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Abstract. We study finite-size-scaling behaviour of a two-dimensional random tiling model.
This model exhibits commensurate-incommensurate phase transitions of the Pokrovsky-
Talapov type where anisotropic scaling appears. A simple scaling argument near this
transition suggests an integral surface critical exponent which, in turn, implies a logarithmic
singularity with a universal coefficient in the surface free energy. We confirm the existence
of this singularity numerically employing the transfer matrix method in the case of free
boundary conditions.

Finite-size corrections to the free energy have been investigated extensively in recent
years, particularly after the discovery that many two-dimensional critical systems are
conformally invariant [1]. Conformal invariance relates the universality class of a
system to the coefficient of the second-order correction to the free energy [2, 3] (0(1/ N?)
term where N is system size). For a system with surfaces (non-gauge-invariant boundary
conditions), there also arises the first-order correction whose coefficient represents the
surface free energy. Relatively little is known about this surface term, partly because
the surface free energy is not a universal quantity [4]. Surface effects are particularly
important for systems undergoing continuous phase transitions as the correlation length
becomes long-ranged near criticality. Some qualitative features of surface effects were
explained in the context of mean field theory [5]. Surfaces may order at the same time
or even before the bulk orders, and a set of surface critical exponents associated with
surface singularities emerges. Such singuiarities are not of great concern because in
the thermodynamic limit the bulk singularities will finally dominate. However, in
numerical calculations on finite sizes, they make finite-size-scaling (rss) analysis
difficult. So it is important to understand the surface term as well as the universal
scaling term (the second-order term}.

Recently we studied Fss behaviour of a random tiling model [6]. The model consists
of paralielograms and squares with chemical potential & and 0, respectively (figure

Figure 1. The tiles and their chemical potentials.
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1). This model forms a special case of a more general random tiling model which at
proper concentrations is able to possess 8-fold rotational symmetries, and thus may
be a proper modet for studying two-dimensional 8-fold symmetric quasicrystals [7, 8].
Using Bethe ansatz, we solved this model exactly on semi-infinite strips with periodic
boundary conditions in our previous paper [6]. For & < —In 2 we have a crystal phase
with purely squares, while for 4 > —In 2 an incommensurate phase emerges with finite
domain-wall (parallelogram) densities (see figure 2). Domain walls run vertically on
average. Near gi. = —In 2 the domain-wall density d vanishes and the heat capacity ¢
diverges with exponent 1,2,

— N————]

Figure 2. A typical configuration of the tiling model on a semi-infinite strip with free
boundary conditions. Parts of tiles outside of the strip are cut off. Bold lines represent
demain walls which are constructed by connecting centres of parallel horizontal edges.
Domain walls can enter or exit at the boundary.

In this paper we concentrate on the scaling region near g. = —In 2. The transition
from the incommensurate (1c} to the commensurate (C) phase (Pokrovsky-Talapov
transition [9]) has many characteristics of ordinary second-order transitions. However,
the correlation length is infinite inside the entire 1C phase and the density-density
correlation function decays algebraically with the critical index x = 1. Even though the
correlation length is infinite, thermodynamic quantities {d, ¢, etc.} are not singular
except at the transition. There are other length scales (than correlation lengths) which
are responsible for the behaviour of the specific heat near the transition, i.e. the
horizontal and vertical length scales, £, and /,. I, represents the average domain wall
separation (=1/d) and [, the average vertical distance between collisions of domain
walls. Near the transition these length scales diverge with different exponents and the
system becomes very anisotropic [10]. In fact, &~ (& — o) "* and I,~ (& —4.)""

Because the vertical and horizontal length scales diverge as l,occly (=2 in this
case), one can expect the anisotropic scaling [10, 11] of the singular part of the free
energy in two dimensions to go as

S, N M7= b7 (b, BNTH BTM T (1)

where the reduced chemical potential u = a(g — i) and a is a non-universal arbitrary
metric factor, N (M) is the horizontal (vertical) size of the system, and b is the scaling
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factor. A parameter r= N"/M is invariant under the above anisotropic scaling. So
instead of the aspect ratio s = N/ M, one should keep r fixed towards the thermodynamic
limit in order to get sensible results.

