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Abstract

We study a two-level system controlled in a discrete feedback loop, modeling both the system and the
controller in terms of stochastic Markov processes. We find that the extracted work, which is known
to be bounded from above by the mutual information acquired during measurement, has to be
compensated by an additional energy supply during the measurement process itself, which is bounded
by the same mutual information from below. Our results confirm that the total cost of operating an
information engine is in full agreement with the conventional second law of thermodynamics. We also
consider the efficiency of the information engine as a function of the cycle time and discuss the
operating condition for maximal power generation. Moreover, we find that the entropy production of
our information engine is maximal for maximal efficiency, in sharp contrast to conventional reversible
heat engines.

1. Introduction

In 1867, Maxwell created a thought experiment to demonstrate a possible violation of the second law of
thermodynamics: a thermally isolated container with a gas is divided into two parts, and a fictitious demon
opens or closes a door between the two parts depending on the velocity of the approaching particles, creating an
increase of the temperature in one of the compartments [1].

Smoluchowski was the first to provide an explanation why Maxwell’s demon does not work. To this end, he
modeled the demon mechanically by a trapdoor combined with a gentle spring. The trapdoor acted as a valve in
such a way that fast particles coming from one side can open the door while slow ones cannot, leading to a
pressure difference. However, taking the full dynamics of the apparatus into account, Smoluchowski
demonstrated that the energy of the spring system itself equilibrates at such a high energy that it opens and closes
essentially randomly, leading to the same pressure difference as if the trapdoor was always open.

In 1928, Szilard refined the concept of Maxwell’s demon, suggesting what is known today as the Szildrd
engine [3]. The starting point is a box that contains only one particle (see figure 1). Ifa wall is inserted in the
middle, the particle will be in one of the two parts. Expanding the volume isothermally to its original size by
moving the shutter into the empty half of the box, one can extract the work W = ky T In 2. However, this
requires knowing in which compartment the particle actually is, demonstrating that the possession of
information can be converted into physical work. Thus, in order to keep a Szildrd engine running, a closed loop
of measurement and feedback is needed. Very recently, such a feedback scheme could be realized experimentally
for the first time [4].

Since the feedback mechanism in the Szilard engine was perceived as information processing at zero cost, it
seemed to produce usable work from nothing, violating the second law. However, as shown by Landauer [5] in
1961, any irreversible logical operation requires one to apply a well-defined minimum of work. In the case of the
Szildrd engine, the demon has to store the information about the particle position in a single bit. According to
Landauer’s principle, resetting this bit requires one to convert awork of k3 T In 2 into heat. As shown by Bennett
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Figure 1. Szildrd engine. In a box with a single molecule, a piston is inserted in the middle. Depending on the location of the particle,
the piston is pushed in one direction, allowing us to extract work. However, placing the load correctly requires one bit of information
about the position of the particle. At the end, the piston is removed at zero cost.

[6], who realized measurement and feedback as reversible processes, this extra work for resetting restores the
second law.

Recently Maxwell’s demon attracted renewed attention, as it was shown that a system in a feedback loop
obeys an integral fluctuation theorem (IFT) of the form

(eﬂWeX_AI> =1, (1)

implying (W, ) < (AI), where W, is the extracted work during feedback, f# is the inverse temperature, and Al
is the gained mutual information between system and demon during the measurement [7-9]. This fluctuation
theorem implies that in each cycle of the engine the extracted work is limited by the gained mutual information
—a highly plausible result that nicely demonstrates the equivalence of thermodynamic work and information.

Subsequently this remarkable result was made more specific in various ways. For example, it was shown that
one can construct feedback schemes that satisfy the inequality sharply [10, 11]. Moreover, the IFT was
generalized to schemes with finite-time relaxation [12, 13] and continuous feedback schemes [14]. Very
recently, the generalized IFT could also be confirmed experimentally [15].

The arising problem with these generalized Jarzynski equalities is that the tightness of the bound seems to
depend on the specific feedback scheme, such as discrete and continuous feedback as well as memory tape
models. This led Barato et al to look for a unifying master IFT [16—19]. To achieve this, they duplicated the
configuration space, modeling bit flips of the memory by transitions between the two replicas. Doing so, they
followed Smoluchowski’s original idea of modeling the whole feedback loop as a physical device, defined as a
stochastic Markov process.

