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Abstract. We investigate the kinetics of a generalized monomer-monomer surface 
reaction model in which there is a variable excluded-volume interaction between same 
species particles (As and Bs).  For no interaction, this system reduces to the monomer- 
monomer model for which there is a first-order transition between A- and E-saturated 
phases. As a function of the excluded volume interaction. the first-order transition line for 
weak interaction terminates at a tricritical poinl where two second-order transitions meet. 
These transitions, which appear to be in the Reggeon field theory universality class, 
separate the A-saturated, reactive. and 8-saturated phases. Series expansions and various 
time-dependent Monte Carlo simulations are used to estimate the critical paramelen and 
exponents associated with these transitions. 

1. Introduction 

Recent investigations of idealized lattice models of surface reactions 11-41 have 
helped elucidate basic aspects of non-equilibrium phase transitions and have provided 
some insights into realistic catalytic processes [5-81. Although only some of the basic 
steps in realistic catalytic reactions are accounted for in these models, their study has 
provided useful information about basic processes such as the oxidation of CO on 
metal surfaces. A common feature of these models, such as the monomer-monomer 
and monomer-dimer models, is that interactions between adsorbates are ignored, 
except for the actual surface reaction that converts the reactants into the product. 
When adsorbate interactions are incorporated, interesting kinetic features can result, 
ranging from oscillatory behaviour [9] to more complex phase behaviour [lo]. 
However, there has not yet been a systematic effort to explore the role of interactions 
within the framework of the simplest stoichiometric models. 

In this article, we investigate the influence of nearest-neighbour excluded-volume 
interactions between same species reactants on the kinetics of the monomer- 
monomer model. This may be viewed as each of the reactants having a radius which 
can be vaned to be less than, or larger than the distance between adsorption sites on 
the surface. As we shall see, this interaction profoundly affects the non-equilibrium 
phase behaviour of the model. In a different context, this type of excluded-volume 
interaction plays a crucial role  in^ governing the physical properties of noble gas 
adsorption on simple substrates, such as graphite [ll]. As a function of the adsorbate 
radius, different types of surface ordering occur as the system is cooled to a low 
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Were 1. The phase diagrams of the interacting surface reaction model for (a) rA variable 
and rs= 1, and (b) rA = rB=r. Here R refers to the reactive phase, while A and B refer to 
the two respective saturated phases where the surface is filled by one species and no 
funher reaction is possible. Tunedependent MC simulations were performed at the points 
marked by lower-case letters. 

temperature. Certain aspects of this ordering underlie the different phase transitions 
that occur in our interacting reaction model. 

Another motivation for studying surface reactions with adsorbate interactions 
stems from the interesting behaviour exhibited by the recently-introduced ‘dollars and 
dimes’ model [12]. This a monomer-monomer model in which one of the species (the 
‘dollar’) has a diameter greater than a lattice spacing, so that nearest-neighbour 
adsorbed dollars cannot occur. This system corresponds to the limiting case of 
infinitely strong excluded volume in our general interacting model. The dollars and 
dimes model exhibits a second-order transition between a dime-saturated phase and a 
reactive steady state which is in the Reggeon field theory (m) universality class. On 
the other hand, when the interaction strength goes to zero, the reaction reduces to the 
simple monomer-monomer model [13], for which there is a first-order transition 
between an a A-saturated and a B-saturated state as the relative deposition rates of 
the two species passes through unity. We are interested in determining how the 
general interacting model interpolates between these two limiting behaviours as the 
interaction strength is varied. 

As the strength of the excluded-volti.:.- interaction increases, the transition of the 
monomer-monomer model appears to extend to a first-order line which separates A- 
and E-saturated states. At a critical value of the interaction, the first-order transition 
terminates at a tricritical point beyond which there are two second-order transitions 
(figure I). The lower transition separates the B-saturated and reactive steady states, 
while the upper transition separates the A-saturated and steady states. In the limit of 
infinitely strong exluded-volume interaction between As, nearest-neighbour pairs 
cannot occur, and the A-saturated phase does not exist. Thus there is only a single 
transition in this limit. We have employed the complementary numerical techniques 
of series expansions and Monte Carlo simulations to map out the phase diagram and 
determine the nature of the associated non-equilibrium phase transitions. 

