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Abstract. Synchronization among arrays of beating cilia is one of the emergent
phenomena in biological processes at mesoscopic scales. Strong inter-ciliary cou-
plings modify the natural beating frequencies, ω, of individual cilia to produce a
collective motion that moves around a group frequency ωm. Here we study the
thermodynamic cost of synchronizing cilia arrays by mapping their dynamics
onto a generic phase oscillator model. The model suggests that upon synchro-
nization the mean heat dissipation rate is decomposed into two contributions,
dissipation from each cilium’s own natural driving force and dissipation arising
from the interaction with other cilia, the latter of which can be interpreted as the
one produced by a potential with a time-dependent protocol in the framework of
our model. The spontaneous phase-synchronization of beating dynamics of cilia
induced by strong inter-ciliary coupling is always accompanied with a significant
reduction of dissipation for the cilia population, suggesting that organisms as a
whole expend less energy by attaining a temporal order. At the level of individual
cilia, however, a population of cilia with |ω| < ωm expend a greater amount of
energy upon synchronization.
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1. Introduction

Spatiotemporal dynamics and pattern formation that emerge in living organisms have
been an abiding interest in biological physics for many decades [1, 2]. Metachronal wave
arising from arrays of beating cilia that cover the surface of various organisms is one of
the striking examples at the cellular level, in which biological components demonstrate
spatiotemporally coordinated dynamics (figure 1). The beating motion of individual cil-
ium with its own characteristic frequency is driven by the internal chemical free energy
consumption, and the dynamic coupling between neighboring cilia is deemed to con-
tribute to the pattern formation. Concerning the physical nature of inter-ciliary coupling,
there has been a longstanding hypothesis as well as experimental demonstrations that
hydrodynamic interaction alone is sufficient to produce synchronous dynamics [3–9],
although mechanochemical feedback control is also suggested as a possible mechanism
for the inter-ciliary coupling and collective dynamics.

Cellular environment is replete with free energy sources maintained via homeostasis
[10], and thus the energy itself may not be the main concern for individual cellular
processes. However, when both the energy-consumption rate and the number of such
energy-consuming components are increased, the biological system as a whole would soon
confront a shortage of energy supply. In such a case, reducing the total amount of energy
consumption would become the key priority. A similar energetic consideration could be
relevant for understanding the synchronization of beating cilia, where a synchronization
is realized by a large group of energy-expending components. In fact, in his seminal
paper [11], Taylor analyzed the dynamics of a pair of fluctuating sheets to suggest that
in-phase coordination of two sheets is more advantageous because it reduces the rate of
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Figure 1. Illustrated are the cilia covering the surface of a bacterium. The periodic
beating dynamics of individual cilium is driven by its intrinsic frequency ωi. The
frequency could differ from one cilium to another. To model such a heterogeneity in
cilia dynamics, ωi for the ith cilium is selected from a distribution g(ω) whose mean
value is ωm. The metachronal wave on the bacterium surface could emanate from
the synchronization of beating cilia. The strength of the hydrodynamic coupling
between cilia is given by K.

energy dissipation, the value of which was calculated in terms of the work done by the
sheet against viscous stress. Such consideration was later followed up by many studies
[12, 13].

Here we extend the foregoing energetic consideration to a statistical mechanical level
by mapping a set of coupled arrays of cilia onto a noise-dressed version of the Kuramoto
oscillator model [14], where the phase dynamics of an individual oscillator is described
by a following set of coupled equations [15, 16]:

φ̇i = ωi −
K

N

N∑
j=1

sin(φi − φj) + ηi(t) (1)

with i = 1, 2, . . . ,N. The phase variable φi represents the beating motion of the ith cilium
characterized with its own natural driving frequency ωi. With an assumption of cilium-
to-cilium heterogeneity , which is supported by experimental observations [17, 18], the
natural frequency ωi in the first term could be chosen from a distribution function, g(ω).
In this study, we consider a Gaussian function, g(ωi) = N (ωm, σ

2), with the mean ωm

and variance σ2, as a model of heterogeneous cilia population (figure 1).
In the second term, provided that the hydrodynamics is the origin of the inter-ciliary

coupling, the parameter K(>0) should be a function of the cilium length and the inter-
cilia distance with its strength depending on the geometrical detail of a pair of cilia.
For simplicity, however, we set K constant for any cilia pair, assuming a mean-field type
all-to-all coupling. The phase difference between φi and φj is minimized for large K,
giving rise to the cilia’s coordinated beating motion.