In the thermodynamic limit, the above equation leads to

flp [T, (2)

Comparing with the exact result [6], we find that (1+71)/y, =3/2 ory, =2 when 7=2.
The rss behaviour along the renormalization group trajectory (uN's or uM% ™ =
constant), can be also deduced from (1) and the free energy behaves

f~ N—(1+'r) or f""‘ M-(l+‘r),"~r- (3)
The domain wall density d and the specific heat ¢ behaves
A~ NY.~n nr d ~ ALy, -l r
(4)
c~ NZ-V“*“*") or c~ M(2yﬂ—(l+'r)]/1'

These Fss exponents are confirmed in a generalized dimer model [12] where the
Pokrovsky-Talapov transition occurs.
In this paper we study surface effects on the rss behaviour of thermodynamic

nuantitisee in the anigntronicceraling reaime. We tala free houndary ecanditione I‘n
HURalunaes 1l i allidiIVpic-seaiiliy cvgpinit, YL anb e oluntialy LODGlulins

generate surface terms, Domain walls can enter or exit at the boundary (see figure 2).
These boundary conditions were shown to be very useful in numerical investigations
of 1c phases [6, 8], With these boundary conditions one can remove the complicated
size-dependent factor (x-effect [13]} in the universal scaling term of finite-size correc-
tions to the free energy. Then it becomes much easier to extrapolate finite-size data to
the thermodynamic limit [6, 13]. This is especially important near the ¢-ic transition
where the domain-wall density almost vanishes. In finite systems with free boundary
conditions, some domain walls get pinned at the boundary and their fluctuations
contribute to the surface free energy. Because there are almost no domain walls deep
inside the system near the transition, it is not unusual to see strong surface effects
there. We study how these surface effects influence the Fss behaviour of the free energy
and the domain wall density near the transition.

First we examine the scaling relation in (1). Replacing b by N, the singular part
of the free energy can be written

f=NTTTY(Np) (5)

where Y(x)=f(x 1, r}). The scaling function Y(x) is expected to be universal and
depends only on the shape of geometries (r = N7/ M) and boundary conditions. For
large N and non-zero u (large x), we expect the singular part of the free energy to
have the form

f(\)

feroi

where f(b) and f'(” renresent the qlnunlnr parts of the bulk and surface free ener

o
VEaanl CRPILoUIil UL aipnial okl (e L= 24

respectwely. Therefore the scaling f'unctlon Y(x) must be expanded for large x¥

Y(x) = yox®+ yyx"iet, L. ()

1 For the case of ordinary isotropic scalings, see for example, [4]
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where p,=(1+7)/v, and p, =7/y,. Note that both y, and y, are universal because
Y{x) is universal. Using this expansion in (5), we recover the correct bulk free energy,
(2} and find the surface free energy

£ =yt (®)

Notice that the leading exponent, 7/y,, becomes integral in our case where 7=y, =2.

Logarithmic singularities usually arise in systems with integral critical exponents
[14]. The two-dimensional Ising model is a typical example. There one has a vanishing
critical exponent « which is responsible for the logarithmic divergence of specific heat.
Phenomenologically what happens is that as « approaches zero, poles develop in both
the coeflicients of singular and regular parts of the free energy density, then cancellation
of these poles generates the logarithmic term [4, 14]. Such a mechanism can be invoked
here to generate a logarithmic singularity in the surface free energy.

The standard procedure is to perturb away from this tiling model so that the values
of the critical exponents change slightly [4]. The total free energy for the perturbed
system is

(s)
total = N__‘Y(N"""#)J"fib)*'r?'h.. {9)
where y/, =2/(1—¢) and ¢ is a small parameter. f{”’ and f!*' are the regular parts of
the bulk and surface free energy, respectively. The expansion of Y{x) as in {7) yields
the singular part of the surface free energy

RS TR (10)
The regular part of the surface free energy can be also expanded near yp =0
D=fotfint. (11)

where f, and f; are non-universal constants. As we let £ - 0 and recover our original
tiling model, we expect poles in the coeflicients y, and f) to develop. These poles must
cancel with each other, so we have

u
y,=—--;+yl+0(e)
£170
L1y

fi=t =+ it 00e)

where u and F, are universal because y, is universal. Combining the singular and
regular part of the surface free energy and taking the £- 0 limit, we obtain the total
surface free energy for our tiling model

Suw=Hotgutupln p+. .. (13)

where ¢ =f,+ ¥, is a constant. Note that the coefficient of the logarithmic term, u, is
universal. However there is a non-universal metric factor a (see equation (1}) involved
in the definition of the scaling field u. In this paper, we set a=1.