In section 2, we first define our interacting surface reaction model. The results of a 
single-site mean-field approximation are outlined in section 3, where a tricritical point 
is predicted to occur only in the monomer-monomer limit. In section 4, we review the 
scaling behaviour of basic time-dependent properties in surface reaction phenomena. 
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Series expansions of these surface properties and the corresponding analysis are 
presented in section 5. Complementary Monte Carlo simulation results are given in 
section 6. Both of these numerical methods suggest the phase diagram of figure 1, with 
a tricritical point at a fmite value of the excluded-volume interaction. 

2. The model 

We generalize the monomer-monomer model to allow for a nearest-neigbour repul- 
sion between same species particles (the As, for example). This is parameterized by 
specifying that an A can adsorb adjacent to an already-adsorbed A (restricted 
vacancy) at a rate rAkA, with O = ~ r , < l ,  where kA is the ‘bare’ adsorption rate of the 
As. Thus the limiting case r,=O corresponds to the dollar and dime model in which 
nearest-neighbour adsorbed As cannot exist, while the case rA= 1 corresponds to the 
monomer-monomer model. These steps can be schematically summarized as: 

A + S”‘-k,’A, 

B + S ~ B ,  

A,+B,S(AB) T +ZS. 
Here the subscripts denotes adsorbed particles, S denotes a vacant lattice site, and S’ 
or S” denotes an unrestricted or restricted vacant lattice site for the As. The restricted 
vacancies S” have at least one A, in their nearest-neighbourhood. Here we will 
consider only the adsorption-limited reaction, where the reaction rate is much greater 
than the adsorption rates, k,% kA, kB. The phase diagram of this model is sketched in 
figure I .  

To formulate a convergent series expansion (section 5), it is necessary to introduce 
a small modification to the excluded-volume interaction described above. This 
alteration does not affect the nature of the reaction in any substantial way, but it does 
render the supercritical series expansion convergent. Whenever there is an A adsorp- 
tion attempt at a vacant site which neigbours both an A, and a B,, we ignore the 
excluded-volume interaction, and allow the A to adsorb and react immmediately with 
the E,, thus forming an AB product. This change is equivalent to a small increase in 
@e excluded-volume parameter rA (when r, is strictly in the range O<r,<l), an 
attribute which should not affect the overall phase diagram of the system. 

This interacting surface reaction model can also be generalized to allow for 
excluded-volume interactions for both species. For example, we may define an 
excluded-volume parameter for both A and B adsorption, r, and r,, respectively. In 
particular, when the magnitude of the interaction for each species is the same, the 
phase diagram is symmetric about equal adsorption rates for the two species (figure 
l(b)), a feature which simplifies analysis of the model. 

3. Mean-field theory 

To gain a first impression for the kinetics of the interacting surface reaction Model, we 
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Figure2. Schematic plot of the nullclines A = O  and B = O  from the singlesite mean-field 
theory (equation (2)). Shown are the nullclines for (a) p>qlr ,  (b) qlr>p>q,  and (c) 
q>p. The resulting stable fixed points for these three cases are marked by the dot. This 
fixed-point behaviour leads to the phase diagram shown in (d). Note that the width of the 
steady-state region vanishes linearly in 1 - r as r+O. 

outline the results from a single-site mean-field analysis. For concreteness, we 
consider the situation where rB= 1, and also denote r, as r in this section. On a lattice 
of coordination number I, the concentration of As and Bs evolve according to 

A =E[p(E’+r ( (E+A)’ -E’ ) ) -q ( l  -(I -Ay)] 

b=E[q(l-A)’-p(l-(l - B y ) ] .  (1) 
Here A and B also refer to the concentration of the two species, E = 1 - A  - B is the 
concentration of vacant sites, p = kA/(kA + k,)  is the probability that an A adsorption 
attempt occurs, and q = 1 -p is the probability of a B adsorption attempt. 

In the equation for A ,  the first term accounts for the probability that an A adsorbs 
onto a site with no nearest-neighbour Bs. This term is further separated into the 
contribution due to A adsorption on a vacanacy with the nearest-neighbourhood also 
vacant, and a contribution where the nearest-neighbourhood contains As but no Bs. 
The second term gives the probability of B adsorption onto a site in which there is at 
least one A in the nearest neighbourhood. In the equation for b, the second term 
which accounts for A adsorption, does not involve the factor r ,  since it is explicit that 
there is at least one B in the nearest neighbourhood. 

