+[1,1] 0.5308 0.4615 0.2892
—2[2,1]-4[4,2]-2[1,2]—4[2,4]
To(1,2;3,4) T5(1,3;2,4) 2[2,2]—[1,1] 17716 1.5444 1.0328
T,(1;2;3,4) T5(3;4;1,2) 8[4,4]-2(2,2]—[1,1] 1.4197 12183 0.5921
+2[2,1]-4[4,2]+2[1,2]-4[2,4]
T,(1;2;3,4) Ty(1,2;3,4) —2[2,2]+[1,11—2[2,1]+4[4,2] 1.5653 1.2890 0.5937
C(1,3,2,4) To(1,2;3,4) ~2[2,2]-[1,1] 17716 1.5444 1.0328

+4[2,1]—4[4,1]+4[4,2]
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APPENDIX: TOPOLOGICAL PROPERTIES
OF CLUSTERS, LAKES, AND POLYGONS ON A TORUS

In this appendix we summarize several topological as-
pects of clusters, lakes, and polygons on a torus, and also
our notation and sign conventions. More details can be
found in textbooks on topology.?!

(1) In this paper contours and polygons are non-self-
intersecting closed loops on the torus, while loops and
walks are allowed to be self-intersecting. The word
polygon is used as a synonym for a coastline between a
cluster and a lake.

(2) Polygons and contours on the torus are character-
ized by their winding numbers, (©,,w,). Figure 7 shows a
(1,2) contour, and Fig. 8 shows a (2,5) contour. (0,0) type
contours on the torus are homotopic; they can be con-
tracted to a point. Contours with nonzero winding num-
bers are nonhomotopic.

(3) To each torus we associate two seams. When you
cut the torus along these seams, you obtain a plane with
equal opposite sides (L,,L,). Assume that L, <L,. The
meridian seam is a (0,1) type contour, and the longitudi-
nal seam a (1,0) type contour. The shape and location of
the seam are arbitrary. The seams are fully characterized

.
(a)

(b)

FIG. 7. A nonhomotopic contour with winding numbers
(1,2).
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by their winding numbers and by an arrow on top of
them (see Fig. 2). The arrow gives the seams a direction-
al sense, and is used to prescribe the relative signs of the
winding numbers of contours: a w; (w,) contour wraps
around the torus w, (w,) times in the direction of the ar-
row on the longitudinal (meridian) seam (see Figs. 7 and
8).

(4) The winding numbers ©, and w, of contours and
polygons are coprime (they have no common divisor ex-
cept 1). Imagine that you tile the plane with Fig. 7(b) or
8(b) as unit cell. This creates a pattern of periodic nonin-
tersecting lines across the plane. If w; and w, are
coprime, then all these lines are shifted copies of each
other. The pattern along the line is also periodic. It re-
peats itself after w; X, unit cells. If w; and w, have a
common divisor, say n, then the structure along the line
repeats itself after w, X w,/n unit cells, and instead of one
there are n different types of lines in the pattern. In other
words, a unit cell like Fig. 7(b) represents n independent
contours if o, and w, are not coprime.

(5) In a configuration with several contours, the wind-
ing numbers (w,w,) of all the contours with nonzero
winding numbers must be the same.

(6) Clusters and lakes on the torus are also character-
ized by a set of winding numbers. Consider all possible
closed contours across the cluster. The set of possible
winding numbers of these contours characterizes the
cluster (lake).

(7) An island (pond) is a cluster (lake) on which only

((a

FIG. 8. A nonhomotopic contour with winding numbers
(2,5).

(
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(0,0) contours are possible [see Figs. 6(a) and 6(c)]. No-
tice that a (0,0) type contour around a pond inside a clus-
ter is nonhomotopic. It cannot be contracted to a point,
because it cannot intersect the coastline between the clus-
ter and the pond.

(8) A cylinder cluster (lake) is a cluster (lake) on which
only one type of contour with nonzero winding numbers
is possible. Figure 6(b) shows a (1,2) cylinder cluster. Be-
sides (0,0) contours only contours with winding numbers
(1,2) are possible. We refer to these clusters as cylinder
clusters (and cylinder lakes) because they have the topol-
ogy of a cylinder (although they are embedded on a
torus).

(9) The winding numbers w, and w, of cylinder clusters
and cylinder lakes are coprime.

(10) In a configuration with several cylinder clusters
and cylinder lakes, the winding numbers of all the
cylinder clusters and all the cylinder lakes are the same.

