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Abstract We study finite-aize.scaling behaviour of  a two-dimensional random tiling model. 
This model exhibits COmmen~UTate-incUmmenrurale phase transitions of the Pokrovsky- 
Talapov type where anisotropic scaling appears. A simple scaling argument near this 
transition suggests an integral surface critical exponent which, in turn, implies a logarithmic 
singularity with a universal coefficient in the surface free energy. We confirm the existence 
o f  this singularity numerically employing the transfer matrix method i n  the case of free 
boundary conditions. 

Finite-size corrections to the free energy have been investigated extensively in recent 
years, particularly after the discovery that many two-dimensional critical systems are 
conformally invariant [ 11. Conformal invariance relates the universality class of a 
system to the freeenergy [2 ,3]  (0(1/ N 2 )  
term where N is system size). For a system with surfaces (non-gauge-invariant boundary 
conditions), there also arises the first-order correction whose coefficient represents the 
surface free energy. Relatively little is known about this surface term, partly because 
the surface free energy is not a universal quantity [4]. Surface effects are particularly 
important for systems undergoing continuous phase transitions as the correlation length 
becomes long-ranged near criticality. Some qualitative features of surface effects were 
explained in the context of mean field theory [ 5 ] .  Surfaces may order at the same time 
or even before the bulk orders, and a set of surface critical exponents associated with 
surface singularities emerges. Such singularities are not of great concern because in 
the thermodynamic limit the bulk singularities will finally dominate. However, in 
numerical calculations on finite sizes, they make finite-size-scaling ( FSS) analysis 
difficult. So it is important to understand the surface term as well as the universal 
scaling term (the second-order term). 

Recently we studied FSS behaviour of a random tiling model [6] .  The model consists 
of parallelograms and squares with chemical potential fi  and 0, respectively (figure 

0 
Figure 1. The tiles and their chemical potentials. 
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I). This model forms a special case of a more general random tiling model which at 
proper concentrations is able to possess 8-fold rotational symmetries, and thus may 
be a proper model for studying two-dimensional 8-fold symmetric quasicrystals [7,8]. 
Using Bethe ansatz, we solved this model exactly on semi-infinite strips with periodic 
boundary conditions in our previous paper [ 6 ] .  For f i  < -In 2 we have a crystal phase 
with purely squares, while for r; >-In 2 an incommensurate phase emerges with finite 
domain-wall (parallelogram) densities (see figure 2). Domain walls run vertically on 
average. Near fiC = -In 2 the domain-wall density d vanishes and the heat capacity c 
diverges with exponent 112. 

Figure 2. A typical configuration of the tiling model on a semi-infinite strip with free 
boundary conditions. Pans of tiles outside of the strip are cut off. Bold lines represent 
domain walk which are constructed by connecting centres of parallel horizontal edges. 
Domain walls can enter or exit at the boundary. 

In this paper we concentrate on the scaling region near cc. =-In 2. The transition 
from the incommensurate ( I C )  to the commensurate (c) phase (Pokrovsky-Talapov 
transition [ 9 ] )  has many characteristics of ordinary second-order transitions. However, 
the correlation length is infinite inside the entire I C  phase and the density-density 
correlation function decays algebraically with the critical index x = 1. Even though the 
correlation length is infinite, thermodynamic quantities (d, c, etc.) are not singular 
except at the transition. There are other length scales (than correlation lengths) which 
are responsible for the behaviour of the specific heat near the transition, i.e. the 
horizontal and vertical length scales, I, and I,. I, represents the average domain wall 
separation ( = l / d )  and I, the average vertical distance between collisions of domain 
walls. Near the transition these length scales diverge with different exponents and the 
system becomes very anisotropic [IO]. In fact, I , -  ( f i  -bJ1'2 and I , -  ( f i  - f i J ' .  

Because the vertical and horizontal length scales diverge as I , =  1; ( T  = 2 in this 
case), one can expect the anisotropic scaling [IO, 111 of the singular part of the free 
energy in two dimensions to go as 

(1) 

where the reduced chemical potential p = a( ;  - &) and a is a non-universal arbitrary 
metric factor, N ( M )  is the horizontal (vertical) size of the system, and b is the scaling 

f(p, N - ' ,  M - l )  = b-"+'jf(b'-p, bN-', b 'M-I)  
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factor. A parameter r -  N ' / M  is invariant under the above anisotropic scaling. So 
instead of the aspect ratio s = N /  M, one should keep r fixed towards the thermodynamic 
limit in order to get sensible results. 