To determine the phase diagram, we analyse the nullclines A = 0 and E = 0, given 
by 

pryfl fp(1 -r)Ez- q(l - y A ) ’ = 0  q y i - p ( l  -yk) =o (2) 
where y ,  = 1 -A and y ,=  1 - B.  Graphs of the nullclines as a function of A and B are 
shown in figure 2. A s p  vanes, there is a continuous evolution for the location of the 
stable fixed point. This corresponds to a second-order transition from an A saturated 
phase when p > q / r ,  to a reactive steady state for q l r > p > q ,  and finally to a B 
saturated phase for q>p. According to this mean-field analysis, the transition point in 
the monomer-monomer model is actually a tricritical point where the A- and 
B-saturated phases and the reactive phase meet. The width of the steady-state regime 
vanishes linearly in 1-r ,  as r+l . Indeed, given the known behaviour at the two 
endpoints r =O and r =  1 ,  the mean-field form of the phase diagram is the most natural 
outcome from polynomial rate equations. Thus one of the goals of our numerical 
study will be to determine the validity of the mean-field predictions and the quantita- 
tive properties of the various non-equilibrium phase transitions. 
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4. Scaling behaviour 

Our numerical studies are based on examining the time dependence of several basic 
geometric properties of the reactive surface, when the lattice is initially filled by one 
species, except for a single vacancy. Here we illustrate the case where Bs occupy the 
system. Following closely Grassberger and de la Torre [14], we hypothesize that any 
function of x, f ,  and A = p  -pc  exhibits power law dependences on these quantities 
multiplied by a function which depends only on the scaling variables x*/ f*  and A P .  
Here pc is critical value of p, and Y and z are critical exponents. 

For the density of vacancies at position x. one expects 

p(x,  f) - f*-dz,zF ( x 2 / f  , At"") 

P(t)-"'$(Af''") (4) 

(3) 
and for the survival probability-the probability that the system has not yet entered 
into the E-saturated state at time f-one expects 

where 6 and 11 are additional critical exponents, while F and $ are universal scaling 
functions. 

From (3), the average number of vacancies, NE(t), and the mean-square spread of 
the region of vacancies, R2(t), are given by 

NE(t) = ddxp(x, f) - Ilf(At"') (5 )  I 
and 

ddxxzp(x, f)-f'g(At""). 

In the supercritical region where A >0, the system has non-zero chance of survival 
(i.e. not becoming saturated by Bs) in the long-time limit. Therefore 

P ,  = lim P ( f )  - Ad. (7) ,- = 

In the subcritical region where A<O, one expects the survival probability and the 
average number of vacant sites to decay exponentially in time 

P(r) - - P I  exp(-constant x t), 
NE([)  -tu' exp(-constant x r) 

( 8 )  
(9) 

where a, and a, are unknown exponents. These formulae can be true only if the 
scaling functions in (3) and (4) satisfy 

$(y)-(y)"~tde-b(-~)' for y+ m (10) 

for y - t  m (11) f(y)-(-yp-"l e-C(-Y)" 

p(O)-(-A)-d1-6) (12) 

(13) 

where b and care constants. Inserting (lo), (11) into (5), (6), respectively, taking the 
Laplace transform and letting s-0, we find 

and 
NE(())-  (-A)-v(1+7) 
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where the tilde denotes the Laplace transform. Equations (3, (12) and (13) are the 
quantities which will be computed by series expansions in the next section to provide 
estimates for critical exponents. 

5. Series expansions 

Recently, Dickman and Jensen developed a timedependent perturbation theory for 
two-state interacting particle systems which exhibit a non-equilibrium continuous 
phase transition to a unique absorbing state [15,16]. They presented several methods 
for deriving series expansions for the evolution of a state with a single seed particle, 
including expansions for the ultimate survival probability of the seed in both the 
super- and subcritical regions, the average number particles in the subcritical regions, 
as well as short time expansions. Here, their theory is adapted to our interacting 
surface reaction model in one dimension. 

We begin by briefly reviewing the theory for the series expansion in the context of 
our model. Since each site can exist in three states, the basis states for given site i eZd  
are \U,) with u;=O, 1 or 2, corresponding to site i being occupied by a E, vacant, or 
occupied by an A,  respectively. An arbitrary configuration of the system, /{U$, can be 
written as a direct product I{~~})=rI,,~dllu~). Thus the state of the system at time tis  

where the sum is over all configurations, andp({ui}, f) is the configuration probability 
distribution. The evolution of a state is governed by the master equation 

where X is the time evolution operator. The formal solution to this equation is, 

lY(t))=emlY(0)) (16) 
where IY(0)) is the initial state. 

