
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 210.219.50.14

This content was downloaded on 25/08/2015 at 09:13

Please note that terms and conditions apply.

Total cost of operating an information engine

View the table of contents for this issue, or go to the journal homepage for more

2015 New J. Phys. 17 085001

(http://iopscience.iop.org/1367-2630/17/8/085001)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/17/8
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


New J. Phys. 17 (2015) 085001 doi:10.1088/1367-2630/17/8/085001

PAPER

Total cost of operating an information engine

JaegonUm1,2, HayeHinrichsen1,5, ChulanKwon3 andHyunggyuPark4

1 UniversitätWürzburg, Fakultät für Physik undAstronomie, 97074Würzburg, Germany
2 QuantumUniverse Center, Korea Institute for Advanced Study, Seoul 130-722, Korea
3 Department of Physics,Myongji University, Yongin 449-728, Korea
4 School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea
5 Author towhomany correspondence should be addressed.

E-mail: hinrichsen@physik.uni-wuerzburg.de

Keywords:Maxwell demon, information engine,mutual information, fluctuation theorem

Abstract
We study a two-level system controlled in a discrete feedback loop,modeling both the system and the
controller in terms of stochasticMarkov processes.Wefind that the extractedwork, which is known
to be bounded from above by themutual information acquired duringmeasurement, has to be
compensated by an additional energy supply during themeasurement process itself, which is bounded
by the samemutual information frombelow.Our results confirm that the total cost of operating an
information engine is in full agreementwith the conventional second law of thermodynamics.We also
consider the efficiency of the information engine as a function of the cycle time and discuss the
operating condition formaximal power generation.Moreover, wefind that the entropy production of
our information engine ismaximal formaximal efficiency, in sharp contrast to conventional reversible
heat engines.

1. Introduction

In 1867,Maxwell created a thought experiment to demonstrate a possible violation of the second law of
thermodynamics: a thermally isolated containerwith a gas is divided into two parts, and afictitious demon
opens or closes a door between the two parts depending on the velocity of the approaching particles, creating an
increase of the temperature in one of the compartments [1].

Smoluchowski was the first to provide an explanationwhyMaxwell’s demon does notwork. To this end, he
modeled the demonmechanically by a trapdoor combinedwith a gentle spring. The trapdoor acted as a valve in
such away that fast particles coming fromone side can open the doorwhile slow ones cannot, leading to a
pressure difference. However, taking the full dynamics of the apparatus into account, Smoluchowski
demonstrated that the energy of the spring system itself equilibrates at such a high energy that it opens and closes
essentially randomly, leading to the same pressure difference as if the trapdoorwas always open.

In 1928, Szilárd refined the concept ofMaxwell’s demon, suggestingwhat is known today as the Szilárd
engine [3]. The starting point is a box that contains only one particle (see figure 1). If a wall is inserted in the
middle, the particle will be in one of the two parts. Expanding the volume isothermally to its original size by
moving the shutter into the empty half of the box, one can extract theworkW k T ln 2B= . However, this
requires knowing inwhich compartment the particle actually is, demonstrating that the possession of
information can be converted into physical work. Thus, in order to keep a Szilárd engine running, a closed loop
ofmeasurement and feedback is needed. Very recently, such a feedback scheme could be realized experimentally
for thefirst time [4].

Since the feedbackmechanism in the Szilárd enginewas perceived as information processing at zero cost, it
seemed to produce usablework fromnothing, violating the second law.However, as shown by Landauer [5] in
1961, any irreversible logical operation requires one to apply awell-definedminimumofwork. In the case of the
Szilárd engine, the demon has to store the information about the particle position in a single bit. According to
Landauer’s principle, resetting this bit requires one to convert awork of k T ln 2B into heat. As shownby Bennett
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[6], who realizedmeasurement and feedback as reversible processes, this extra work for resetting restores the
second law.

RecentlyMaxwell’s demon attracted renewed attention, as it was shown that a system in a feedback loop
obeys an integral fluctuation theorem (IFT) of the form

e 1, (1)W Iex〈 〉 =β Δ−

implying W Iexβ Δ〈 〉 ⩽ 〈 〉, whereWex is the extractedwork during feedback, β is the inverse temperature, and IΔ
is the gainedmutual information between system and demon during themeasurement [7–9]. Thisfluctuation
theorem implies that in each cycle of the engine the extractedwork is limited by the gainedmutual information
—a highly plausible result that nicely demonstrates the equivalence of thermodynamic work and information.

Subsequently this remarkable result wasmademore specific in variousways. For example, it was shown that
one can construct feedback schemes that satisfy the inequality sharply [10, 11].Moreover, the IFTwas
generalized to schemeswith finite-time relaxation [12, 13] and continuous feedback schemes [14]. Very
recently, the generalized IFT could also be confirmed experimentally [15].

The arising problemwith these generalized Jarzynski equalities is that the tightness of the bound seems to
depend on the specific feedback scheme, such as discrete and continuous feedback aswell asmemory tape
models. This led Barato et al to look for a unifyingmaster IFT [16–19]. To achieve this, they duplicated the
configuration space,modeling bit flips of thememory by transitions between the two replicas. Doing so, they
followed Smoluchowski’s original idea ofmodeling thewhole feedback loop as a physical device, defined as a
stochasticMarkov process.