I n  the thermodynamic limit, the above equation leads to 

f- I C L I M / ) r ,  (2) 

Comparing with the exact result [6], we find that ( 1  + ~ ) / y , ,  = 312 or y ,  = 2 when 7 = 2 .  
The FSS behaviour along the renormalization group trajectory (,UN'* or pM'*" = 
constant), can be also deduced from (1) and the free energy behaves 

(3) 

,. 

f- N-i't'' Or f- M-"+"/', 

The domain wall density d and the specific heat c behaves 

/) I - 1. wY"-(I+rl er d - . M [ Y . " - ~ ' + ~ l l l ~  

cI &.2.""-ll+'l or - ~ " Y ~ - ' l + r ' l / ~  
(4) 

These FSS exponents are confirmed in a generalized dimer model [12] where the 
Pokrovsky-Talapov transition occurs. 

In  this paper we study surface effects on the FSS behaviour of thermodynamic 

generate surface terms. Domain walls can enter or exit at the boundary (see figure 2 ) .  
These boundary conditions were shown to be very useful in numerical investigations 
of IC phases [6,8]. With these boundary conditions one can remove the complicated 
size-dependent factor (K-effect [ 131) in the universal scaling term of finite-size correc- 
tions to the free energy. Then it becomes much easier to extrapolate finite-size data to 

where the domain-wall density almost vanishes. In finite systems with free boundary 
conditions, some domain walls get pinned at the boundary and their fluctuations 
contribute to the surface free energy. Because there are almost no domain walls deep 
inside the system near the transition, it is not unusual to see strong surface effects 
there. We study how these surface effects influence the FSS behaviour of the free energy 
and the domain wall density near the transition. 

First we examine the scaling relation in (1). Replacing b by N,  the singular part 
of the free energy can be written 

n..nnt;+;pr jE +ha snirn+rnnir-QrQl;nn - m n i m e  W p  F r p p  hnlvnrl.rTr rnnAit;nna !e ~I~......I" ...- -... "".."II.- I"_ .... ~ . - ~  ....-. .._ ."_l .._I I""..-.".J _"I.-.... ".." 

!he thermodynamic ! h i t  [6,13!~ This is especia!!y important near the c - ! C  transition 

f= N-"+"Y(NYw,U) ( 5 )  

where Y ( x )  = f ( x ,  1, r ) .  The scaling function Y ( x )  is expected to be universal and 
depends only on the shape of geometries ( r  = N ' I M )  and boundary conditions. For 
large N and non-zero f i  (large x ) ,  we expect the singular part of the free energy to 
have the form 
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where p 2 = ( 1 + ~ ) / y , ,  and p, = T / y , .  Note that both y ,  and y, are universal because 
Y(x) is universal. Using this expansion in (51, we recover the correct bulk free energy, 
(2) and find the surface free energy 

(8) 
Notice that the leading exponent, T / y I L ,  becomes integral in our case where ~ = y , ,  =2.  

Logarithmic singularities usually arise in systems with integral critical exponents 
[!4j: The !wo-dimemiona! 1sir.g mode! is a typica! ex amp!^. Thcre one has I vsnishing 
critical exponent (Y which is responsible for the logarithmic divergence of specific heat. 
Phenomenologically what happens is that as a approaches zero, poles develop in both 
the coefficients of singular and regular parts of the free energy density, then cancellation 
of these poles generates the logarithmic term [4,14]. Such a mechanism can be invoked 
here to  generate a logarithmic singularity in the surface free energy. 

The standard procedure is to perturb away from this tiling model so that the values 
of the critical exponents change slightly [4]. The total free energy for the perturbed 
system is 
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f'" = ylp'k +, , , , 

where y :  = 2/(1- E )  and E is a small parameter. f:') and f!" are the regular parts of 
the bulk and surface free energy, respectively. The expansion of Y ( x )  as in (7) yields 
the singular part of the surface free energy 

f : ~ l = y l p ' - ~ + . . .  . (10) 

f ! " = f o + f , p + .  . . ( 1 1 )  

The regular part of the surface free energy can be also expanded near p = 0 

where f o  and f i  are non-universal constants. As we let E + 0 and recover our original 
tiling model, we expect poles in the coefficients y ,  and f, to develop. These poles must 
cancel with each other, so we have 

U 

& 

U 

& 

y ,  = --+a, +CY(&) 

f, = +-+h +O(&) 

where U and j ,  are universal because y ,  is universal. Combining the singular and 
regular part of the surface free energy and taking the E -SO limit, we obtain the total 
surface free energy for our tiling model 

(13) 

where q =r, +aI is a constant. Note that the coefficient of the logarithmic term, U, is 
universal. However there is a non-universal metric factor a (see equation (1) )  involved 
in the definition of the scaling field p. In this paper, we set a = 1. 