The time evolution operator X for our interacting model can be written as 

X=P9A + @ B ,  (17) 
where 21bA and 9, are the operators that describe the deposition and subsequent 
possible reaction of A and E particles, respectively. To compute the action of %e, 
consider a configuration Iy) which contains nE vacancies and m restricted vacancies 
(where at least one of its nearest neighbours is occupied by an A and none of its 
neighbours is occupied by a E). Then the action of 9A on Iy) yields 

where I y ' )  or Iy") are the configurations g-nerated from Iy) by depositing an A on one 
of the unrestricted or restriced vacant sites of Iy), respectively, and then allowing a 
reaction to occur with a neighbouring E if one exists. The action of 9* on a 
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configuration is defined similarly. Performing the Laplace transform of (16) and 
inserting (17) yields: 

There are two ways of performing a perturbation expansion of (19), by taking either q 
orp as the small expansion parameter, corresponding to the supercritical or subcritical 
expansion, respectively. We shall drive these expansions for an initial distribution 
which assigns probability 1 to the configuration I&) in which all lattice sites are 
occupied by Es, except for a vacancy at the origin. 

5.1. Supercriticnl expansion 

Let L = q / ( l - q )  and s'=s/(l-q), then except for an overall factor ( l -q) - '  (which 
can be accounted for at the end of the calculation), equation (19) becomes: 

IY(s))= (s' -9.4 - L9B)-qY(o)). 

IY(s))= IY~(S))+L~Y~(S))+~*IY~(S)+ . . . . 

1 9 0 )  = 0.41m 

l * o ) = 0 A 9 B l Y n - l )  rial. (22) 

(20) 

(21) 

Under the assumption that lY(s)) can be expanded in powers of L 

We define 0A(s)=(s-9.4)-1 and treat ABB perturbatively. Upon inserting (21) in 
(ZO), we thus find 

As the above equations show, the operator 0, plays a fundamental role in the 
supercritical expansion. The effect of this operator on an arbitrary configuration Iy) 
can be found by using the identity 

0" Iy) = s-'ly) + S - l o A 9 . 4  )y). (23) 
Inserting (18) into (23) and rearranging yields 

Suppose that configuration ly) contains n,vacancies and nA As. We define the order of 
Iy) as (nA + 2nE). This is the number of E absorptions needed to reach the saturated 
state from Iy). It is easy to see that each action of 9A(9B) on a given configuration will 
generate new configurations whose order will increase (decrease) by one. It is also 
clear from the nature of the supercritical expansion that IY(s)) involves infinitely 
many configurations, so it cannot be computed for an infinite lattice. However, one 
can compute the Laplace transform of the saturation probability, p(s), i.e. the 
probability of having entered the E-saturated state when the system started in state 
I&). The term of order Lj in the expansion for p(s) is simply the coefficient of 10) in 
lYi). As each application of 9B on a configuration will yield configurations whose 
order is lowered at most by one, it follows from (22) that in a calculation of p(s) to 
OJL"), we can discard all configurations with order higher than n in the expression for 
\Yo). Similarly, we can ignore all configurations with order higher than (n-k) in 



4204 Jun Zhuo el a[ 

lYA), as none of these contribute to the saturation probability. If we merely wish to 
compute the ultimate survival probability, using the identity 

[ P,  = 1 - lim sp(s) 
S-0 

the application of (24) becomes much simpler, because the algebraic factor in front of 
(24) reduces to a numerical factor l/(n,+ (r, - l)m]. 

To illustrate the method, we calculate the ultimate survival probability to third 
order. For this, we first require IYo) to third order 

[Yo)= O,lX,) = Oall)= l l)+ f l l l )  + f l l l l ) +  . . . 
where higher-order configurations are discarded since they do not contribute to the 
survival probability at third order. Then the action of the operator for the addition of 
a B on I Yo) gives 

9BlYo)=rB(l~)-  11)) + ;211)- (2111)) ++(2rB111) + 1101)) 

= r&) + j( 1101) - rBI11)) 

which implies 

rB I*,)= O,%lYd=; 10) + b.(I101)- r&~)).  

Similarly, using 9Bl@,)=+rB(1-rB)11) gives 

IYi’,)=OA9BlYi)=+rB(l -rB)ll) 

and then using 9.#2)=+ri(l -r~)lO), yields 

1 I*>) = O A 9 B (  @2) =G - rB)lo). 

Here we have used 9B10)=0. Since the coefficient of order Ik in the series for P,  
equals ( - s /p )  times the coefficient of 10) in IYk) in thes-+O limit, the first three terms 
in the series for P, are, 

P, = 1 - rBI - oA* - rB)13 + O(n4). 