In this paper, we follow these lines of thought, being interested in the fotal cost of operating an information
engine with a finite memory as described above. Instead of duplicating the configuration space, we devise
physically realizable stochastic processes of the joint system not only for relaxation, but also for the
measurement process. We show that the generalized IFT for the relaxation of a system is always accompanied by
an opposite IFT during the measurement carried out by the demon, restoring the second law for the joint system.
This implies that a certain minimal amount of work has to be done on the memory, in accordance with
Landauer’s principle. The calculation of the total cost enables us to derive the efficiency of the information
engine as a function of its cycle time. We also discuss the optimal cycle time and corresponding efficiency at
which the extracted power is maximized.

2. Definition of a minimal model

In what follows we consider a system with two different energy levels separated by AE. The system is coupled to a
heat bath with inverse temperature 5. The controller (demon) is implemented as a one bit memory. We devise a
discrete feedback scheme evolving in three steps (see figure 2). First the system relaxes thermally without
external influence. Then the actual energy level, denoted by 0 and 1, is copied to the memory of the controller.
Finally, if the memory bit is 1, the controller induces a flip of the system 1 — 0, extracting the energy AE;
otherwise it does nothing.
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Figure 2. Schematic drawing of the information engine studied in the present work. The configuration of a thermally relaxing two-
state system is measured by a controller and stored in a one-bit memory. If the system is found in the upper level, the controller
induces a transition back to the ground state, extracting the energy AE.

Following Barato and Seifert [ 19], we are aiming to model these steps by stochastic Markov processes,
including both the system and the memory. This defines a four-dimensional configuration space in which each
step can be represented by a simple 4 X 4 matrix. In the following, we discuss each of the three steps in detail:

2.1.Relaxation
During relaxation, the system flips randomly according to the rules

0—>1 withrate k,
1—>0  withratek_.
For convenience, we express these rates in terms of
ky
k

with g < % After infinite time, the system eventually reaches an equilibrium state with the stationary probability

k=ky +k_ and q= (2)

distribution P, = 1 — PY,, = q. This means that the energy difference between the two levels is given by

AE=ﬂ_llni— (q: 1—q>. (3)

q

Let us now describe the relaxation process in the composite configuration space of system and memory.
Throughout this paper, we will use a canonical configuration basis ordered by

(system state, memory bit) = {00, 01, 10, 11}. (4)

Since the memory is inactive during relaxation, the time evolution operator Ly for relaxation represented in this

basis reads
k —k_
ce=|"" ]@ (1 0)

—_
System Memory

= | 5
-k, 0 k. O )
0 —k. 0 Kk
After the relaxation time g, the corresponding transition matrix is given by
TR(tR) = exp(—ﬁRtR). (6)
In the infinite-time relaxation limit (fr — 00), this transition matrix reduces to
040
. 0q04
Te = JimTa(te) = | 5 o ol (7)
0q0¢q

2.2. Measurement
A perfect measurement would faithfully copy the system state to the memory; i.e., if m =0, 1 denotes the
previous memory state and s = 0, 1 the actual system state, it would simply copy (s, m) — (s, s). However, itis

3
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well known that such a perfect measurement is irreversible, leading to a diverging entropy production [19, 20].
Therefore, one usually considers imperfect measurements

(s, m) — (s, s) withprob.e =1 — ¢
(s, m) — (s, 1 — s) with prob. €
with a small error probability 0 < € < 1/2. Using the basis (4) this corresponds to the transition matrix
0

Tm = (8)

S M M
SO o M
(DR e

oo o

00

Y]
Y]

Remarkably, this imperfect measurement process can be implemented by a stochastic Markov process as well,
since 73, = Ty The corresponding time evolution operator reads

e —& 0 O
C — k/ —€ € 0 0 9
M 0 0 €& -—e ©)
0 0 —€¢ €
with arate k', and it is easy to show that the transition matrix 7, in equation (8) is retrieved in the limit of
infinite measurement time:
Ty = lim TM(tM) = lim CXP(—L:MtM) (10)

fp— 00 fp— 00

Thus, we succeeded in implementing the second step as a stochastic Markov process as well.

If the memory is considered as being in contact with some heat bath of inverse temperature f during the
stochastic measurement process, the time evolution defined above implies that the incorrectly measured state
(s, 1 — s) hasahigher energy than the correctly measured state (s, s) and that the corresponding energy
difference between the two composite states is given by

AE = fp'In . (11)
€

2.3.Feedback
The purpose of the feedback is to use the information stored in the memory in order to extract energy from the
system. If the preceding measurement was faithful, this would mean performing the transitions

00 — 00 without extraction of energy
11 - 01 extracting the work W, = AE.