Domain wall density can be obtained by taking the derivative of (9) with respect 
to U. Along the renormalization group flow path (constant x = N2u) we find 

Lurr=fo+w+w In P + .  . . 

(14) 
A + B I n N  

N 
+...  d =  

where A depends on paths (values of x )  but B = 2u is universal and independent of 
paths. The domain wall density is proportional to 1/N as expected in (4) but it also 
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has a logarithmic correction with a universal coefficient due to the logarithmic singular- 
ity of the surface free energy. 

We test our scaling argument numerically. The FSS exponents of the free energy 
and the domain wall density in (3) and (4) are calculated employing the transfer matrix 
method. We also check the form of the surface free energy and the domain wall density 
in (13) and (14). Consider two semi-infinite-strip geometries: ( a )  infinitely long in the 
vertical direction, hut finite with free boundary conditions in the horizontal direction 
( M  = m, N = finite) (figure 2), ( b )  infinitely long in the horizontal direction, but finite 
with periodic boundary conditions in the vertical direction ( M  = finite, N =a). This 
geometry is basically a 90"-rotation of ( a ) .  Domain walls run vertically so that their 
average direction is parallel to the boundary of geometry ( a )  while perpendicular in 
the case of ( b ) .  Note that exact solutions for finite-size lattices are known for the 
geometry ( a )  if periodic boundary conditions are taken instead of free boundary 
conditions 161. 

As in our previous work [6], we set up  the transfer matrix and find the largest 
eigenvalue and the corresponding eigenvector. The free energy is equal to the logarithm 
of the largest eigenvalue and the domain wall density can be obtained by sandwiching 
the domain wall operator between the eigenvectors. For geometry ( b )  we calculate the 
free energy fM and the domain wall density dM at f i  = O  (the transition point) for 
system sizes M = 2,4,6,8, IO, 12. Both the bulk free energy and domain wall density 
vanish at the transition. The numerical data obtained fit very well with the power law 
as suggested in ( 3 )  and (4). I n  order to extract the exponents we construct a sequence 
wM = M (  1 - fMt2/fM)/2 for the free energy and extrapolate to the thermodynamic 
limit using &algorithm 1151. We repeat this procedure for the domain wall density 
(see table 1). We find that the free energy and domain wall density behaves 

f - M-'.5'*".02 - M-n.52*0.03 (15) 

where the exponents agree well with those in (3) and (4) when y ,  = T = 2. 
For geometry ( a )  we expect the surface terms arise in the free energy, and logarithmic 

corrections in the domain wall density, due to the free boundary conditions. We perform 
our calculations at the transition (x = N 2 f i  =0) for system sizes N from 1 to 18. I n  
order to obtain the FSS exponent for the free energy it  is useful to construct a sequence 
g ,  = ( N + l ) f , + , -  N f ,  so as to cancel the surface term. Then the exponent can be 
obtained from the sequence of w" = N (  1 - g N + , / g N )  in the same way as in geometry 
( b )  (see table 2) .  We find that the free energy behaves 

(16) 
f o  Ao f =z+ N ' . " 7 ' " . l ~ ' + . ' ~  

where the exponent again agrees well with the scaling prediction in (3 )  when ~ = 2 .  

Table I. Extrapolation OF the Fss exponents for the free energy and the domain wall 
density in geometry ( h ) .  The exponents are extrapolated using 0-algorithm [IS] from the 
sequence w:=  M(I-.&,+JLWJ/2 and . ' :=M(I-d, , . , /d ,~J/2.  

M 2 4 6 8 10 m 

WL 0.63889 0.91031 1.05520 1.14458 l .20502 1.5110.02 
w& 0.29966 0.391 50 0.43295 0.45581 0.46998 0.52i0.03 



262 W Li and H Park 

Table 2. Extrapolation of  the FSS exponent for the free energy in geometry ( a ) .  The 
exponent is extrapolated using 0-algorithm [ I S ]  from the sequence WIN = N ( l  - / N + , / / N ) .  

