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Abstract
We reformulate stochastic thermodynamics in terms of noise realizations for Langevin systems in
contact withmultiple reservoirs and investigate the structure of the second laws of thermodynamics.
We derive a hierarchy offluctuation theoremswhen one degree of freedomof the system is affected by
multiple reservoirs simultaneously, that is, when noise-mixing occurs. These theorems and the
associated second laws of thermodynamics put stricter bounds on the thermodynamics of Langevin
systems.We apply our results to a stochasticmachine in noise-mixing environments and demonstrate
that our new bounds play a crucial role in determining the potential function and performance of the
machine.

1. Introduction

In thepast twodecades, thermodynamics has been extended to studies of stochastic thermal processes observed at the
microscopic scale [1–9]. These processes are referred to as stochastic thermodynamics (ST). Themain achievement in
SThas been thediscoveryof the generalized second lawsof thermodynamics,which is formulatedbyfluctuation
theorems [6, 9]. As the original second lawof thermodynamics initiated studies ofmacroscopic thermalmachines,
such asheat engines or refrigerators, ST studies focus ondevising various thermalmachineswithmultiple reservoirs
atmicroscopic [10–13] and even atomic [14] scales. Therefore, it is important to establish a thermodynamic
formulationof a stochastic system in contactwithmultiple reservoirs via a consistent ST framework.

However, theoretical difficulties arise when one degree of freedomof themachine is affected bymultiple
reservoirs simultaneously, that is, when thermal noise-mixing occurs. This situation can be easily encountered
experimentally, for example, when a Brownian particle is immersed in a liquidwith a temperature gradient [15].
The noise-mixing setup has also been proposed for a nano-sizedmolecularmotor [16] and refrigerator [17],
where the rotor effectively described by a single degree of freedom is simultaneously connected to two thermal
reservoirs separated by amembrane. In addition, chemical reaction betweenmany chemical species viamultiple
reaction channels can be formulated as noise-mixing chemical Langevin equation [18].

When noise-mixing occurs, the conventional ST approach does not reveal all thermodynamic constraints
enforced by the second laws of thermodynamics. For example, the total entropy production (EP) is
underestimated [19], and the simple overdamped limit is not applicable [20]. There are two causes for this
problem: (i) the total EP for the noise-mixing system could not be obtained by the standard ST based on a
probability ratio of system trajectories [21–31] and (ii) the full structure of the second laws of thermodynamics
for the noise-mixing systemhas not yet been investigated systematically.

In this study, we establish a ST formulation in terms of noise realizations instead of system trajectories. Our
formulation applies to bothmixing and non-mixing situations. In themixing case,many noise realizations
correspond to a single system trajectory due tomultiple noises affecting the same degree of freedomof the
system. This approach allows us to classify a single system trajectory intomany noise trajectorieswith different
noise realizations.We derive a hierarchy offluctuation theorems based on these noise trajectories and the
associated second laws of thermodynamics.Wefind that the total EP could be divided into two parts, the
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effective andmixing EP, each of which satisfies thefluctuation theorem alongwith the total EP. Therefore,
thermal processes aremore constrained by these additional second laws in the noise-mixing environment,
causing a significant performance-bound reduction in a steady-state thermalmachine.

2. Reformulation of path probability in terms of noise realizations

Wefirst consider the simplest noise-mixing example, the vane system, shown infigure 1(a), which appears in a
prototypical Feynman–Smoluchowski ratchet (FSR) [32, 33]. One set of vanes, denoted byV1 (V2), is immersed
in a heat reservoir 1 (2) at a temperature ofT(1) (T(2)). V1 andV2 are connected by a rigid axle, such that the
rotationalmotion of the vane system at time t can be described by a single degree of freedom, the angle of the axle
xt. Because V1 andV2 are affected by randomnoise from the respective reservoirs, xt is a stochastic variable.

( )f xt t is an external (conservative/non-conservative/time-dependent) force applied to the vane system.