Domain wall density can be obtained by taking the derivative of (9) with respect
to u. Along the renormalization group flow path (constant x = N°u) we find

A+BIn N
=
N

where A depends on paths (values of x} but B =2u is universal and independent of
paths. The domain wall density is proportional to 1/ N as expected in (4) but it also

d (14}



Logarithmic singularity 261

has a logarithmic correction with a universal coefficient due to the logarithmic singular-
ity of the surface free energy.

We test our scaling argument numerically, The rss exponents of the free energy
and the domain wall density in {3) and (4) are calculated employing the transfer matrix
method. We also check the form of the surface free energy and the domain wall density
in (13) and (14). Consider two semi-infinite-strip geometries: (a) infinitely long in the
vertical direction, but finite with free boundary conditions in the horizontal direction
{M =00, N =finite) (figure 2), (&) infinitely long in the horizontal direction, but finite
with periodic boundary conditions in the vertical direction (M =finite, N = ). This
geometry is basically a 90°-rotation of {a). Domain walls run vertically so that their
average direction is parallel to the boundary of geometry {a) while perpendicular in
the case of (b). Note that exact solutions for finite-size lattices are known for the
geometry (a) if periodic boundary conditions are taken instead of free boundary
conditions [6].

As in our previous work [6], we set up the transfer matrix and find the largest
eigenvalue and the corresponding eigenvector. The free energy is equal to the logarithm
of the largest eigenvalue and the domain wall density can be obtained by sandwiching
the domain wall operator between the eigenvectors. For geometry (b} we calculate the
free energy fi, and the domain wall density d,, at w =0 (the transition point) for
system sizes M =2 4,6, 8, 10, 12. Both the bulk free energy and domain wall density
vanish at the transition. The numerical data obtained fit very well with the power law
as suggested in (3} and (4). In order to extract the exponents we construct a sequence
Wiy = M(1—far 42/ far)/2 for the free energy and extrapolate to the thermodynamic
limit using #-algorithm [15]. We repeat this procedure for the domain wall density
(see table 1). We find that the free energy and domain wall density behaves

f~ MO0

d ~ M—O,Sz::(}.()} (15)

where the exponents agree well with those in (3) and (4) when y, =7=2.

For geometry (a) we expect the surface terms arise in the free energy, and logarithmic
corrections in the domain wall density, due to the free boundary conditions. We perform
our calculations at the transition (x = Nu =0) for system sizes N from 1 to 18. In
order to obtain the Fss exponent for the free energy it is useful to construct a sequence
gn =(N+1)fy,— Nfy so as to cancel the surface term. Then the exponent can be
obtained from the sequence of wiy = N(1—gy.,/gn) in the same way as in geometry
(b) (see table 2). We find that the free energy behaves

£ A
=ﬁ+Wm+... (16)

where the exponent again agrees well with the scaling prediction in (3) when 7=2.
Table 1. Extrapolation of the ¥ss exponents for the free energy and the domain wall

density in geometry (b). The exponents are extrapolated using @-algorithm [13] from the
sequence why = M (1= fu o/ S /2 and wiy = M{1 —d,, .o/ du )/ 2.

M 2 4 6 8 10 0

0.638 8% 0.910 31 1.055 20 1.144 58 1.205 02 1.51£0.02
0.299 66 0.391 50 0.43295 0.455 81 0.469 98 0.52+0.03
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Table 2. Extrapolation of the ¥ss exponent for the free energy in geometry (a). The
exponent is extrapolated using #-algorithm [15] from the sequence wh = N{1—f,../fx )

N 12 13 14 15 16 17 o

Wiy 247219 2.526 26 2.573 05 2.613 81 2.649 56 2,681 10 3.07+0.10

For the domain wall density we use a different procedure from above to find the
coefficient B of the logarithmic correction in {14). First we construct a new sequence
gn =exp(~Ndy). Then the coefficient B is obtained by extrapolating the sequence
By = N(1 —gun+./ g~ ) (see table 3). This sequence converges nicely to B = (.360+ 0.005.
As predicted in our scaling theory, this coefficient must be independent of renor-
malization group flow paths, i.e. x = N"u. So we repeat our calculations along different
paths and find that there is almost no x-dependence for the value of B (see table 3).
The quality of data deteriorates as x becomes larger because we cannot have enough
data for larger system sizes.