The last term ηi(t), which is essential for calculating the heat dissipated from the
system, is modeled using the Gaussian noise that satisfies 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t ′)〉 =
2Dδijδ(t− t ′). The noise represents the ambient thermal environment with temperature
T, surrounding the cell with cilia and its strength obeys the Einstein relation, D =
kBT/γ, where γ is a friction coefficient of each cilium. We set γ = 1 for convenience
throughout this paper.
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In this work, we quantify the thermodynamic cost (or heat dissipation) for a pop-
ulation of beating cilia upon synchronization, which is modeled with equation (1). As
is well studied in the past, for the entire cilia population, the total mean dissipation is
reduced upon synchronization for a K value greater than its threshold Kc. Our careful
analysis, however, discovers that the mean dissipation from a single cilium upon syn-
chronization with others can be greater than in isolation if its natural frequency (ωi) is
smaller than the average frequency of the population ωm.

In section 2, the mean-field version of noisy Kuramoto model is introduced to describe
the interacting cilia and their synchronization. In section 3, we calculate the mean heat
dissipation from individual cilia as well as from the entire cilia population in disordered
and synchronized phases. A special attention will be paid to a physically correct way
of calculating the heat dissipation to comply with the 2nd law of thermodynamics.
Finally, we conclude with the significance of our work in light of the thermodynamics
of many-body synchronization.

2. Noisy Kuramoto model

The equation of motion for the noisy Kuramoto model, equation (1), can be cast into a
simple form

φ̇i = ωi −Kr sin[φi − θ(t)] + ηi(t) , (2)

with the synchronization order parameter defined as [14]

r eiθ ≡ 1

N

N∑
j=1

eiφj (3)

where the order parameter r measures the extent of phase coherence (0 � r � 1), and θ
is the average phase angle. It is well known that the system reaches a steady state in the
long-time limit, where r with 〈δr2〉 ∼ 1/N becomes a time-independent constant in the
N→∞ limit. Also in this limit, the average angle θ varies linearly in time as θ(t) = ωmt
with a mean velocity (or a group velocity) defined as

ωm ≡ 1

N

N∑
i

ωi. (4)

In this paper, we confine ourselves to the steady state behavior of cilia population.
It is more convenient to rewrite the equation of motion with a shifted phase variable

φ̃i as
˙̃
φi = ω̃i −Kr sin φ̃i + ηi(t) (5)

with φ̃i ≡ φi − θ(t) and ω̃i ≡ ωi − ωm. The distribution for the shifted natural frequency
ω̃i becomes symmetric Gaussian, i.e. g̃(ω̃i) = N (0, σ2). As seen in equation (5), all oscil-
lators (cilia) become independent to each other with fixed r, and then the probability
distribution function (PDF) of the total system ρtot is simply the product of the PDF
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of each oscillator as

ρtot =
N∏
i=1

ρi(φ̃i) . (6)

In the steady state, each PDF ρi can be calculated exactly in the standard
Fokker–Planck framework as [15, 16]

ρ(φ̃, ω̃) =
e−V (φ̃,ω̃)/D

Z(ω̃)

(
1− 1− e−2πω̃/D∫ 2π

0
dφ′ eV (φ′,ω̃)/D

∫ φ̃

0

dφ′′ eV (φ′′,ω̃)/D

)
, (7)

where the subscripts ‘i’ are dropped for φ̃ and ω̃ for simplicity and the potential
function V (φ̃, ω̃) ≡ −ω̃φ̃−Kr cos(φ̃). Note that the PDF is a periodic function of

phase, i.e. ρ(φ̃, ω̃) = ρ(φ̃+ 2π, ω̃) and the normalization constant Z(ω̃) is determined

by
∫ 2π

0
dφ̃ ρ(φ̃, ω̃) = 1 (see the explicit expression for Z in equation (A3) of the appendix