In this paper, we follow these lines of thought, being interested in the total cost of operating an information
enginewith a finitememory as described above. Instead of duplicating the configuration space, we devise
physically realizable stochastic processes of the joint systemnot only for relaxation, but also for the
measurement process.We show that the generalized IFT for the relaxation of a system is always accompanied by
an opposite IFT during themeasurement carried out by the demon, restoring the second law for the joint system.
This implies that a certainminimal amount of work has to be done on thememory, in accordancewith
Landauer’s principle. The calculation of the total cost enables us to derive the efficiency of the information
engine as a function of its cycle time.We also discuss the optimal cycle time and corresponding efficiency at
which the extracted power ismaximized.

2.Definition of aminimalmodel

Inwhat followswe consider a systemwith two different energy levels separated by EΔ . The system is coupled to a
heat bathwith inverse temperature β. The controller (demon) is implemented as a one bitmemory.We devise a
discrete feedback scheme evolving in three steps (see figure 2). First the system relaxes thermally without
external influence. Then the actual energy level, denoted by 0 and 1, is copied to thememory of the controller.
Finally, if thememory bit is 1, the controller induces aflip of the system 1 0→ , extracting the energy EΔ ;
otherwise it does nothing.

Figure 1. Szilárd engine. In a boxwith a singlemolecule, a piston is inserted in themiddle. Depending on the location of the particle,
the piston is pushed in one direction, allowing us to extract work.However, placing the load correctly requires one bit of information
about the position of the particle. At the end, the piston is removed at zero cost.
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Following Barato and Seifert [19], we are aiming tomodel these steps by stochasticMarkov processes,
including both the system and thememory. This defines a four-dimensional configuration space inwhich each
step can be represented by a simple 4 × 4matrix. In the following, we discuss each of the three steps in detail:

2.1. Relaxation
During relaxation, the systemflips randomly according to the rules

k

k

0 1 with rate

1 0 with rate .

→
→

+

−

For convenience, we express these rates in terms of

k k k q
k

k
and (2)= + =+ −

+

with q 1

2
< . After infinite time, the system eventually reaches an equilibrium statewith the stationary probability

distribution P P q1stat stat
1 0= − = . Thismeans that the energy difference between the two levels is given by

( )E
q

q
q qln

¯
¯ 1 . (3)1Δ β= = −−

Let us nowdescribe the relaxation process in the composite configuration space of system andmemory.
Throughout this paper, wewill use a canonical configuration basis ordered by

(system state, memory bit) {00, 01, 10, 11}. (4)=

Since thememory is inactive during relaxation, the time evolution operator R for relaxation represented in this
basis reads

( )k k

k k

k k

k k

k k

k k

1 0
0 1

0 0

0 0

0 0

0 0

. (5)

R

System Memory

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟


  



=
−

−
⊗

=

−
−

−
−

+ −

+ −

+ −

+ −

+ −

+ −

After the relaxation time tR, the corresponding transitionmatrix is given by

( ) ( )t texp . (6)R R R R = −

In the infinite-time relaxation limit (tR → ∞), this transitionmatrix reduces to

( )t

q q

q q

q q

q q

lim

¯ 0 ¯ 0

0 ¯ 0 ¯
0 0

0 0

. (7)R
t

R R
R

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 = =

→∞

2.2.Measurement
Aperfectmeasurement would faithfully copy the system state to thememory; i.e., ifm=0, 1 denotes the
previousmemory state and s=0, 1 the actual system state, it would simply copy s m s s( , ) ( , )↦ . However, it is

Figure 2. Schematic drawing of the information engine studied in the present work. The configuration of a thermally relaxing two-
state system ismeasured by a controller and stored in a one-bitmemory. If the system is found in the upper level, the controller
induces a transition back to the ground state, extracting the energy EΔ .
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well known that such a perfectmeasurement is irreversible, leading to a diverging entropy production [19, 20].
Therefore, one usually considers imperfectmeasurements

s m s s

s m s s

( , ) ( , ) with prob. ¯ 1

( , ) ( , 1 ) with prob.

ϵ ϵ
ϵ

↦ = −
↦ −

with a small error probability 0 1 2ϵ< < . Using the basis (4) this corresponds to the transitionmatrix

¯ ¯ 0 0
0 0

0 0
0 0 ¯ ¯

. (8)M

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

ϵ ϵ
ϵ ϵ

ϵ ϵ
ϵ ϵ

=

Remarkably, this imperfectmeasurement process can be implemented by a stochasticMarkov process aswell,
since M M

2 = . The corresponding time evolution operator reads

k

¯ 0 0
¯ 0 0

0 0 ¯
0 0 ¯

(9)M

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

ϵ ϵ
ϵ ϵ

ϵ ϵ
ϵ ϵ

= ′
−

−
−

−
with a rate k′, and it is easy to show that the transitionmatrix M in equation (8) is retrieved in the limit of
infinitemeasurement time:

( ) ( )t tlim lim exp . (10)M
t

M M
t

M M
M M

  = = −
→∞ →∞

Thus, we succeeded in implementing the second step as a stochasticMarkov process aswell.
If thememory is considered as being in contact with some heat bath of inverse temperature β during the

stochasticmeasurement process, the time evolution defined above implies that the incorrectlymeasured state
s s( , 1 )− has a higher energy than the correctlymeasured state (s, s) and that the corresponding energy
difference between the two composite states is given by