These transitions alone would be again irreversible, causing an infinite entropy production. However, if we add
symmetric transitions in the (unlikely) case of erroneous measurements, namely,

10 = 10 without performing work
01 — 11 performing work, i.e.,W.x = —AE,

we obtain the feedback transition matrix

Tr= (12)

SO -
S O O
- O
O - O

0100

Thus the feedback process is carried out in such a way that the system state is flipped (s = 1 — s) form=1,
while it remains unchanged (s = s) for m = 0. Itis assumed that the feedback transition occurs instantaneously
so that the total time 7 of a complete cycle T — Ty — Trisgivenby 7 = tg + ty.

Since 7% = I, the feedback is fully reversible; hence, it does not produce entropy in the environment.
Moreover, it is easy to see that it simply exchanges the second and the fourth component of a vector, and
therefore it does not change the joint entropy of system and memory. However, as will be shown below, it
generally changes the entropy of the subsystems.

Due to its reversible nature, the feedback as defined above cannot be implemented as a stochastic Markov
process. However, we would like to point out that it is even possible to implement the feedback physically so that
the entire chain of steps is represented cleanly as a sequence of stochastic processes. This can be done by
replacing two subsequent cycles Tg — Ty = Tp » Tr = Ty = T — Trequivalently by
Tr = Ty = TeTrTr = TpTyTr = Tr.Since Tg = TpTrTrand Ty = Tp Ty T satisfy the stochasticity
condition (7% = T, T3 = Tw), the whole sequence of steps can be implemented by stochastic processes,

4



10P Publishing

NewJ. Phys. 17 (2015) 085001 JUmetal

| Relaxation Measurement Feedback |
—

R M F
|Po) € P.) § [P-) [Po)
» « A
Stochastic Markov processes Reversible mapping

Figure 3. Cycle of the engine. The boxes are represented by three 4 X 4 transition matrices Tr, Ty, and 7. After many cycles, the
probability distributions between the steps will become stationary.

providing a safe ground for the calculation of entropy production, mutual information, work, and heat. Having
verified that this description is fully equivalent, we nevertheless keep the explicit feedback for simplicity in the
original form.

Since the rates kand k’ simply rescale ¢t and f,, we will set

k=k:=1 (13)

throughout the paper. Thus, apart from ¢ and t,, the model is controlled by only two parameters, namely, the
relaxation parameter g and the error probability e.

3. Stationary state

If the information engine runs repeatedly through many cycles, the probability distributions between the three
steps will become stationary. The corresponding stationary probability distributions | B ), |B ), and | B ) are
represented as four-component vectors

T
IP) = (POO, POl plo. pil) , (k=0,1,2) (14)

and are determined by the equations
TeTuTr |B) =R)
TrTrTy |R) =|R)
TuTRTF |B) = |R) (15)

with |R) = Tr|R)and |B) = Ty |R) (see figure 3).
The reduced stationary probability vectors of the system (s) and the memory (m) are given, respectively, as

T
Py = (P + P PO + PU')
T
[P{™y = (P + P P{" + PI') . (16)

Clearly, the measurement does not modify the system state, meaning that |P*)) = |P{*)). Similarly, both the
relaxation and feedback do not affect the memory; hence | P{™) = |P™)and |P{™) = |P{™). Asaresult, ina
stationary situation, the information acquired during the measurement is statistically the same in each cycle,
implying that |P{™) = |P{™).

As a simple example, first consider the case of infinite-time relaxation and measurement (¢z, )y = o),
where the matrices T, Ty, and T are given by equations (7), (8), and (12). In this case the normalized
stationary probability vectors turn out to be given by

IB) = (eq, eq. eq, eq) (17)
IR) = ((€q+€q)q‘, (éq+eq)q‘, (éq+eq)q, (éq+€q)q>T (18)
B) = (eq, eq, e eq) . (19)
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The corresponding reduced vectors for the system and the memory read

Iy (€
Py =(¢)
1) = 12 = ()
q
m m m €q+ eq
1P = IP™) = |P; )>=(€q+€q). (20)

4. Entropy and entropy production

4.1. Shannon entropy

Given the stationary probability distributions | B, ), it is straightforward to compute the entropies of the system
(s), the memory (m), and the joint system (sm1) between the steps in a stationary cycle, using the definition of the
Shannon entropy

H=-)P'InPr, (21)
c

where the sum runs over the vector components. Because of the aforementioned coincidence of various
probability vectors we have H\® = H{ and H™ = H{™ = H{™. Furthermore, the reversibility of the feedback
process guarantees that H™™ = H{™.

For tg, t) — o0, the expressions for the Shannon entropies reduce to

H{ = h(e) + h(e)

H{Y = h(g) + h(4q) (22)

HW, = h(eq + éq) + h(eq + éq),
H{"=h(q) + h(q) + h(e) + h(e)
H™ =h(q) + h(q) + h(eq +eq) + h(eq + &q), (23)

where we used the notation 4 (p) :== —p In p.