A).
The order parameter equation (3) becomes

r ≡ 1

N

N∑
j=1

eiφ̃j , (8)

which provides a self-consistency relation to determine the value of r in the steady state
as

r =

∫ ∞

−∞
dω̃ g̃(ω̃)

∫ 2π

0

dφ̃ eiφ̃ρ(φ̃, ω̃) , (9)

where r should be understood as the steady-state ensemble average of equation (8) in
the N→∞ limit. Although the closed form of r is not known, the critical behavior of r
near the transition is obtained using a perturbation expansion for small r [15, 16].

r ∼ (K −Kc)
1/2 for K � Kc, (10)

where the threshold value Kc for the transition is given by

Kc = 2

[∫ ∞

−∞
dω̃

Dg̃(ω̃)

D2 + ω̃2

]−1

, (11)

and r = 0 for K � Kc. The steady-state PDF ρ(φ̃, ω̃) can be calculated from equation (7)
with r obtained from equation (9). For K � Kc, no synchronization occurs, thus the PDF
is uniform as ρ = 1/(2π).

It is useful to investigate the coupling-modified frequency ω̃s of each oscillator, which
is defined as

ω̃s ≡ 〈 ˙̃φ〉 = 〈ω̃ −Kr sin φ̃〉 , (12)
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where 〈· · ·〉 is the steady-state ensemble average. It is quite simple to calculate ω̃s exactly,
resulting in

ω̃s =
2πD

Z(ω̃)

1− e−2πω̃/D∫ 2π

0
dφ′ eV (φ′,ω̃)/D

≡ ω̃ [1− α] , (13)

where the modification factor α can be expressed as

1

1− α
= I20 (a) + 2

∞∑
n=1

b2(−1)nI2n(a)

n2 + b2
, (14)

where a ≡ Kr/D, b ≡ ω̃/D, and In is the nth order modified Bessel function of the
1st kind (see the detailed derivation in the appendix B). The modification factor α =
α(a, b2), which ranges between 0 and 1, monotonically increases with a (proportional to
the synchronization order parameter r) and decreases with b2 (proportional to the square
of the shifted frequency ω̃2). At r = 0 (K � Kc), no modification occurs (α = 0) with
ω̃s = ω̃, simply from equation (12). For K � Kc (synchronized phase), oscillators should
slow down due to the coupling (0 � α < 1), so |ω̃s| < |ω̃| for all ω̃, and ω̃s approaches ω̃
for large |ω̃|.

The coupling-modified frequency ωs in terms of the original variables φ is given
by ωs = 〈φ̇〉 = ω̃s + ωm with the natural frequency ω = ω̃ + ωm. We plot ωs against ω
in figure 2(a). Note that ωs is close to the group velocity ωm (ω̃ ≈ 0) in the range of
|ω − ωm| � Kr (b � a). In fact, we can easily find 1− α ≈ 2πae−2a for b/a 
 1 from
equation (14), leading to

ωs ≈ ωm +
2πKr

D
e−2Kr/D(ω − ωm) for |ω − ωm| � Kr, (15)

where the correction term is exponentially small for large Kr/D. In the other limit for
large |ω| or small r (b � a), the modification factor α is negligible as

α ≈ a2

2(1 + b2)
for

a

b

 1 , (16)

and thus

ωs ≈ ω − 1

2

(Kr)2(ω − ωm)

D2 + (ω − ωm)2
for |ω − ωm| � Kr , (17)

which approaches ωs = ω in the r→ 0 limit.