E ln
¯

. (11)1Δ β ϵ
ϵ

′ = −

2.3. Feedback
The purpose of the feedback is to use the information stored in thememory in order to extract energy from the
system. If the precedingmeasurement was faithful, this wouldmean performing the transitions

W E

00 00 without extraction of energy

11 01 extracting the work .ex Δ
↦
↦ =

These transitions alonewould be again irreversible, causing an infinite entropy production.However, if we add
symmetric transitions in the (unlikely) case of erroneousmeasurements, namely,

W E

10 10 without performing work

01 11 performing work, i.e., ,ex Δ
↦
↦ = −

we obtain the feedback transitionmatrix

1
1

1
1

0 0 0
0 0 0
0 0 0
0 0 0

. (12)F

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ =

Thus the feedback process is carried out in such away that the system state isflipped (s s1↦ − ) form=1,
while it remains unchanged (s s↦ ) form=0. It is assumed that the feedback transition occurs instantaneously
so that the total time τ of a complete cycle R M F  → → is given by t tR Mτ = + .

Since IF
2 = , the feedback is fully reversible; hence, it does not produce entropy in the environment.

Moreover, it is easy to see that it simply exchanges the second and the fourth component of a vector, and
therefore it does not change the joint entropy of system andmemory. However, as will be shownbelow, it
generally changes the entropy of the subsystems.

Due to its reversible nature, the feedback as defined above cannot be implemented as a stochasticMarkov
process. However, wewould like to point out that it is even possible to implement the feedback physically so that
the entire chain of steps is represented cleanly as a sequence of stochastic processes. This can be done by
replacing two subsequent cycles R M F R M F R      → → → → → → equivalently by

R M F R F F M F R        → → → → . Since R F R F˜   ≡ and M F M F˜   ≡ satisfy the stochasticity

condition ( R R˜
2

˜ = , M M˜
2

˜ = ), thewhole sequence of steps can be implemented by stochastic processes,
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providing a safe ground for the calculation of entropy production,mutual information, work, and heat. Having
verified that this description is fully equivalent, we nevertheless keep the explicit feedback for simplicity in the
original form.

Since the rates k and k′ simply rescale tR and tM, wewill set

k k 1 (13)= ′ ≔

throughout the paper. Thus, apart from tR and tM, themodel is controlled by only two parameters, namely, the
relaxation parameter q and the error probability ϵ.

3. Stationary state

If the information engine runs repeatedly throughmany cycles, the probability distributions between the three
stepswill become stationary. The corresponding stationary probability distributions P0∣ 〉, P1∣ 〉, and P2∣ 〉 are
represented as four-component vectors

( )P P P P P k, , , , ( 0, 1, 2) (14)k k k k k
T00 01 10 11∣ 〉 = =

and are determined by the equations

P P

P P

P P (15)

F M R

R F M

M R F

0 0

1 1

2 2

  
  
  

∣ 〉 = ∣ 〉
∣ 〉 = ∣ 〉
∣ 〉 = ∣ 〉

with P PR1 0∣ 〉 = ∣ 〉 and P PM2 1∣ 〉 = ∣ 〉 (see figure 3).
The reduced stationary probability vectors of the system s( ) and thememory m( ) are given, respectively, as

( )
( )

P P P P P

P P P P P

,

, . (16)

k
s

k k k k
T

k
m

k k k k
T

( ) 00 01 10 11

( ) 00 10 01 11

∣ 〉 = + +

∣ 〉 = + +

Clearly, themeasurement does notmodify the system state,meaning that P Ps s
1
( )

2
( )∣ 〉 = ∣ 〉. Similarly, both the

relaxation and feedback do not affect thememory; hence P Pm m
0
( )

1
( )∣ 〉 = ∣ 〉 and P Pm m

2
( )

0
( )∣ 〉 = ∣ 〉. As a result, in a

stationary situation, the information acquired during themeasurement is statistically the same in each cycle,
implying that P Pm m

1
( )

2
( )∣ 〉 = ∣ 〉.

As a simple example, first consider the case of infinite-time relaxation andmeasurement (t t,R M → ∞),
where thematrices R , M , and F are given by equations (7), (8), and (12). In this case the normalized
stationary probability vectors turn out to be given by

( )P q q q q¯ ¯, ¯ , , ¯ (17)
T

0 ϵ ϵ ϵ ϵ∣ 〉 =

( )( ) ( ) ( ) ( )P q q q q q q q q q q q q¯ ¯ ¯, ¯ ¯ ¯, ¯ ¯ , ¯ ¯ (18)
T

1 ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ∣ 〉 = + + + +

( )P q q q q¯ ¯, ¯, , ¯ . (19)
T

2 ϵ ϵ ϵ ϵ∣ 〉 =

Figure 3.Cycle of the engine. The boxes are represented by three 4 × 4 transitionmatrices R , M , and F . Aftermany cycles, the
probability distributions between the stepswill become stationary.
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The corresponding reduced vectors for the system and thememory read

( )P

P P
q
q

P P P
q q
q q

¯

¯

¯ ¯
¯ ¯

. (20)

s

s s

m m m

0
( )

1
( )

2
( )

0
( )

1
( )

2
( )

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ϵ
ϵ

ϵ ϵ
ϵ ϵ

∣ 〉 =

∣ 〉 = ∣ 〉 =

∣ 〉 = ∣ 〉 = ∣ 〉 =
+
+

4. Entropy and entropy production

4.1. Shannon entropy
Given the stationary probability distributions Pk∣ 〉, it is straightforward to compute the entropies of the system
s( ), thememory m( ), and the joint system sm( )between the steps in a stationary cycle, using the definition of the
Shannon entropy

H P Pln , (21)
c

c c∑= −

where the sum runs over the vector components. Because of the aforementioned coincidence of various
probability vectors we have H Hs s

1
( )

2
( )= and H H Hm m m

1
( )

2
( )

3
( )= = . Furthermore, the reversibility of the feedback

process guarantees that H Hsm sm
2
( )

0
( )= .