Figure 1(b) is a simpler schematic diagramoffigure 1(a); in this diagram, n( )Qd t represents heat transferred from
the reservoirs ν to the vane system, and d t is thework done by ( )f xt t during an infinitesimal time gap between
t and t+dt.

The Langevin equation for the vane systemwith unitmass (moment of inertia) can bewritten as [20, 34–37]

g
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= + - +
+

+ ( ) ( )( ) ( )
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where vt is the angular velocity at time t, and g g g= +( ) ( ) ( )1,2 1 2 is the composite damping coefficient, which is
the sumof the damping coefficient γ( ν) of each reservoir ν. = +( ) ( ) ( )W W Wd d dt t t

1,2 1 2 is the compositeWiener
process at t; it is the sumof two independentWiener processes n( )Wd t of each reservoir ν, satisfying á ñ =n( )Wd 0t

and dá ñ =n n n
nn

¢
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( ) ( ) ( )W W D td d 2 dt t with g=n n n( ) ( ) ( )D T , expressed using the Boltzmannunit (kB=1).
We then define a state of the vane system at time t as = ( )q x v,t t t and consider its transition from qt to qt+dt.

The standard conditional probability,  +( ∣ )q qt t td for the time-forward transition of the system from qt to qt+dt is
usually given by theOnsager–Machlup transition probability [38]. However, as the transition of our system is
implemented by the twoWiener processes simultaneously, it is convenient to introduce new conditional
probabilities subject to each noise realization ( )Wd t

1 and ( )Wd t
2 for a given qt. Such a conditional probability

should be given by themultiplication of the probabilities observing eachGaussian noise independently:
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where  = -n n n[ ( ) ( )]( ) ( ) ( )W D texp d 4 dt t
2 . Clearly, this probability does not depend on the initial state qt (no

multiplicative noises); however, we keep this variable for later discussions. Thefinal state +qt td is determined by

Figure 1. Steady-state heatmachine in the noise-mixing environment. (a) Illustration of the vane system. Two symmetric vanes, V1
andV2, are connected by a rigid axle and immersed in heat reservoirs at temperatures ofT(1) andT(2), respectively. xt is the angle of the
axle and ( )f xt t is an external force. (b), (c) are simpler schematic diagrams of the vane system connected to two different reservoirs and
one effective reservoir, respectively, where = +( ) ( ) ( )Q Q Qd d dt t t

1,2 1 2 . (d) Illustration of the FSR-typemodel. (e), (f) are the simpler
schematic diagrams of the FSR-typemodel for the original and effective reservoirs, respectively.
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a pair of noises ( ( )Wd t
1 , )( )Wd t

2 , starting from the initial state qt, given by equation (1). Note that there is an
infinite number of pairs describing the same transition from qt to +qt td , with the sum =( ) ( )W Wd dt t

1,2 1 + ( )Wd t
2

invariant. In fact, this degeneracy allows us to derive additional fluctuation theorems.
As an irreversibilitymeasure, EP involves the probability ratio between the time-forward and time-reverse

trajectories [39]. For the time-reverse process, we use =  ( )˜ ˜ ˜q x v,t t t for a state variable at time t̃ , obeying

dynamics identical to those of the time-forward process given in equation (1)with external force = +
̃f ft t td

such that
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is the compositeWiener process for the time-reverse process at t̃ , with the

same statistics as á ñ =~ n
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Wd 0t and dá ñ =~ ~n n n
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( ) ( )W W D td d 2 dt t with g=n n n( ) ( ) ( )D T . The conditional

probability for the time-reverse transition from ˜qt to +˜ ˜qt td can bewritten as
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2 .
By setting e= +˜q qt t td and e=+˜ ˜q qt t td (ε is the parity operator as ε q=(x,−v))with =t̃ td d , we identify

the time-reverse trajectory corresponding to the time-forward one.However, this approach does notfix each

value ofGaussian noise
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Weconsider the following specific pair of noises as

g n= - + =~ n n n
+( ) ( ) ( )˜

( ) ( ) ( )W W v v td d d 1, 2 . 6t t t t td

This choice is special in that the heat transfer in the time-forward transition is exactly reversed in the time-
reverse transition for each reservoir:

= -~ n n ( )˜
( ) ( )Q Qd d , 7t t

where g= - +n n n◦( )( ) ( ) ( )Q v v t Wd d dt t t t and g= - +
~ ~n n n
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Q v v t Wd d dt t t t represent heat transferred
from reservoir ν to the systemduring dt in the time-forward and the time-reverse transitions, respectively, and ◦
denotes Stratonovichmultiplication [40, 41]. If we considerHamiltonian dynamics for the total system,
including heat reservoirs, the time-reverse trajectory of the total systemmust obey the time-reversal symmetry
of heat transfers from each reservoir, so the above choicemay be themost appropriate as a definition of the time-
reverse process.

With this special pair of time-reverse noises, we define an irreversibilitymeasure by the logarithmic ratio of
probabilities for time-forward and time-reverse noise trajectories as
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wherept ( ˜˜pt ) is theprobability distribution function for the time-forward (time-reverse) transition at time t (t̃ ).With
the choice of = + +˜ ( ˜ ) ( )˜ ˜p q p qt t t t t td d , weobtain the Shannon entropy changeof the systemas º +( )S p pd lnt t t td

[21]. In thederivationof equation (8), weused the relationship = +~n n n◦[ ]( )
˜
( ) ( )Q v W Wd d dt t t t

1

2
,which is easily

obtained fromequations (6) and (7).Our result indicates that dRt canbe identified as the total EP, Sd t
tot (i.e., the sum

of the systemandenvironmental EP).

3.Hierarchy offluctuation theorems

Now,we show that Sd t
tot satisfies thefluctuation theorem:
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where the Jacobian for integral variable transformations can be easily shown to be unity2 and the last equality is
derived from the probability normalization. This fluctuation theoremholds for any initial condition, any
duration, and any external force. Furthermore, it is straightforward to generalize it to the case ofmany degrees of

2
The Jacobian has a correction of the order of (dt)2 from the unity, which is irrelevant in the derivation of equation (9).
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freedom,where different or the samemultiple reservoirs are associatedwith each degree of freedom.Wenote
thatMurashita and Esposito [20] and Forged by and Imparato [42] also presented the fluctuation theorem for
the total EP.However, as the total EPwas not defined by the path probabilities in their study, their derivation is
considerablymore complex than ours.

We can find another quantity satisfying thefluctuation theorem in this noise-mixing situation.We consider
the conditional probability tofind ( )Wd t

1,2 regardless of each value of noise n( )Wd t for a given qt, which can be
obtained as

  ò  d
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1,2 1 2 is theDirac delta function and = +( ) ( ) ( )D D D1,2 1 2 . Note that the

usualOnsager–Machlup transition probability  +( ∣ )q qt t td [38] is identical to ( ∣ )( )W qd t t
1,2 with a proper

Jacobian. Similarly, we obtain
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Then, the logarithmic ratio of probabilities of the two trajectories turns out to be the following:
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where = +( ) ( ) ( )Q Q Qd d dt t t
1,2 1 2 and g=( ) ( ) ( )T D1,2 1,2 1,2 . Equation (12) describes the total EP of the system

connected to a single heat reservoir with an effective temperature ofT(1,2), as illustrated infigure 1(c). Note that
T(1,2) is always betweenT(1) andT(2).