3. Mean dissipation from individual cilia

The heat dissipation rate from a single cilium with a natural frequency ω is calculated
as [19]

q̇(ω) = [ω −Kr sin(φ− θ)] ◦ φ̇(t), (18)

https://doi.org/10.1088/1742-5468/ab9e63 6
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Figure 2. Quantities involving the mean heat dissipation rate calculated
at D = 1, σ = 1, and K = 4 > Kc. The threshold value is given by Kc =
2(2/eπ)1/2/erfc(1/

√
2) ≈ 3.05 from equation (11). (a) Plots of the coupling modified

frequency ωs as a function of ω with ωm = 1. The solid line in orange shows the ω-
dependence of ωs for K = 4 > Kc and the blue line denotes ωs = ω valid for K < Kc.
The region of ωsω < 0 is under the grey shadow. The red arrow highlights the range
of ω giving rise to the negative viscous dissipation (ωsω < 0). (b) Mean heat dissi-
pation rate 〈q̇〉 from individual cilia as a function of ω. For K < Kc, 〈q̇〉< = ω2. For
K > Kc, 〈q̇〉> = ωωs + ωm(ωs − ω), which is plotted for various ωm values. (c) Heat
reduction rate upon synchronization, δq̇[≡ 〈q̇〉< − 〈q̇〉>], versus ω with ωm = 1. (d)
Population-weighted mean heat dissipation rate g(ω)〈q̇〉> for various values of ωm.

which is the energy loss caused by the thermal force F(ω) = ω −Kr sin(φ− θ) in
equation (2) and the symbol ◦ denotes the Stratonovich multiplication [19]. The
corresponding rate of work done on the cilium is

ẇ = ωφ̇(t)− θ̇Kr sin(φ− θ) , (19)

where the first term is the rate of work done by the driving force ω and the second
one is due to the Jarzynski work rate, θ̇∂E/∂θ [20], associated with the time-dependent
protocol θ(t) in the potential energy function E(φ, θ) = −Kr cos(φ− θ). Together with
equation (18), the thermodynamic first law for each cilium, ẇ = Ė + q̇, with Ė(φ, θ) =

(∂φE)φ̇+ (∂θE)θ̇ yields equation (19).

https://doi.org/10.1088/1742-5468/ab9e63 7
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In the steady state, 〈Ė〉 = 0, thus the mean values of the heat dissipation and work
production rates should be identical. Then we get the mean heat dissipation rate as

〈q̇〉 = 〈ẇ〉

= ω〈φ̇〉 − ωm〈Kr sin(φ− θ)〉

= ω〈φ̇〉+ ωm(〈φ̇〉 − ω),

= ωωs + ωm(ωs − ω)︸ ︷︷ ︸
Jarzynski work

, (20)

where ωs(= ω̃s + ωm) can be obtained from equations (13) and (14). Of particular note
is that the dissipation due to ωωs alone can be negative for a small subpopulation
of cilia with ω < 0 and ωs > 0 when ωm > 0 [see the shaded region of figure 2(a)].
This negative dissipation due to ωωs < 0, however, is compensated by the contribution
from the Jarzynski work, giving rise to 〈q̇〉 � 0. The heat dissipation 〈q̇〉 ought to be
always non-negative for all ω to be consistent with the 2nd law of thermodynamics [see
figure 2(b)].

In the disordered phase (K < Kc), no modification is made to the natural frequency
(ωs = ω), and hence 〈q̇〉 = 〈q̇〉< ≡ ω2, where the subscript < stands for the condition
K < Kc. It is, however, interesting to note that, for ωm �= 0, the heat dissipation from
a single cilium is not always reduced upon synchronization (K > Kc); instead, its sign
is decided by the value of ω [see figures 2(b) and (c)]. With equation (20) and α(ω) =
(ω − ωs)/(ω − ωm) from equation (13), it is easy to show that

δq̇ ≡ 〈q̇〉< − 〈q̇〉> = (ω − ωs)(ω + ωm) = α(ω)(ω2 − ω2
m). (21)

Interestingly, for the cilia with the natural frequency in the range of |ω| � ωm, we obtain
〈q̇〉> � 〈q̇〉< (figure 2(b)) or δq̇ � 0 (figure 2(c)), suggesting that more amount of heat
is dissipated upon synchronization than the case in the disordered phase.