Even though the fitting of the domain-wall density to the form in (14) is very good,
we also try the power-law fitting. Assume that the domain wall density is proportional
to N™® without logarithmic corrections. Using the same technique as before, we find
w =0.882+0.003 and the convergence is deceivingly good, in fact, almost as good as
in the previous logarithmic fitting. Therefore we cannot ignore the possibility of the
power-law decay of the domain-wall density with a new exponent w. If it turns out
real, a simple scaling theory predicts that the surface free energy must have a new
singular term proportional to u''*“”% We test this possibility and our previous
prediction by studying the scaling behaviour of the surface free energy near the
transition.

Inside the critical incommensurate phase the free energy takes the form

fsurf(#’)_ 7T€ +L+

Lourn o 17
N 24N N? ’ a7

Sulp) =Ffolp) +
where { is the anisotropy factor, The bulk free energy f.(u) and the anisotropy factor
¢ are known analytically [6]. We calculate the free energy at various values of u and
system sizes N. Then the surface free energy f,.{(u)} is obtained by using a two-
parameter fit in {17) and extrapolating to the thermodynamic limit. Afterwards we fit
feuwre(p) to the form in (13) near p =0, which yields fo=-0.57286+0.00002, ¢ =
—0.22+0.04 and u=10.18+0.01. One of the critical tests of our scaling theory is to

Table 3. The universal coefficient B obtained by fitting the domain wall density to
equation (14) along  differem  paths, x=N%'u  The sequence By=
N(1—exp{—(N+ )dy. )/ exp(—Ndy)) is stable and higher-order corrections are almost
negligible. From these data we estimate B =0.360+0.003.

N 12 13 14 15 16 17

x=0 0.36070 0.36116 0.361 34 0.361 32 0.36115 0.360 88
x=0.05 0.36003 0.360 53 0.36075 0.360 77 0.360 63 0.360 39
x=0.1 0.359 35 0.35990 0.360 16 0.360 22 0.360 11 0.35990
x=035 0.35392 035484 0.35543 0.35578 0.35594 0.35595

x=1.0 0.34703 0.348 43 0.349 45 0.350 17 0.350 66 0.35098
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check the predicted relation between two coefficients B and u (B =2u), This prediction
is now confirmed within numerical accuracy. The surface free energy in (13) with the
above coeflicients matches the numerical data almost perfectly over a range of u, i.e.
#=0~0.03 (see figure 3). In contrast, the power-law form {(u''**"?) cannot fit the
numerical data over more than one fifth of the region where the logarithmic fitting is
almost perfect. Therefore we exclude the possibility of the power-law form with a
non-integral exponent w.

-0.57 . . .
-0.58f \ .
\
3 -0.59f N\, -
~ N
AN
-0.60} N,
AN
LN
-0.61 1 I 1
0 1 2 3 4
H(x1072)

Figure 3. Plot of the surface free energy f... against the reduced chemical potential
p{=g~a.). The points indicate numerical data and the full line is obtained from (13)
with coefficients f;=—0.57286, g = —0.22, and u =0.18,

In summary, we have performed finite-size-scaling analysis for a random tiling
model near the commensurate-incommensurate phase transition. The finite-size-scaling
exponents can be well explained by the scaling arguments when anisotropy is taken
into account. In particular, the anisotropic scaling arguments suggest an integral surface
critical exponent, which implies a logarithmic singularity in the surface free energy
near the transition. This logarithmic singularity is manifested in the finite-size carrec-
tions to the domain wall density. We confirm this numerically employing the transfer
matrix method in the case of free boundary conditions. Finally we remark that the
same behaviour was observed in the free fermion model which belongs to the same
universality class [16].
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