17 m I 5  16 14 I3 N 12 

W; 2.472 19 2.52626 2.573 05 2.613 81 2.64956 2.681 10 3.07+0.10 

For the domain wall density we use a different procedure from above to find the 
coefficient B of the logarithmic correction in (14). First we construct a new sequence 
qN =exp(-Nd,). Then the coefficient B is obtained by extrapolating the sequence 
EN = N (  1 - q N + J q N )  (see table 3). This sequence converges nicely to B = 0.360* 0.005. 
As predicted in our scaling theory, this coefficient must he independent of renor- 
malization group flow paths, i.e. x = N"*p. So we repeat our calculations along different 
paths and find that there is almost no x-dependence for the value of B (see table 3). 
The quality of data deteriorates as x becomes larger because we cannot have enough 
data for larger system sizes. 

Even though the fitting of the domain-wall density to the form in (14) is very good, 
we also try the power-law fitting. Assume that the domain wall density is proportional 
to N-" without logarithmic corrections. Using the same technique as before, we find 
o = 0.8821 0.003 and the convergence is deceivingly good, in fact, almost as good as 
in the previous logarithmic fitting. Therefore we cannot ignore the possibility of the 
power-law decay of the domain-wall density with a new exponent U. If it turns out 
real, a simple scaling theory predicts that the surface free energy must have a new 
singular term proportional to pL('t"i/2. We test this possibility and our previous 
prediction by studying the scaling behaviour of the surface free energy near the 
transition. 

Inside the critical incommensurate phase the free energy takes the form 

where 5 is the anisotropy factor. The bulk free energy fm(p) and the anisotropy factor 
b are known analytically [6 ] .  We calculate the free energy at various values of p and 
system sizes N. Then the surface free energy fsucf(p) is obtained by using a two- 
parameter fit in (17) and extrapolating to the thermodynamic limit. Afterwards we fit 
fsUrf(p) to the form in (13) near p =0, which yields fo=-0.57286*0.00002, q =  
-0.22+0.04 and u=0.18+0.01. One of the critical tests of our scaling theory is to 

Table 3. The universal coefficient B obtained by fitting the domain wall density to 
equation (14) along different paths, x =  N'ep.  The sequence E,= 
N ( l  - e x p ( - ( N +  I)d,+,)lexp(-Nd,)) is stable and higher-order corrections are almost 
negligible. From these data we estimate B =0.360+0.005. 

N 12 14 I5 16 17 13 

X = O  0.360 70 0.361 16 0.361 34 0.361 32 0.361 I5 0.360 88 
x=o .o5  0.360 03 0.360 53 0.360 75 0.360 77 0.360 63 0.360 39 
x=0.1 0.35935 0.359 90 0.360 16 0.360 22 0.360 I I 0.359 90 
x = 0.5 0.353 92 0.354 84 0.355 43 0.355 78 0.355 94 0.355 95 
x=1.0 0.347 03 0.348 43 0.349 45 0.350 17 0.35066 0.35098 
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check the predicted relation between two coefficients B a i d  U ( B  = 2 u ) .  This prediction 
is now confirmed within numerical accuracy. The surface free energy in (13) with the 
above coefficients matches the numerical data almost perfectly over a range of p, i.e. 
p=O-O.O3 (see figure 3). In contrast, the power-law form (p"+"'"*) cannot fit the 
numerical data over more than one fifth of the region where the logarithmic fitting is 
almost perfect. Therefore we exclude the possibility of the power-law form with a 
non-integral exponent w. 

-0 .57 7 

-0.61, " L 2 3 

p ( X l O + )  

Figure 3. Plat of the surface Cree energy Lurr against the reduced chemical potential 
p ( = @ - i . ) .  The points indicate numerical data and the full line i s  obtained from ( 1 3 )  
with coefficients fa = -0.57286, q = -0.22, and U =0.18. 

In summary, we have performed finite-size-scaling analysis for a random tiling 
model near the commensurate-incommensurate phase transition. The finite-size-scaling 
exponents can be well explained by the scaling arguments when anisotropy is taken 
into account. In particular, the anisotropic scaling arguments suggest an integral surface 
critical exponent, which implies a logarithmic singularity in the surface free energy 
near the transition. This logarithmic singularity is manifested in the finite-size correc- 
tions to the domain wall density. We confirm this numerically employing the transfer 
matrix method in the case of free boundary conditions. Finally we remark that the 
same behaviour was observed in the free fermion model which belongs to the same 
universality class [16]. 
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