During the relaxation process, where the system tries to restore the equilibrium distribution from the
overpopulated ground state after energy extraction, the system entropy H is expected to increase, provided
that the error probability e is sufficiently small (¢ < q). The same applies to the composite entropy H"™,

To summarize, the entropy changes during relaxation (R), measurement (M), and feedback (F) are
given by

(s) (s) — () — _AHY)
AHE > 0, AH{) = 0, AHY = —AH < 0,
AHY" = AH{P = AH{™ = 0,
AHE™ > 0, AHS™ = —AHE™, AHE™ = 0. (24)

4.2. Mutual information
With these expressions, it is straightforward to compute the mutual information

L=HP +H™-H >0, (k=0,1,2) (25)
which is a measure for the correlation between system and memory. This correlation is expected to build up
during the measurement and then to decrease during feedback and relaxation, implying the inequalities

Alr <0, Ay >0, AlIr<0. (26)

Itis interesting to note that the change of the composite entropy is purely given by the amount of mutual
information acquired during the measurement, i.e.,

AH{™ = —AIy  and AHE™ = Al (27)
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For tg, tpr = o0, we have
Ip=h{(eq + &q) + h(eq + &q) - h(q) — h(q)
L =0
L=h(eq+eq) +h(eq+eq) — he) - h(e). (28)

Note that the result I; = 0is true only if the relaxation time is infinite, which obviously destroys all correlations
between system and memory.

4.3. Entropy production
Let us now turn to entropy production. According to Schnakenberg [21-23], whenever the system or the
memory jumps spontaneously from the configuration ¢ to another configuration ¢’, the amount of entropy

AHE™, (1) = In Y= (29)

Wee (1)

is generated in the environment. Here, w._, ~ () denotes the transition rate at time ¢. Therefore, the mean
entropy production rate is given by

d env __ c WC—>L‘ (t)
aH C;P (O)Wee (H)In ) (30)

In an arbitrary nonequilibrium system, one would have to solve the master equation, plug the solution into the
equation above, and integrate the resulting expression over a certain window of time. However, in the present
case this is not necessary, since the model is so simple that the rates happen to obey detailed balance, defined as
PiyWee = ft;t W in the stationary equilibrium state. In this case, it is therefore straightforward to rewrite
the equation given above as

%Henv — Z (PC,WC’—m - PEWC_w’) In Psctat

=) — InP,, (31)

allowing us to compute the average entropy production in each step directly without integration by means of

AH®™ = Z (P)ginal mzt) In Pscmt (32)

c

Here Pj,;;and Pf;,,; denote the initial and the final probabilities for a finite time span, while P, is the stationary
probability distribution that would emerge after an infinite long time. For example, during relaxation, Pg;,; can
be obtained by taking tg — oo in the expression for P{ in equation (18). Similarly, during measurement,
Pg.; = limy,,, o Ps with P given in equation (19).

With the above formula, we obtain the following expressions for the entropy production in each process:

AHE™ = (P + Pl plo_ lll)ln q

RS}

AHSY = (PO + P = P — PI0)In <
€

AHenv

0. (33)

Note that these expressions hold for any finite t and t5;. The last result is obvious, since the feedback with
T % = Iisareversible operation.
For tg, ty = o0, byinserting equations (17)—(19) we get explicit expressions

AHR™ = —(q — €)In 1
q
AHY =24 (e - €)In < (34)
€

which are plotted for various error probabilities in ﬁgure 4. Asone cansee, for € < g < 1/2 the entropy
production during relaxation AHg" is negative, meaning that the engine imports entropy (heat) from the
environment rather than producmg it. Obviously, this is the regime of interest where we would like to operate
our information engine. However, as can be seen, the negative entropy production during relaxation is always
overcompensated by a positive one during the measurement, which is consistent with the second law of
thermodynamics. Notice that the entropy production during measurement is always positive, since € < 1/2.

7
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Figure 4. Entropy production according to equation (34) during relaxation (lower curves) and measurement (upper curves) for
various values of e as a function of q. If the measurement is accurate enough (¢ < g < 1/2), the entropy production during relaxation
becomes negative.
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Figure 5. Balancing flow of heat and work during the engine cycle (see text).

5. Work extraction and supply

By virtue of Clausius’ law dQ = T'dH, the produced entropy can be translated directly into an amount of heat.
In most studies, it is usually assumed that the temperatures of the system and the memory are identical.
However, for the sake of generality, let us allow the temperatures to be different, assigning f; = 1/Tx during
relaxationand ), = 1/Ty during measurement, as sketched in figure 5, including the conventional setup of
information engines with a single reservoir as a special case. Thus the respective heat contributions averaged over
all possible stochastic trajectories are given by

(Qr) = By AHE™, (Qum) = By AHR. (35)

Here we use the sign convention that heat flowing away from the engine into the environment has a positive sign;
i.e., we expect (Qg) to be negative and (Q,, ) to be positive.