The rate of total mean heat dissipation Q̇ for the ensemble of N cilia is obtained by
integrating the frequency-dependent mean heat dissipation rate 〈q̇〉 over the population
(see figure 2(d)):

〈Q̇〉 ≡ 1

N

N∑
i=1

〈q̇〉(ωi) =

∫ ∞

−∞
dω g(ω)〈q̇〉 . (22)

For K < Kc, 〈Q̇〉 = 〈Q̇〉< ≡
∫ ∞
−∞ dω̃ g̃(ω̃)(ω̃ + ωm)

2 = σ2 + ω2
m. The total mean heat dis-

sipation rate upon synchronization, 〈Q̇〉>, for K > Kc is always smaller than 〈Q̇〉< and
is reduced by

δQ̇ ≡ 〈Q̇〉< − 〈Q̇〉> =

∫
dωg(ω) (〈q̇〉< − 〈q̇〉>) =

∫
dω̃ g̃(ω̃)ω̃2α(a, b2) � 0 .

(23)

Note that the amount of the total heat reduction δQ̇ is independent of the frequency shift
ωm because α is a function of the shifted frequency ω̃ only (b = ω̃/D). The frequency

https://doi.org/10.1088/1742-5468/ab9e63 8
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Figure 3. (a) The synchronization order parameter r as a function of K. (b) The
rate of total mean heat dissipation rate 〈Q̇〉 as a function of K with ωm = 0, 1, 2, and
σ = 1. The inset shows δQ̇ for ωm = 0, 1, and 2. In consistent with the discussion
in the main text, all the δQ̇ for different ωm collapse onto a single curve.

shift ωm only comes in as a simple addition of ω2
m to the total heat dissipation. In

addition, unlike δq̇ (figure 2(c)), δQ̇ is always positive and universal for any value of ωm

[see the inset of figure 3(b)], signifying that the thermodynamic cost of the entire cilia
population is always reduced upon synchronization.

Finally, the nature of the synchronization transition at small r in the vicinity of
K ≈ Kc is of interest. Using equation (16) for small r, the total heat reduction rate
becomes

δQ̇ ≈
(
Kr

D

)2∫ ∞

0

dω̃ g̃(ω̃)
D2ω̃2

D2 + ω̃2
∼ r2 ∼ (K −Kc) , (24)

where we used r ∼ (K −Kc)
1/2 in equation (10) [see also figure 3(a)]. Whereas δQ̇ = 0

for K < Kc, the thermodynamic cost of beating motion for cilia population is reduced
as δQ̇ ∼ (K −Kc) upon synchronization for K �Kc (figure 3(b)).

4. Conclusions

As a simple model to study the generic features of synchronization, the noisy Kuramoto
model is particularly suited to understanding the basic thermodynamics involving the

https://doi.org/10.1088/1742-5468/ab9e63 9

https://doi.org/10.1088/1742-5468/ab9e63


J.S
tat.

M
ech.

(2020)
074001

Thermodynamic cost of synchronizing a population of beating cilia

synchronization of interacting cilia. To be specific, the noisy Kuramoto model enabled

us to dissect the dissipation from beating cilia into two sources for the case of K �Kc:

(i) dissipation, ωωs, arises from the driving force ω characterizing each cilium’s natu-

ral beating dynamics in isolation. (ii) Another dissipation θ̇∂θE(φ, θ) stems from the

hydrodynamic coupling between cilia which creates a simple time-dependent potential

E(φ, θ(t)) = −Kr cos[φ− θ(t)] when the original set of coupled equations is cast into

the single-cilium equation at the mean-field level (equation (2)). The phase variable of

each cilium, φi, is attracted towards the average phase angle of the cilia population

moving with θ(t) = ωmt. The average rate of the heat dissipation from this particular

force is called as the Jarzynski contribution. The total dissipation rate is the sum of the

two contributions, leading to equation (20), which is shown to be always non-negative.

We, however, note that quantities different from equation (20) have historically been

evaluated in the name of viscous dissipation [11, 12]. To evaluate dissipation in consis-

tent with the 2nd law of thermodynamics, one has to make sure to include both the

contributions (i) and (ii), and particularly (ii), discussed above.