For t t,R M → ∞, the expressions for the Shannon entropies reduce to

( )
( )

H h h

H h q h q

( ) ¯

( ) ¯ (22)

s

s

0
( )

1,2
( )

ϵ ϵ= +

= +

( ) ( )
( ) ( )
( ) ( ) ( )

H h q q h q q

H h q h q h h

H h q h q h q q h q q

¯ ¯ ¯ ¯ ,

( ) ¯ ( ) ¯

( ) ¯ ¯ ¯ ¯ ¯ , (23)

m

sm

sm

0,1,2
( )

0,2
( )

1
( )

ϵ ϵ ϵ ϵ

ϵ ϵ

ϵ ϵ ϵ ϵ

= + + +

= + + +

= + + + + +

wherewe used the notation h p p p( ) ln≔ − .
During the relaxation process, where the system tries to restore the equilibriumdistribution from the

overpopulated ground state after energy extraction, the system entropy H s( ) is expected to increase, provided
that the error probability ϵ is sufficiently small ( qϵ < ). The same applies to the composite entropy H sm( ).

To summarize, the entropy changes during relaxation (R),measurement (M), and feedback (F) are
given by

H H H H

H H H

H H H H

0, 0, 0,

0,

0, , 0. (24)

R
s

M
s

F
s

R
s

R
m

M
m

F
m

R
sm

M
sm

R
sm

F
sm

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

Δ Δ Δ Δ

Δ Δ Δ

Δ Δ Δ Δ

> = = − <
= = =
> = − =

4.2.Mutual information
With these expressions, it is straightforward to compute themutual information

I H H H k0, ( 0, 1, 2) (25)k k
s

k
m

k
sm( ) ( ) ( )= + − ⩾ =

which is ameasure for the correlation between system andmemory. This correlation is expected to build up
during themeasurement and then to decrease during feedback and relaxation, implying the inequalities

I I I0, 0, 0. (26)R M FΔ Δ Δ< > <

It is interesting to note that the change of the composite entropy is purely given by the amount ofmutual
information acquired during themeasurement, i.e.,

H I H Iand . (27)M
sm

M R
sm

M
( ) ( )Δ Δ Δ Δ= − =
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For t t,R M → ∞, we have

( ) ( ) ( )

( ) ( ) ( )

I h q q h q q h q h q

I

I h q q h q q h h

¯ ¯ ¯ ¯ ( ) ¯

0

¯ ¯ ¯ ¯ ( ) ¯ . (28)

0

1

2

ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ

= + + + − −
=

= + + + − −

Note that the result I 01 = is true only if the relaxation time is infinite, which obviously destroys all correlations
between system andmemory.

4.3. Entropy production
Let us now turn to entropy production. According to Schnakenberg [21–23], whenever the systemor the
memory jumps spontaneously from the configuration c to another configuration c′, the amount of entropy

H t
w t

w t
( ) ln

( )

( )
(29)c c

c c

c c

envΔ =→ ′
→ ′

′→

is generated in the environment. Here, w t( )c c→ ′ denotes the transition rate at time t. Therefore, themean
entropy production rate is given by

t
H P t w t

w t

w t

d

d
( ) ( )ln

( )

( )
. (30)

c c

c
c c

c c

c c

env ∑=
≠ ′

→ ′
→ ′

′→

In an arbitrary nonequilibrium system, onewould have to solve themaster equation, plug the solution into the
equation above, and integrate the resulting expression over a certainwindowof time.However, in the present
case this is not necessary, since themodel is so simple that the rates happen to obey detailed balance, defined as
P w P wstat

c
c c stat

c
c c=→ ′

′
′→ in the stationary equilibrium state. In this case, it is therefore straightforward to rewrite

the equation given above as

( )t
H P w P w P

P

t
P

d

d
ln

d

d
ln , (31)

c c

c
c c

c
c c stat

c

c

c

stat
c

env ∑

∑

= −

=

≠ ′

′
′→ → ′

allowing us to compute the average entropy production in each step directly without integration bymeans of

( )H P P Pln . (32)
c

final
c

init
c

stat
cenv ∑Δ = −

Here Pcinit and P
c
final denote the initial and the final probabilities for afinite time span, while Pcstat is the stationary

probability distribution that would emerge after an infinite long time. For example, during relaxation, Pcstat can
be obtained by taking tR → ∞ in the expression for P1

c in equation (18). Similarly, duringmeasurement,
P Plimstat

c
t

c
2M

= →∞ with P2
c given in equation (19).