In order to maintain stationarity of the system after one engine cycle, the average work (W,, ) extracted
during feedback should exactly balance the average heat (Qg ) during relaxation; i.e.,

(Wex) = —(Qgr) > 0. (36)

Consequently, the measurement process does not change the energy of the system. This requires an additional
influx of energy in the form of extra work (W,,,, ) into the memory, which is necessary to compensate the loss of
heat (Q,, ) flowing away to the environment during the measurement process:

(Wap ) = (Qum) > 0. (37)

The average net work performed by the machine, defined as the difference of extracted and supplied work, is
therefore given by
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(Whet) = (Wex) = (Wapp ) = —(Qr) — (Qum)- (38)

Note that the net work can change its sign, depending on the choice of the parameters g, €, tg, and t,,.
Let us first compute the extracted work. According to section 2.3, (W, ) is given by (P;' — PY')AE, where
AE = py 'In g (see(3)). Using |P1(5)) = |P2(5) ) (no system change during measurement), together with the

feedback identities P;* = P;'and P,° = P,° (flip sonlywhen 1 = 1), it is easy to show explicitly that
(Wex) = =B "AHR™ = —(Qx)- (39)

The additional work (W, ) supplied during the measurement process can be interpreted as the energy needed
to operate the measurement device. Technically this contribution comes from the fact that the energy levels of
the joint system are different during relaxation and measurement so that extra energy is needed to move them
around. For example, this could be done by applying an external potential in order to make the energy level of
the erroneous composite state (s, 1 — s) higher than that of the correctly measured state (s,s) by the amount of
AE = g'In 5 When the external potential is turned on just before the measurement, the average energy of the
composite of system and memory increases by (E;, ), and, similarly, it loses the energy (E,,; ) when the potential
is turned off at the end of the measurement:

€ €

POI + PIO POI + PIO
ull Ll S (Eout) = 22 T2 p 2. (40)

Ei,) =
i) M € Pu €

Comparing the difference (W, ) = (E;,) — (Eou ) With equation (33), one can see immediately that

(Wap ) = By AHSTY = (Qur)- (41)
In thelimit tg, tj; — oo, the average work contributions read
(Wey =11 2
R
2qq( € — € z
(Wap) = Mlnf. (42)
Pu €

6. Thermodynamic second laws and fluctuation theorems

The total entropy production of the whole setup during relaxation (R) and measurement (M) is given by

AHR' = AHE™ + AHF™ (43)
AHS = AHS™ + AHS™. (44)

According to equation (27), the entropy differences in the joint system are given solely in terms of the mutual
information difference

AHS" = —AH" = Aly (45)

while the entropy differences in the environment are given in terms of the transferred heat by

env

AHRy = P {Qrm)- Using equations (39) and (41), we arrive at
AHR = +AIy — Br{Wix)
AHN' = Ay + By (Wap ) (46)

For the total system, including the environment, the second law of thermodynamics should be satisfied for each
process;i.e.,

AHP >0 and AHY >0, (47)
or, equivalently,
BriWex) <Ay < Py {Wap )- (48)

Most existing studies are only interested in the first inequality during relaxation, while the other one during
measurement is ignored. The purpose of this work is to point out that there is a second inequality for the
measurement process as well, and that the two inequalities are complementary with respect to each other. More
specifically, if f, = p,,, the extracted work is bounded from above by the mutual information, while the work
required to operate the memory is bounded from below by the same threshold. This means that the setup cannot
be used to gain work out of nothing, (W) < 0, as expected by the second law. However, if the two reservoir
temperatures were different (8 < f,,), the extracted work could be larger than the supplied one, in which case
the system operates like a conventional heat engine (see figure 6).

9
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Figure 6. Infinite-time relaxation and measurement. The extracted work { Wy ), supplied work (W, ), and the mutual information
Al = I are displayed as functions of g for a constant error probability ¢ = 0.1. Here we choose 3, = 1, 2, and 5with g, = 1. Note
that B, (Wi, ) = AHy;" isindependent of ;. (Wex ) is positive at € < q < 1/2,as expected from equation (42). When the
temperature of the measurement reservoir is sufficiently lower than that of the relaxation reservoir, for example, g,, = 5, the
extracted work (W ) can be larger than the supplied work (W, ), as indicated by the arrow.