Our model predicts that for the cilia whose beating frequency ω is slower than

the group frequency ωm (|ω| < |ωm|), they dissipate more energy upon synchronization

(〈q̇〉>) than in isolation (〈q̇〉<), satisfying 〈q̇〉> > 〈q̇〉<. In fact, this is one of the most

interesting points of the present study, as it is seemingly at odds with the general

conclusion of reduced dissipation of the whole population upon synchronization, namely,

〈Q̇〉> � 〈Q̇〉<. Despite the presence of such a subpopulation, it is straightforward to prove

that dissipation from the whole cilia population always compensates such contribution

[see equation (23)].

It has recently been argued by Zhang et al [21] that in addition to the energy

dissipation for driving each individual oscillator, extra energetic cost is required for the

oscillator–oscillator coupling in modeling coupled molecular biochemical oscillators, e.g.,

KaiABC system in the cyanobacterial circadian clock. They showed that the system is

synchronized when the energy dissipation is increased; however, this is in apparent con-

tradiction to the conclusion reached by our noisy Kuramoto model as well as by others

[22–24] that the total dissipation from the system is reduced upon synchronization. The

microscopic underpinnings of many-body synchronization may vary from one system

to another. As far as the meso-scale synchronization of beating cilia in a low Reynolds

number environment is concerned, there are many experimental evidences that lend

support to hydrodynamic interactions as the mechanism of the inter-ciliary coupling

and synchronization [7, 9, 25, 26], indicating the reduction of total dissipation upon

synchronization.

Finally, all the results of the present study are the logical outcome deduced from a

mean field version of the noisy Kuramoto oscillator model. In the biophysical context,

however, the emergence of metachronal traveling waves, characterized with both spatial

and temporal orderings, would be a more relevant problem to be explored in details,

which demands careful considerations of local hydrodynamic couplings, finite size effects,

and more realistic natural frequency distributions.
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Appendix A. Normalization constant Z

The normalization constant Z in equation (7) is

Z =

∫ 2π

0

dφ̃ e−V (φ̃,ω̃)/D

(
1− 1− e−2πω̃/D∫ 2π

0 dφ′ eV (φ′,ω̃)/D

∫ φ̃

0

dφ′′ eV (φ′′,ω̃)/D

)
, (A1)

with V (φ̃, ω̃) ≡ −ω̃φ̃−Kr cos(φ̃). After some algebra using the series expansion

e−a cos x = I0(a) + 2

∞∑
n=1

(−1)nIn(a) cos(nx), (A2)

with In(a) the nth order modified Bessel function of the first kind, we can easily find

Z = 2π
I20 (a) + 2

∑∞
n=1 b

2(−1)nI2n(a)/(n
2 + b2)

I0(a) + 2
∑∞

n=1 b
2(−1)nIn(a)/(n2 + b2)

, (A3)

with a ≡ Kr/D and b ≡ ω̃/D.

Appendix B. Coupling-modified frequency

The coupling-modified frequency defined in equation (12) is

ω̃s = 〈 ˙̃φ〉 =
∫ 2π

0

dφ̃
[
ω̃ −Kr sin φ̃

]
ρ(φ̃, ω̃) ,

=

∫ 2π

0

dφ̃

[
−∂V

∂φ̃

]
ρ(φ̃, ω̃) ,

=

∫ 2π

0

dφ̃

[
D
∂ρ

∂φ̃
+

D(1− e−2πω̃/D)

Z
∫ 2π

0 dφ′ eV (φ′,ω̃)/D

]
,

=
2πD(1− e−2πω̃/D)

Z
∫ 2π

0 dφ′ eV (φ′,ω̃)/D
, (B1)
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where we used the explicit form of ρ(φ̃, ω̃) in equation (7) and its periodic property

ρ(φ̃, ω̃) = ρ(φ̃+ 2π, ω̃). With the explicit expression of Z in equation (A3), we find

ω̃s = ω̃

[
I20 (a) + 2

∞∑
n=1

b2(−1)nI2n(a)

n2 + b2

]−1

. (B2)
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