With the above formula, we obtain the following expressions for the entropy production in each process:

( )

( )

H P P P P
q

q

H P P P P

H

ln
¯

ln
¯

0. (33)

R

M

F

env
0
10

0
11

1
10

1
11

env
1
01

1
10

2
01

2
10

env

Δ

Δ ϵ
ϵ

Δ

= + − −

= + − −

=

Note that these expressions hold for any finite tR and tM. The last result is obvious, since the feedbackwith
IF

2 = is a reversible operation.
For t t,R M → ∞, by inserting equations (17)–(19)we get explicit expressions

( )

H q
q

q

H qq

( )ln
¯

2 ¯ ¯ ln
¯

, (34)

R

M

env

env

Δ ϵ

Δ ϵ ϵ ϵ
ϵ

= − −

= −

which are plotted for various error probabilities infigure 4. As one can see, for q 1 2ϵ < < the entropy
production during relaxation HR

envΔ is negative,meaning that the engine imports entropy (heat) from the
environment rather than producing it. Obviously, this is the regime of interest wherewewould like to operate
our information engine. However, as can be seen, the negative entropy production during relaxation is always
overcompensated by a positive one during themeasurement, which is consistent with the second law of
thermodynamics. Notice that the entropy production duringmeasurement is always positive, since 1 2ϵ < .
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5.Work extraction and supply

By virtue of Clausius’ law Q T Hd d= , the produced entropy can be translated directly into an amount of heat.
Inmost studies, it is usually assumed that the temperatures of the system and thememory are identical.
However, for the sake of generality, let us allow the temperatures to be different, assigning T1R Rβ = during
relaxation and T1M Mβ = duringmeasurement, as sketched infigure 5, including the conventional setup of
information engines with a single reservoir as a special case. Thus the respective heat contributions averaged over
all possible stochastic trajectories are given by

Q H Q H, . (35)R R R M M M
1 env 1 envβ Δ β Δ〈 〉 = 〈 〉 =− −

Herewe use the sign convention that heatflowing away from the engine into the environment has a positive sign;
i.e., we expect QR〈 〉 to be negative and QM〈 〉 to be positive.

In order tomaintain stationarity of the system after one engine cycle, the averagework Wex〈 〉 extracted
during feedback should exactly balance the average heat QR〈 〉during relaxation; i.e.,

W Q 0. (36)Rex〈 〉 = −〈 〉 >

Consequently, themeasurement process does not change the energy of the system. This requires an additional
influx of energy in the formof extra work Wsup〈 〉 into thememory, which is necessary to compensate the loss of
heat QM〈 〉flowing away to the environment during themeasurement process:

W Q 0. (37)sup M〈 〉 = 〈 〉 >

The average net work performed by themachine, defined as the difference of extracted and suppliedwork, is
therefore given by

Figure 4.Entropy production according to equation (34) during relaxation (lower curves) andmeasurement (upper curves) for
various values of ϵ as a function of q. If themeasurement is accurate enough ( q 1 2ϵ < < ), the entropy production during relaxation
becomes negative.

Figure 5.Balancing flowof heat andwork during the engine cycle (see text).
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W W W Q Q . (38)sup R Mnet ex〈 〉 = 〈 〉 − 〈 〉 = −〈 〉 − 〈 〉

Note that the net work can change its sign, depending on the choice of the parameters q, ϵ, tR, and tM.
Let usfirst compute the extractedwork. According to section 2.3, Wex〈 〉 is given by P P E( )2

11
2
01 Δ− , where

E lnR
q

q
1 ¯Δ β= − (see (3)). Using P Ps s

1
( )

2
( )∣ 〉 = ∣ 〉 (no system change duringmeasurement), together with the

feedback identities P P2
01

0
11= and P P2

10
0
10= (flip s onlywhenm=1), it is easy to show explicitly that

W H Q . (39)R R Rex
1 envβ Δ〈 〉 = − = −〈 〉−

The additional work Wsup〈 〉 supplied during themeasurement process can be interpreted as the energy needed
to operate themeasurement device. Technically this contribution comes from the fact that the energy levels of
the joint system are different during relaxation andmeasurement so that extra energy is needed tomove them
around. For example, this could be done by applying an external potential in order tomake the energy level of
the erroneous composite state s s( , 1 )− higher than that of the correctlymeasured state (s,s) by the amount of

E lnM
1 ¯Δ β′ = ϵ

ϵ
− .When the external potential is turned on just before themeasurement, the average energy of the

composite of system andmemory increases by Ein〈 〉, and, similarly, it loses the energy Eout〈 〉when the potential
is turned off at the end of themeasurement:

E
P P

E
P P

ln
¯

, ln
¯

. (40)in
M

out
M

1
01

1
10

2
01

2
10

β
ϵ
ϵ β

ϵ
ϵ

〈 〉 =
+

〈 〉 =
+

Comparing the difference W E Esup in out〈 〉 = 〈 〉 − 〈 〉with equation (33), one can see immediately that

W H Q . (41)sup M M M
1 envβ Δ〈 〉 = = 〈 〉−

In the limit t t,R M → ∞, the averagework contributions read

( )

W
q q

q

W
qq

ln
¯

2 ¯ ¯
ln

¯
. (42)

R

sup
M

ex
ϵ

β

ϵ ϵ

β
ϵ
ϵ

〈 〉 =
−

〈 〉 =
−

6. Thermodynamic second laws andfluctuation theorems

The total entropy production of thewhole setup during relaxation (R) andmeasurement (M) is given by