We call ¢Rd t the effective EP, Sd t
eff .We are then able to prove another fluctuation theorem:
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where the second equality was derived from equation (10) by integrating over n( )Wd t after inserting the identity
of ò d( )( )Wd d t W

1,2 .
Most interesting is the third quantity, satisfying another fluctuation theorem.We call it themixing EP and

define it as

-≔ ( )S S Sd d d . 14t t t
mix tot eff

Themixing EPmeasures the extent of thermal noise-mixing and is independent of the systemEP, dSt; it satisfies
the following:
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In summary, we derived three integral fluctuation theorems for noise-mixing systems, which can be
rephrased as follows. The total EP can be divided into the two parts, Sd t

mix and Sd t
eff , each of which satisfies the

fluctuation theorem aswell as the total EP. This property is quite similar to the division of the total EP into the
adiabatic and non-adiabatic EP in overdamped thermal systemswith a single reservoir [23, 24, 43, 44]. As Sd t

tot

and Sd t
eff are written as the logarithmic ratio of two normalized probabilities, as in equations (8) and (12)with

the involution property [43], it is trivial to derive the corresponding detailedfluctuation theorems, such as

- =( ) ( )P S P Sd d et t
Stot tot d t

tot
and - =( ) ( )P S P Sd d et t

Seff eff d t
eff
in the steady state. However, the detailed

fluctuation theoremdoes not hold for Sd t
mix due to the lack of the involution property.

The three integral fluctuation theorems in equations (9), (13), and (15), guarantee the three thermodynamic
second laws, using Jensen’s inequality [45]:

  á ñ á ñ á ñ ( )S S Sd 0, d 0, d 0, 16t t t
tot eff mix

which can be summarized as follows:

 á ñ á ñ ( )S Sd d 0. 17t t
tot eff

The non-negativity of á ñSd t
mix is interpreted as information loss in the heat reservoir coarse-graining procedure.

Numerical test for equation (17) is presented in appendix A.Note that á ñSd 0t
mix can also be derived using the
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log sum inequality [45], because the trajectory probability ( ) ( )p qt t t
1,2 in the effective single-noise description is

simply the log sumof the trajectory probabilities ( ) ( ) ( )p qt t t
1 , 2 in the two-noise description. This property has

been reported previously for themaster equation system [43].We also note that a richer hierarchy can be found
between the total, effective, andmixing EPs in a general n-reservoir system ( )n 3 (see appendix B).

4. Reduction of performance bound

Each second law in equation (16) constrains a thermodynamic process in a differentmanner. As expected, the
effective andmixing EPs enforce a tighter performance bound for a noise-mixingmachine than the total EP. As
an example, consider the vane system illustrated infigure 1(a)with > >( ) ( ) ( )T T T1 1,2 2 . The three second laws
of thermodynamics in the steady state (or cyclic state) are given as follows:
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á ñ
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1
s
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,2

where = - + >( ) ( ) ( )T T T1 1 1 0m,1 1 1,2 and = - >( ) ( ) ( )T T T1 1 1 0m,2 2 1,2 . Figure 2(a) shows a generic
thermodynamically allowed region for á ñ( )Qd t

1
s and á ñ( )Qd t

2
s.

From figure 2(a), we can deduce a general feature of the performance of the vane system.Defining thework
extraction against the external force during the forward transition as d t , energy conservation yields
 = +( ) ( )Q Qd d dt t t

1 2 . For a useful heat engine, we require that á ñ = á ñ + á ñ >( ) ( )Q Qd d d 0t t ts
1

s
2

s . The
second law of the total EP alone, equation (18), permits a useful engine in the region shown infigure 2(a).
However, this result is completely prohibited by the second law of the effective EP, equation (19), manifesting
the thermodynamic importance of additional second laws. In fact, our rigorous result extends the
thermodynamic statement ‘Work cannot be extracted from an engine connected to a single reservoir’ to the case
of an engine connected simultaneously tomultiple reservoirs which can be described by the Langevin
equation (1)without any spatial asymmetry3 .We also consider a refrigerator extracting heat from a low-
temperature reservoir by external force, implying á ñ >( )Qd 0t

2
s . This case does not contradict á ñSd t

tot
s alone, but

is forbidden by the second law of themixing EP, equation (20).
Itmight be useful to add another system to interact with the vane system.One of the simplest examples is an

FSR-typemachine, as illustrated infigure 1(d)4 [46]. The added system (a pawl) is described by another
stochastic variable, yt, which is in contact with the reservoir 2. It is straightforward to show the threefluctuation
theorems similarly and the corresponding second laws in the steady state as follows:

Figure 2.Three second laws of thermodynamics and the thermodynamically allowed region. (a)The vane system case. (b), (c) FSR-
type systemwith negative and positive á ñ( )Qd t

p
s, respectively.