Itis almost trivial to construct the IFTs through the standard approach of stochastic thermodynamics [23]
by considering the heat along all possible trajectories in the composite configurational state space. With an
appropriate definition of the Shannon entropy for a given trajectory [23], one can easily get the fluctuation
theorems for the total entropy production for each process as

(e—AH}{’t(traj.)) =1, (e—AH}&‘(traj»)> =1. (49)

The second laws in equation (47) are simple consequences of the IFTs with AH}%), = (AHR) (traj. )). Itis
rather tricky to find the IFTs in terms of work and mutual information, because it requires an equilibrium state
asaninitial condition. This is the case only when t; becomes infinite so that the system is in equilibrium at the
start of the measurement as well as at the beginning of the feedback. However, note that the bounds for works in

equation (48) are valid, even if t5 is finite.

7. Finite-time relaxation and measurement

In practice, an engine is only useful if the cycle time 7 is finite. Thus, it is obviously of interest to derive all physical
quantities as a function of the cycle time. This allows one to find the optimum for maximal power generation, as
will be discussed in the next section.

Itis straightforward to obtain the transition matrices for relaxation and measurement for finite time spans t

and
R + Rq 0 Rq 0
T (t ) _ 0 R + Rq 0 RG
AV Rq 0 R + Rq 0
0 Rq 0 R + Rq
M+ Me  Me 0 0
Me M + Me 0 0
Tult = _ - , 50
M( M> 0 0 M + Me Me (50)
0 0 Me M + Me
where
R=e™® and R=1-R (51)
M:=e™ and M:=1- M. (52)

Note that the transition probability from (s, 1 — s) to (s, s) during measurement, MEé, is smaller than &, which
means that the measurement for finite #)is less accurate than in the limit of infinite time.
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Figure 7. Finite-time relaxation and measurement. The extracted work (W), supplied work (W,,, ), and the mutual information I,
and Al are shown as functions of ek, Here, we choose tg = ty;,=0.2, € = 0.1, f = 1,and 8, = 5.

Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as|B),|R), and | P ) for finite tr and ty;, which are not shown here explicitly. The heat dissipation during the
finite-time relaxation and measurement can be obtained from equation (33), while the extracted work and the
supplied work are given by equations (36) and (37).

Using therelation |B) = Ty, |R) we find that

€€ imé. (53)
€

(Vvsup> =
M

Here € = P"' + P!%is explicitly given by
R(éq + eq) + a(Rq + RMG)

£(tR, tM) = Yy , (54)

witha = R + R (4 — q) (€ — €).In asimilar manner, we obtain { W, ) as the function of £:
—e—M(E—-e) -
€ — M( €) Rl

q
Wex) =
(Wex) Pr

nl (55)
q

Inthelimitof tg, tpy = o0 (R, M — 0), we consistently recover equation (42).

Note that the finite-time works in (53) and (55) decrease monotonously with R and M (see figure 7).
Moreover, since the correlation between system and memory builds up continuously during the measurement
process, it is obvious that A, decreases with M, remaining positive by definition. The positivity of Al
guarantees that (W, ) is also positive. On the other hand, (W, ) can be negative for short-time measurement
and relaxation, as its upper bound AI,; approaches zero for t); — 0.

The monotonous dependence shown in figure 7 suggests that (W, ) becomes maximal for maximal
measurement accuracy (fy; — o) and full relaxation (fg — o0) in order to redistribute and pump the
overpopulated ground state s = 0 back to the energetically excited state s= 1. Therefore, both limits ¢, tg = oo
have to be carried out simultaneously. To establish this combined limit conveniently, let us from now on set

tR=1Itm = 1/2, (56)

meaning that R = M = e~/2. With this convention we expect { W, ) to be maximal in the limit of infinite cycle
time (¢ — 00). Moreover, as 7 decreases, we expect (W ) to decrease and eventually to become negative.

If (Wex) > (Wi, ), the system operates like a conventional heat engine. For infinite 7 the net work (Wi ) is
maximal, but the power (net work per unit time) vanishes. For finite but sufficiently large  and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for (W, ) and (W, ) cross each other at some finite cycle time 7 = 7,. At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, there will be a
particular cycle time in between, at which the power of the engine is maximal. In the next section, we will discuss
this aspect in more detail.
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Heat source

Pr

|
R ‘ M F
QMl

Heat sink

Pu

Figure 8. Interpretation of the information engine as a conventional heat engine. Heat | (Qg ) | flows from the heat reservoir at
(high temperature) into the engine, which produces the work gain (We ) = (Wex) — (Wiyp ). The remaining heat (Qy) is transferred
to another reservoirat 8,, (low temperature).