H H H (43)R R
sm

R
tot ( ) envΔ Δ Δ= +

H H H . (44)M M
sm

M
tot ( ) envΔ Δ Δ= +

According to equation (27), the entropy differences in the joint system are given solely in terms of themutual
information difference

H H I (45)R
sm

M
sm

MΔ Δ Δ= − =

while the entropy differences in the environment are given in terms of the transferred heat by
H QR M R M R M,

env
, ,Δ β= 〈 〉. Using equations (39) and (41), we arrive at

H I W

H I W . (46)

R M R

M M M sup

tot
ex

tot

Δ Δ β

Δ Δ β

= + − 〈 〉

= − + 〈 〉

For the total system, including the environment, the second law of thermodynamics should be satisfied for each
process; i.e.,

H H0 and 0, (47)R M
tot totΔ Δ⩾ ⩾

or, equivalently,

W I W . (48)R M M supexβ Δ β〈 〉 ⩽ ⩽ 〈 〉

Most existing studies are only interested in thefirst inequality during relaxation, while the other one during
measurement is ignored. The purpose of this work is to point out that there is a second inequality for the
measurement process aswell, and that the two inequalities are complementary with respect to each other.More
specifically, if R Mβ β= , the extractedwork is bounded from above by themutual information, while thework
required to operate thememory is bounded frombelowby the same threshold. Thismeans that the setup cannot
be used to gainwork out of nothing, W 0net〈 〉 ⩽ , as expected by the second law.However, if the two reservoir
temperatures were different ( )R Mβ β< , the extractedwork could be larger than the supplied one, inwhich case
the systemoperates like a conventional heat engine (seefigure 6).
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It is almost trivial to construct the IFTs through the standard approach of stochastic thermodynamics [23]
by considering the heat along all possible trajectories in the composite configurational state space.With an
appropriate definition of the Shannon entropy for a given trajectory [23], one can easily get the fluctuation
theorems for the total entropy production for each process as

e 1, e 1. (49)H H(traj.) (traj.)R M
tot tot〈 〉 = 〈 〉 =Δ Δ− −

The second laws in equation (47) are simple consequences of the IFTswith H H (traj. )R M R M,
tot

,
totΔ Δ= 〈 〉. It is

rather tricky tofind the IFTs in terms of work andmutual information, because it requires an equilibrium state
as an initial condition. This is the case only when tR becomes infinite so that the system is in equilibrium at the
start of themeasurement as well as at the beginning of the feedback.However, note that the bounds forworks in
equation (48) are valid, even if tR isfinite.

7. Finite-time relaxation andmeasurement

In practice, an engine is only useful if the cycle time τ isfinite. Thus, it is obviously of interest to derive all physical
quantities as a function of the cycle time. This allows one tofind the optimum formaximal power generation, as
will be discussed in the next section.

It is straightforward to obtain the transitionmatrices for relaxation andmeasurement forfinite time spans tR
and tM:

( )

( )

t

q q

q q

q q

q q

t

¯ ¯ 0 ¯ ¯ 0

0 ¯ ¯ 0 ¯ ¯
¯ 0 ¯ 0

0 ¯ 0 ¯

¯ ¯ ¯ ¯ 0 0
¯ ¯ 0 0

0 0 ¯ ¯

0 0 ¯ ¯ ¯ ¯

, (50)

R R

M M

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟


  

  
  

  


  
  

  
  

ϵ ϵ
ϵ ϵ

ϵ ϵ
ϵ ϵ

=

+
+

+
+

=

+
+

+
+

where

e and ¯ 1 (51)tR  ≔ ≔ −−

e and ¯ 1 . (52)tM  ≔ ≔ −−

Note that the transition probability from s s( , 1 )− to (s, s) duringmeasurement, ¯ ¯ϵ, is smaller than ϵ̄, which
means that themeasurement forfinite tM is less accurate than in the limit of infinite time.

Figure 6. Infinite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information
I IM 2Δ = are displayed as functions of q for a constant error probability 0.1ϵ = . Here we choose 1, 2,Mβ = and 5with 1Rβ = . Note

that W HM sup M
envβ Δ〈 〉 = is independent of Mβ . Wex〈 〉 is positive at q 1 2ϵ < < , as expected from equation (42).When the

temperature of themeasurement reservoir is sufficiently lower than that of the relaxation reservoir, for example, 5Mβ = , the
extractedwork Wex〈 〉 can be larger than the suppliedwork Wsup〈 〉, as indicated by the arrow.
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that

W ¯ ln
¯

. (53)sup
M

 ϵ
β

ϵ
ϵ

〈 〉 = −

Here P P1
01

1
10 ≡ + is explicitly given by

( )
( ) ( )

t t
q q q

,
¯ ¯ ¯ ¯ ¯

1
, (54)R M   


ϵ ϵ α ϵ

α
=

+ + +

−

with q q¯ ( ¯ )(¯ ) α ϵ ϵ= + − − . In a similarmanner, we obtain Wex〈 〉 as the function of  :
W

q
R

q

q

( ) ¯ ln
¯

. (55)
R

ex
 ϵ ϵ
β

〈 〉 =
− − −

In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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8. Efficiency

Let us now assume that the information engine operates in a regimewhere the net work is positive. In this case
thewhole setup can be interpreted as a conventional heat engine, as sketched infigure 8. As R Mβ β< , the upper
reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with thememory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as