3
Engines withmulti degrees of freedom (not all simultaneously) connected to different temperature reservoirs can dowork as a normal heat

engine. Furthermore, a spatially asymmetric engine (still single degree of freedom) considered in [16] can dowork even though it is
simultaneously connected to different reservoirs. This is possible due to its spatial structure, which cannot be described by the simple
Langevin equation (1).
4
Note that this setup is different from that in [46], where no noise-mixing occurs.
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where ( )Qd t
p is heat transferred from the reservoir 2 to the pawl. Note that Sd t

mix is independent of ( )Qd t
p , as the

pawl dynamics are not related to noise-mixing.
The function of thismachine is determined by the sign of á ñ( )Qd t

p
s. Figure 2 (b) and (c) show the

thermodynamically allowed region bounded by the three second laws for the negative and positive á ñ( )Qd t
p

s,
respectively.We require á ñ = á ñ + á ñ + á ñ >( ) ( ) ( )Q Q Qd d d d 0t t t ts

1
s

2
s

p
s for a useful engine and

á ñ + á ñ >( ) ( )Q Qd d 0t t
2

s
p

s for a useful refrigerator.We demonstrate a thermodynamically allowed region for a
useful engine infigure 2 (b) and for a useful refrigerator infigure 2 (c).

Asdescribed above, the thermodynamically allowedregion is significantly reduced in themixing system.However,
wefind thatheat engine efficiency, definedas h = á ñ á ñ( )Qd dt ts

1
s, can still attain theCarnot efficiency

h = - ( ) ( )T T1C
2 1 at theuppermost cornerof the allowed region infigure 2 (b),where all threeEPs vanish

simultaneously.This efficiency is higher than themaximumefficiencyof the effective systemdescribedbyfigure1 (f),
i.e., h > - ( ) ( )T T1C

2 1,2 , because á ñ >( )Qd 0t
2

s near the cornerpoint of thenoise-mixing system,which implies that
the engine absorbs extraheat fromreservoir 2 to convert intowork.Thisproblem isquite similar to the famous cooling-
by-heatingproblem, in that it introduces anadditionalhigh-temperature reservoir [47–49]. The refrigerator infigure 2
(c) alsoperformsmost efficiently at theuppermost corner,where the coefficient of performance, definedas

= á ñ + á ñ á- ñ[ ]( ) ( )K Q Qd d dt t t
2

s
p

s s reaches amaximumof = -[ ]( ) ( )K T T1 1m
1 2 . In this case, á ñ( )Qd t

2
s is

alwaysnegative, such that extraheatflows into reservoir 2 through themachine; thus, the refrigeratorperformspoorly
compared to the effective system.

5. Summary

By reformulating the ST in terms of noise realizations, we derived threefluctuation theorems, which constrain a
thermal process withmultiple reservoirsmore strictly using the effective andmixing EPs than it would using
only the total EP.Nevertheless, attaining ideal efficiency remains possible. Further study of the possible setup for
obtaining theCarnot efficiency is necessary.
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AppendixA.Numerical test for equation (17)

Here, we numerically check the following second laws:

 á ñ á ñ ( )S Sd d 0. A.1t t
tot eff

As an example, consider the vane systempresented infigure 1(a)with = - -( ) ( )f x k x ctt . This external force
can be realized by a rotating torsional springwith stiffness k and constant angular velocity c. By solving the
Langevin equation (1)numerically, we calculate the average rates of heat flows in the steady state as á ñ˙ ( )Q 1

s and

á ñ˙ ( )Q 2
s, where á ñ º á ñn n˙ ( ) ( )Q Q td dts s. For the steady-state average, we collect 10