8. Efficiency

Let us now assume that the information engine operates in a regime where the net work is positive. In this case
the whole setup can be interpreted as a conventional heat engine, as sketched in figure 8. As f, < f,,, the upper
reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with the memory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as

(Wnet> -1 <‘/VS“P>

(7) = =1- . (57)
INRTTONY (Wer)

Using equations (53) and (55) the efficiency can be rewritten as

n(t)=1- ﬁﬂ (1), (58)
Pu
where

(E—e)MIn (€

() € n (e/e) (59)

[q— ¢~ M(E-e)RIn(q/q)

Note that the relaxation and measurement processes are not quasi-static, so that even in the limit 7 = oo the
engine never reaches the Carnot efficiency ., = 1 — Z—R Instead, we find that the efficiency is limited by a
M

different upper bound #,,,, which can be computed as follows. According to the monotonicity arguments
discussed in the preceding section, 7 (7) is expected to become maximal in the limit 7 — oo. This suggests that

N(T) € Ry = lim 7(7) =1 - ﬂﬂ—Rloo, (60)

T—>00 M

where

A = lim 2(s) = qu‘(é - e)ln (é/e)

(61)
= (g - e)ln (d/q)

Figure 9 shows 1/ as a function of q for several values of . It is obvious that 1/, is positive for ¢ < q < 1/2,
with a unimodal shape due to the similar behavior of (W, ) demonstrated in figure 6. As € — 0, 1/, approaches
zero, except for g ~ 0.Inthelimit ofboth g - 0 and ¢ — 0, A, approaches a constant bounded from below by
Aw = 2.Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
Pri/Pr = 2 for the infinite-time process. In short, we find that the efficiency of the information engine is
bounded by
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q

Figure9. 1/, according to equation (61) as a function of g for several values of e. In the infinite-time limit, (W, ) and 1/1, are
positive only for € < g < 1/2. Note that, as € goes to zero, A, approaches to 2, the minimum, at g — 0.

2
M S 1 — ﬁ < 7. (62)

Py
In conventional heat engines operating with a finite cycle time, thermodynamic processes are no longer quasi-
static, leading to an efficiency below the Carnot bound 7,. In our case, we also find that # (z) becomes maximal in
thelimit 7 — oco. However, in contrast to the Carnot limit, where the entropy production vanishes, the entropy
production per cycle in our model AH™ + AH,¢" becomes also maximal at T = oo. This is one of the crucial
features of our information engine, which is totally distinct from conventional heat engines. Nevertheless, the
entropy production rate (per unit time) decreases with increasing 7 and finally vanishes at 7 = co. Hence, one
may also say that the maximum efficiency is found at the minimum entropy production rate.

Similarly, the average power gain, (P) = (W, )/7, in fact vanishes for 7 — 00, because (W, ) remains finite
in this limit. For a realistic engine, we usually want to optimize the power gain, trading off the efficiency against
the cycle time. As expected, (P) is maximized at some finite time, 7,, between 7, and o0, as shown in figure 10(a).

The efficiency of heat engines at maximal power has been studied previously in [24-26]. Especially, for the
Curzon—Ahlborn (CA) endoreversible model [24], it is well-known that the efficiency 7, at the optimal power

isgivenby -, =1 — ﬂ -In figure 11, we plot the efficiency at optimal power 7,, = 1 (z = 7op),
according to equation (58), as a function of 7, instead of 77.. It turns out that the functional behavior of ,,, is
completely different from 7., .

In more general situations, it has been found that the efficiency at the maximum power obeys a universal
form, Mop = 1lc / 24+ 0 (;1C2 ) for small #,, when the engine and heat baths are strongly coupled [25, 26]. Our
information engine exhibits a completely distinct behavior, even for small 7,,,,. As seen in figure 11, 77,,, is more
orless the sameas #,,,, in this regime.

In order to investigate this unusual behavior in more detail, we now examine 7,, analytically for small ..
As the stall time 7, and thus 7,, (> 7,) becomes large, a small R expansion may be valid for small . .

Expanding 7 (7) in equation (58) up to the linear order of R = "2, we get
& & -
’7(1) ~ Mmax — ( - + O_e)e_‘[/z’ (63)
Ey—€ q—¢€

wherewe haveused € ~ &) + £ R with
80:2qq(€—€) +e€
&=(q-¢)~(a-q)(¢~¢)q-e) ~2qa(c ~¢). (64)

We also checked that the linear coefficient inside the parentheses in equation (63) is always numerically positive
intheinterval € < g < 1/2.
As the stall time 7 is defined by 7 (z;) = 0, equation (63) immediately gives us

e~ A’ (65)

max
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Figure 10. (a) The efficiency 7 and power gain (P) as functions of e™*. (b) €™ and e™™” as functions of #,,,,,.. In (b), the dotted line
~x? is obtained from equation (65), and the dashed line corresponds to equation (71). We choose tg = tj;,=0.2, € = 0.1,and
r = 1forboth (a) and (b). Weset g,, = 5 for (a) and vary g,, for (b).