W

Q

W

W
( ) 1 . (57)

R

supnet

ex
η τ =

〈 〉
∣〈 〉∣

= −
〈 〉
〈 〉

Using equations (53) and (55) the efficiency can be rewritten as

( ) 1 ( ), (58)R

M

η τ
β
β

λ τ= −

where

( )
( )

M

q R q q
( )

( ) ¯ ln ¯

[ ( )] ¯ ln ¯
. (59)


 λ τ

ϵ ϵ ϵ

ϵ ϵ
=

−

− − −

Note that the relaxation andmeasurement processes are not quasi-static, so that even in the limit τ → ∞ the

engine never reaches theCarnot efficiency 1c
R

M
η = − β

β
. Instead, wefind that the efficiency is limited by a

different upper bound maxη , which can be computed as follows. According to themonotonicity arguments
discussed in the preceding section, ( )η τ is expected to becomemaximal in the limit τ → ∞. This suggests that

( ) lim ( ) 1 , (60)R

M
maxη τ η η τ

β
β

λ⩽ ≡ = −
τ→∞

∞

where

( ) ( )
( )

qq

q q q
lim ( )

2 ¯ ¯ ln ¯

( )ln ¯
. (61)λ λ τ

ϵ ϵ ϵ ϵ

ϵ
= =

−

−τ
∞

→∞

Figure 9 shows 1 λ∞ as a function of q for several values of ϵ. It is obvious that 1 λ∞ is positive for q 1 2ϵ ⩽ ⩽ ,
with a unimodal shape due to the similar behavior of Wex〈 〉demonstrated infigure 6. As 0ϵ → ,1 λ∞ approaches
zero, except for q 0≈ . In the limit of both q 0→ and 0ϵ → , λ∞ approaches a constant bounded frombelow by

2λ ⩾∞ . Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
2M Rβ β ⩾ for the infinite-time process. In short, wefind that the efficiency of the information engine is

bounded by

Figure 8. Interpretation of the information engine as a conventional heat engine.Heat QR∣〈 〉∣flows from the heat reservoir at Rβ
(high temperature) into the engine, which produces thework gain W W Wsupnet ex〈 〉 = 〈 〉 − 〈 〉. The remaining heat QM〈 〉 is transferred
to another reservoir at Mβ (low temperature).
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1
2

. (62)R

M
cmaxη

β
β

η⩽ − <

In conventional heat engines operating with afinite cycle time, thermodynamic processes are no longer quasi-
static, leading to an efficiency below theCarnot bound cη . In our case, we alsofind that ( )η τ becomesmaximal in
the limit τ → ∞. However, in contrast to theCarnot limit, where the entropy production vanishes, the entropy
production per cycle in ourmodel H HR M

tot totΔ Δ+ becomes alsomaximal at τ = ∞. This is one of the crucial
features of our information engine, which is totally distinct from conventional heat engines. Nevertheless, the
entropy production rate (per unit time) decreases with increasing τ andfinally vanishes at τ = ∞. Hence, one
may also say that themaximum efficiency is found at theminimumentropy production rate.

Similarly, the average power gain, P Wnet τ〈 〉 ≡ 〈 〉 , in fact vanishes for τ → ∞, because Wnet〈 〉 remainsfinite
in this limit. For a realistic engine, we usually want to optimize the power gain, trading off the efficiency against
the cycle time. As expected, P〈 〉 ismaximized at some finite time, opτ between sτ and∞, as shown infigure 10(a).

The efficiency of heat engines atmaximal power has been studied previously in [24–26]. Especially, for the
Curzon–Ahlborn (CA) endoreversiblemodel [24], it is well–known that the efficiency CAη at the optimal power

is given by 1 1 cCAη η= − − . Infigure 11, we plot the efficiency at optimal power ( )op opη η τ τ= = ,

according to equation (58), as a function of maxη instead of cη . It turns out that the functional behavior of opη is

completely different from CAη .
Inmore general situations, it has been found that the efficiency at themaximumpower obeys a universal

form, O2 ( )op c c
2η η η= + for small cη , when the engine and heat baths are strongly coupled [25, 26]. Our

information engine exhibits a completely distinct behavior, even for small maxη . As seen infigure 11, opη ismore

or less the same as maxη in this regime.
In order to investigate this unusual behavior inmore detail, we now examine opη analytically for small maxη .

As the stall time sτ , and thus opτ ( sτ> ) becomes large, a small  expansionmay be valid for small maxη .

Expanding ( )η τ in equation (58) up to the linear order of e 2 = τ− , we get

q
( ) e , (63)max

1

0

0 2
⎛
⎝⎜

⎞
⎠⎟





η τ η

ϵ
ϵ
ϵ

≈ −
−

+
−
−

τ−

wherewe have used 0 1   ≈ + with

( )
( )( ) ( )

qq

q q q q qq

2 ¯ ¯

( ) ¯ ¯ ( ) 2 ¯ ¯ . (64)

0

1




ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ

= − +

= − − − − − − −

Wealso checked that the linear coefficient inside the parentheses in equation (63) is always numerically positive
in the interval q 1 2ϵ < < .