5 data after the system reaches
the steady state. From equations (18) and (19), the total and effective EP rates become

á ñ =-
á ñ

-
á ñ

á ñ =-
á ñ + á ñ

˙ ˙ ˙

˙ ˙ ˙
( )

( )

( )

( )

( )

( ) ( )

( )

S
Q

T

Q

T

S
Q Q

T

,

, A.2

tot
s

1
s

1

2
s

2

eff
s

1
s

2
s

1,2

respectively. For this calculation, we use the second-order integrator [50]with parameters k=1,
γ(1)=γ(2)=1,T(1)=3, andT(2)=1, thusT(1,2)=2.
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FigureA1 shows á ñṠtot
s and á ñṠeff

s, denotedby squares and circles, respectively, as a functionof c. At c=0,we

can analytically calculate the heatflux rate as g g g gá ñ = - + = -á ñ˙ ( ) ( ) ˙( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Q T T Q1
s

1 2 1 2 1 2 2
s [20].

Thus,we get á ñ = = -á ñ˙ ˙( ) ( )Q Q11
s

2
s alongwith á ñ =Ṡ 2 3tot

s and á ñ =Ṡ 0eff
s , which is confirmed infigureA1.

As the external driving becomes strongerwith increasing c, both á ñṠtot
s and á ñṠeff

s increase, still satisfying the

inequality(A1). Note that thedifference between á ñṠtot
s and á ñṠeff

s is themixing EP ratewhich is always larger than
zero. This numerical result clearly supports our theory for the second lawsof the total, effective, andmixing EPs.

Appendix B.Hierarchy of EPs for a n-reservoir system

Tounderstand the hierarchyof EPs for an-reservoir system, consider the example illustrated infigureB1,where
the vane system is connected to 3 reservoirs simultaneously. The EPof theoriginal system,figure B1(a), is given by

á ñ = -
á ñ

-
á ñ

-
á ñ ( )

( )

( )

( )

( )

( )

( )S
Q

T

Q

T

Q

T
d

d d d
0. B.1t

t t ttot
s

1
s

1

2
s

2

3
s

3

Wecanwrite an effective EP by combining the reservoirs 1 and 2, 2 and 3, and 1 and 3 as one effective reservoir
with effective temperaturesT(1,2),T(2,3), andT(1,3) from the original system as illustrated infigures B1(b)–(d),
whose EPs are given by







á ñ = -
á ñ

-
á ñ

á ñ = -
á ñ

-
á ñ

á ñ = -
á ñ

-
á ñ ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

S
Q

T

Q

T

S
Q

T

Q

T

S
Q

T

Q

T

d
d d

0,

d
d d

0,

d
d d

0, B.2

t
t t

t
t t

t
t t

eff1,2
s

3
s

3

1,2
s

1,2

eff2,3
s

1
s

1

2,3
s

2,3

eff1,3
s

2
s

2

1,3
s

1,3

respectively, where = +( ) ( ) ( )Q Q Qd d dt
i j

t
i

t
j, . Furthermore, if we combine all the three reservoirs as presented in

figure B1(e), the EP can bewritten as

á ñ = -
á ñ ( )

( )

( )S
Q

T
d

d
0, B.3t

teff1,2,3
s

1,2,3
s

1,2,3

where = å =
( ) ( )Q Qd dt i t

i1,2,3
1

3 . Then, one can find the hierarchy of EPs as

  

  

  

á ñ á ñ á ñ

á ñ á ñ á ñ

á ñ á ñ á ñ ( )

S S S

S S S

S S S

d d d 0,

d d d 0,

d d d 0. B.4

t t t

t t t

t t t

tot
s

eff1,2
s

eff1,2,3

tot
s

eff2,3
s

eff1,2,3

tot
s

eff1,3
s

eff1,2,3

Note thatmagnitude relations between á ñSd t
i jeff ,

s are not determined by equation (B.4). This procedure can be
extended to a general n-reservoir system.

Figure A1.Total and effective entropy production rates as a function of c.
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