(11) The number of cylinder clusters in a configuration
is equal to the number of cylinder lakes. For example,
the construction of the (1,2) cylinder cluster in Fig. 6(b)
creates automatically a (1,2) cylinder lake.

(12) A torus cluster (torus lake) is a cluster (lake) on
which two independent types of contours with nonzero
winding numbers are possible. Figure 9(a) shows the sim-
plest torus cluster shape. Clearly both (0,1) and (1,0) con-
tours are possible. Torus clusters and torus lakes have
the same topology as the torus on which they are embed-
ded.

(b)

FIG. 9. Torus clusters on a torus. (a) The simplest torus-
cluster shape, (b) a torus cluster obtained by adding a bridge to
a (1,2) cylinder cluster.

(13) A configuration can contain only one torus cluster
or one torus lake.

(14) In a configuration where all lakes (clusters) are
ponds (islands) there exist one and only one torus cluster
(torus lake) and no cylinder clusters or cylinder lakes.

(15) In a configuration with cylinder clusters and
cylinder lakes, torus clusters, and torus lakes are absent.

(16) On every torus cluster and torus lake it is possible
to draw a (0,1) and a (1,0) type contour. For example,
Fig. 9(b) shows a torus cluster obtained by adding a
bridge to a (1,2) cylinder cluster. This cluster is topologi-
cally equivalent to the cluster in Fig. 9(a). We can
unwind it by reshaping the coastline without merging,
splitting, or intersecting the coastline with itself. The ad-
dition of the bridge transforms the (1,2) cylinder lake into
a pond. Imagine that you tile the plane with Fig. 9(b) as
unit cell. That leads to a percolating connected cluster in
both the vertical and horizontal directions (all the lakes
are ponds). Therefore it is possible to walk all the way
across the cluster from the left to the right and from the
top to the bottom. These walks represent the (0,1) and
(1,0) contours. Projected back into the unit cell Fig. 9(b),
or shown on the torus, these contours tend to look quite
complex.

(17) Consider the set of all configurations with n
cylinder clusters. This set is self-dual, i.e., maps into it-
self when we exchange lakes and clusters. The clusters
and lakes in the Potts model have a lattice structure (Fig.
4) instead of being continuum-type objects (Fig. 6). Then
this duality requires also a translation over a lattice vec-
tor a of the surrounding lattice & (see Fig. 4) and requires
that lattice .L is self-dual.

(18) Consider the set of all configurations with one
torus cluster, and also the set of all configurations with
one torus lake. These sets map into each other under the
same type of duality as in (17), i.e., under exchange of
lakes and clusters.

(19) On every graph, i.e., lattice-type configuration
with clusters and lakes (see Fig. 4), the Euler relation
states that the number of clusters N,, the number of sites
N, the number of bonds N,, and the number of indepen-
dent nonhomotopic contours on the clusters N, are relat-
edas N.=N;—N,+N,.

(20) The number of homotopic coastlines in a
configuration is equal to the number of ponds plus the
number of islands. The number of nonhomotopic coast-
lines, N, is twice the number of cylinder clusters,
Nuonp=2N,p.. Also notice that a torus cluster
configuration without any pond or island does not con-
tain any coastline. So the total number of coastlines in
any configuration, N,, is equal to the number of ponds
plus the number of islands plus twice the number of
cylinder clusters.

(21) In configurations with one torus lake [all clusters
are islands, see Fig. 6(a)] the number of independent
nonhomotopic contours on the clusters, N,, is equal to
the number of ponds (you can walk around every pond,
but not around the torus lake). Therefore, the number of
coastlines, N,, is equal to N,=N_.+N,. Every coastline
is a (0,0) type contour.

(22) In configurations with one torus cluster [all lakes
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are ponds, see Fig. 6(c)] N, is equal to the number of
ponds minus 1 (you can walk around every pond but the
contour which encompasses all ponds is homotopic) plus
2 [you can circumnavigate the torus via a (0,1) or (1,0)
contour on the torus cluster]. Notice that on a lattice
there is always at least one pond. Therefore, [see (20)] the
number of coastlines, N,, is equal to N,=N.+N,—2.

p
Every coastline is a (0,0) type contour.

(23) In configurations with cylinder clusters and
cylinder lakes [Fig. 6(b)] N, is equal to the number of
ponds plus the number of cylinder clusters [you can walk
around every pond or circumnavigate the torus via a
(w),w,) contour on each cylinder cluster]. The total
number of coastlines in the configuration, N » is equal to
N,=N,+N,.
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FIG. 3. Gauge invariance of seams on a torus.