As the stall time sτ is defined by ( ) 0sη τ = , equation (63) immediately gives us

Ae , (65)s max
2s η≈τ−

Figure 9. 1 λ∞ according to equation (61) as a function of q for several values of ϵ. In the infinite-time limit, Wex〈 〉 and 1 λ∞ are
positive only for q 1 2ϵ ⩽ ⩽ . Note that, as ϵ goes to zero, λ∞ approaches to 2, theminimum, at q 0→ .
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where the coefficientAs is given by

A
q

. (66)s
1

0

0
2⎛

⎝⎜
⎞
⎠⎟





ϵ

ϵ
ϵ

=
−

+
−
−

−

Figure 10. (a) The efficiency η and power gain P〈 〉 as functions of e τ− . (b) e sτ− and e opτ− as functions of maxη . In (b), the dotted line

x2∼ is obtained from equation (65), and the dashed line corresponds to equation (71).We choose tR= tM, q=0.2, 0.1ϵ = , and
1Rβ = for both (a) and (b).We set 5Mβ = for (a) and vary Mβ for (b).

Figure 11.The efficiency opη at the optimal power for various ϵ and q. Here we choose k k= ′ and tR= tM for simplicity.
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It turns out that the scaling behavior in equation (65) extends quite well tofinite maxη , as can be seen in
figure 10(b).

The optimal time opτ should satisfy

Pd

d
0,

op
τ

〈 〉 =
τ

which is rewritten as

( )W Wd ( )

d
, (67)

op

op

net net

op

 
τ τ

〈 〉
=

〈 〉

τ

where eop
2op = τ− . As op sτ τ> , op should be also small. This allows us to expand the above equation for

small op , yielding

q
1

2
, (68)R

M
op

op
op

1

0

0
⎛
⎝⎜

⎞
⎠⎟




 β
β

λ
τ

ϵ
ϵ
ϵ

− =
−

+
−
−

where 0 and 1 are the same as in equation (64), and opλ is given by

q
. (69)op op

1

0

0
⎛
⎝⎜

⎞
⎠⎟




 λ λ λ
ϵ

ϵ
ϵ

= +
−

+
−
−∞ ∞

Plugging the above expression for opλ into equation (68), we get

A
1

2
1 ln

, (70)s op op
op

1 2 max max 
η

τ
η

=
+

=
−

−

which yields

( )
A

f
e

ln

1

1 ln
, (71)s

max

max

2

max

2
op

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎡⎣ ⎤⎦

η
η η

≈
+ −

τ−

where

f x
x

x A
x

x
( )

1
ln 1

1

2
ln

ln
. (72)s

⎡
⎣⎢

⎤
⎦⎥= + − +

Finally, inserting equation (71) into equation (63), it is straightforward tofind an approximate expression for
:opη

( )f
1

1

ln 1 ln
. (73)op

max max

max

⎛

⎝
⎜⎜⎜ ⎡⎣ ⎤⎦

⎞

⎠
⎟⎟⎟η

η η
η≈ −

∣ ∣ + −

Therefore, in the limit of 0maxη → , one can see op maxη η≈ , not 1

2 maxη , and that the next correction is logarithmic

and therefore quite slow. This calculation confirms that the linear irreversible thermodynamics slightly out of
equilibrium in [25] should not be applicable in our case, simply because our processes are far from equilibrium.
Indeed, in our case, the entropy production ismaximal in the limit of 0maxη → . In future studies, the validity of

op maxη η≈ should be addressed in the context of universality for general information engines, showing the

maximumefficiency at the same point where the entropy production ismaximal.

9. Conclusions

In this work, we have studied a simple example of an information engine which can be realized physically in
terms of stochasticMarkov processes. In agreement with previous studies, we find that the information feedback
allows one to extract work in a situationwhere this would be thermodynamically impossible without feedback.
Moreover, we confirm that total entropy production during relaxation obeys a fluctuation theorem, implying
that the extractedwork is bounded from above by themutual information gain betweenmemory and system.

Providing a physical realization of thememory and the feedback loop, we have shown that themeasurement
process (i.e., the information-processing part of the information engine) exhibits similar properties, which are
opposite in character. In particular, the entropy production duringmeasurement is found to obey afluctuation
theorem aswell. This implies that themeasurement process itself costs energy, and that this additional energy
supply is bounded from below by the samemutual information gain. Putting these pieces together, it is no
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surprise that the total setup consisting of system andmemory satisfies the conventional second law of
thermodynamics. Thus, we have shown that the thermodynamic second law,which is required to hold for the
entire systemduring anyfinite process, leads to a duality in the properties of system andmemory in this kind of
information engine.

For simplicity, we have presentedmost of our analytic results in the limit of infinitemeasurement- and
relaxation time.However, the extension tofinite times is straightforward. At the end of the paper, we have
explicitly described some numerical results forfinite-timemeasurement and relaxation. As in conventional heat
engines, the efficiency of the information engine ismaximizedwhen the cycle time becomes infinite.However,
in contrast to conventional heat engines, the entropy production is alsomaximal in this limit. On the other
hand, we have demonstrated that the power gain acquires itsmaximumat afinite cycle time.We have also
discussed the relation between themaximal efficiency and the efficiency at the operating point ofmaximal
power.

The striking differences between ourmodel and conventional reversible heat engines can be traced back to
the fact that our setup operates under non-equilibrium conditions. It would be interesting to investigate towhat
extent our observations can be explained in a universal framework.
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