T e-005,9-006 —— ]
€=0.05, q=0.1 -
€=0.05, g=0.2
08+ e=0.1,0=0.2 |
€=0.1,0=0.3
€=0.2,9=0.3 -~ )
06k e=0.2,9=04 —— |
o
=
0.4 ) 7
1-(1x)°8
02+ 7
0 ‘ ‘ ‘ | |
0 0.2 0.4 06 08 :

nmax

Figure 11. The efficiency 7,, at the optimal power for various € and q. Here we choose k = k" and tg = ty for simplicity.

where the coefficient A is given by

&
As:( !

-2
E —

+ 222

Ey—€ q-—c¢€

(66)
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It turns out that the scaling behavior in equation (65) extends quite well to finite 77, , as can be seen in
figure 10(b).
The optimal time 7, should satisfy

d(p
a| _,
dr |,
op
which is rewritten as
Mot (Rop))  d(Wa (R)) )
Top B dr - ’
where R, = e /2. As Top > Ts» Rop should be also small. This allows us to expand the above equation for
small R, yielding
T E & —
1- ﬁﬁop = 2] 7R, (68)
P 2\ & —¢€ q-—¢€
where & and £ are the same as in equation (64), and 4, is given by
& Eo—
Aop = Aeo + /100( L 2 G)Rap. (69)
Ey—¢€ q—c¢€
Plugging the above expression for 4,, into equation (68), we get
AS_I/ZROP _ ’/ImaTx — Mmax , (70)
L2 1= In R,
which yields
m, ’ 1
e~ As[l e ] = (71)
1 fhnax [1+f< _ln”max):l
where
1 1 1
f(x)=—[1nx+1——1nAs+ﬂ]. (72)
X 2 X
Finally, inserting equation (71) into equation (63), it is straightforward to find an approximate expression for
rlop:
1
nop ~l1- Nmax (73)

1 g [ 14 (=10 ) |

Therefore, in the limit of 73,,,, — 0, one cansee 77,, & 7,,,,, not %nmax, and that the next correction is logarithmic
and therefore quite slow. This calculation confirms that the linear irreversible thermodynamics slightly out of
equilibrium in [25] should not be applicable in our case, simply because our processes are far from equilibrium.
Indeed, in our case, the entropy production is maximal in the limit of ,,, — 0.In future studies, the validity of
Nop X Nmax sShould be addressed in the context of universality for general information engines, showing the
maximum efficiency at the same point where the entropy production is maximal.

9. Conclusions

In this work, we have studied a simple example of an information engine which can be realized physically in
terms of stochastic Markov processes. In agreement with previous studies, we find that the information feedback
allows one to extract work in a situation where this would be thermodynamically impossible without feedback.
Moreover, we confirm that total entropy production during relaxation obeys a fluctuation theorem, implying
that the extracted work is bounded from above by the mutual information gain between memory and system.

Providing a physical realization of the memory and the feedback loop, we have shown that the measurement
process (i.e., the information-processing part of the information engine) exhibits similar properties, which are
opposite in character. In particular, the entropy production during measurement is found to obey a fluctuation
theorem as well. This implies that the measurement process itself costs energy, and that this additional energy
supply is bounded from below by the same mutual information gain. Putting these pieces together, it is no
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surprise that the total setup consisting of system and memory satisfies the conventional second law of
thermodynamics. Thus, we have shown that the thermodynamic second law, which is required to hold for the
entire system during any finite process, leads to a duality in the properties of system and memory in this kind of
information engine.

For simplicity, we have presented most of our analytic results in the limit of infinite measurement- and
relaxation time. However, the extension to finite times is straightforward. At the end of the paper, we have
explicitly described some numerical results for finite-time measurement and relaxation. As in conventional heat
engines, the efficiency of the information engine is maximized when the cycle time becomes infinite. However,
in contrast to conventional heat engines, the entropy production is also maximal in this limit. On the other
hand, we have demonstrated that the power gain acquires its maximum at a finite cycle time. We have also
discussed the relation between the maximal efficiency and the efficiency at the operating point of maximal
power.

The striking differences between our model and conventional reversible heat engines can be traced back to
the fact that our setup operates under non-equilibrium conditions. It would be interesting to investigate to what
extent our observations can be explained in a universal framework.
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