Notice that P, is independent of r, up to this order; in fact, rA does not apear until the 
5th order, when configurations such as 11211) or 11121) need to be considered. For 
such configurations, the application of 0, can be computed following the methods 
described above. For example, we find 

1 
2+rA 0,11121) =- [I 1121) + O,(l11121) + r,l1221) + I1121 l))]. 

The formalism described above can be codified as a computer program to calculate 
series expansions for P,. We have thereby derived the series expansion for P, to 20th 
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order in 1 for a mesh of ( rA,  r,) values. As an example, we give the series for P ,  for 
rA = 0.3 and rB= 0.3 

Pm = 1 - 0.31 - 0.0ZlA3 - 0.O0S6A4 - 0.000 920 246 376 SA5 - 0.00445665S42416 

+ 0.0015549375025S517 - 0.M)2247796741466Wp + 0.MH)64507937141A9 

- 0.0007623383775731~~ + o.ooos68829584095a~1 

- 0.001129677678607W12 

+ 0.0013448441643271" - 0.0013908754154891" 

+ 0.000936249941273~ 

- o . o o o i s s o i ~ ~ ~ 4 8 4 ~ ~ ~ ~ -  0 . 0 0 0 ~ ~ 3 4 s s 7 ~ z i ~ a 1 7  

- 0.00405io934482ii1'9+ 0.0~987i9093398sa~+ O(P ), 

+ 0.0024411 13996814A'8 

Substituting ,I =q/(l  -4) in this equation yields a series in q. 

5.2. Subcritical expansion 

The subcritical expansion is very similar in character to the supercritical expansion, as 
one starts with (21)-(24). However, the roles of 9A and 9B are interchanged and 1 is 
replaced by p =A-'. For the subcritical case, it is useful to define OB@) = (s - gB)-', as 
the operator that plays the role analogous to 0, in the supercritical expansion. There 
is one crucial difference between the two formalisms, however. In the supercritical 
expansion, the action of 0, on a non-satnrated configuration generates an infinite 
number of terms. On the other hand, for the subcritical expansion, the operation of 
0, on the same configuration generates only afinite number of terms. Therefore, we 
are able to calculate a wider range of quantities than in the supercritical expansion, 
including P(O), NE(0) and NA(0). In particular, the coefficient of p! in the expansion 
for P(0)  is the sum of the coefficients in the expansion for ['Pi), excluding the 
contribution of the E-saturated state. Similarly, the corresponding coefficient in the 
expansion for NE(0) (N,(O)) is just the sum of the product of the coefficients times the 
number of vacancies (As) for each configuration. We then obtain information about 
critical exponents through the scaling relations (12) and (13). 

As an example, we calculate the subcritical expansion for P(0) and NXO) to 2nd 
order in p ,  Applying 0, on the initial configuration yields: 

Notice that unlike the corresponding quantity in the supercritical expansion, here 
]Yo) consists of only a finite number of terms. From (20) we get: 
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where we have used 9,0,10) = 0. Continuing this expansion in the same manner as 
above, we obtain 

Thus up to 2nd order in p, we sum the coefficients in lYj) to obtain 
1 1  1 
r, 2rZ, ri(1+2rb) 

P(0) = -+ -p + pz + OW) 

and by forming the sum of the product of the appropriate coefficients and the number 
of empty sites, we obtain 

This procedure has also been codified into a computer program to calculate the 
series expansions for P(O), NE(0) and RA(0) to 19th order in p. We give below the 
series expansion for NdO) at r, = 0.3 and r, = 1: 

NE(O)=l+lp+lp~+lp3+lp‘+O.84444444444444p5+O.815277777777778p6 

+ 0.667013888888889p’ + 0.600594997427981p8 + 0.490312976358878p9 

+ 0.4259539441433,~~~ + 0.343240313423238p’1 + 0.288898991754849p12 

+ 0.23549400921303p13 + 0.191490976074571p’4 

+ 0. 155590529333808p15 

+ 0.12529735823576p16 + 0.10272200607331p1’ 

+ 0.0780490514121529p18 

+ O.O680461675618859p”+ 0 ( p a ) .  

To obtain the corresponding series expansion inp, simply substitute p =p/(l - p )  into 
the series expansion and divide the resulting series by (1 - p ) .  

5.3. Series analysis and results 
Our computer program may be used to derive subcritical or supercritical expansions 
of the interacting surface reaction model for arbitrary r, and r,, and we focused on the 
two special cases of r,=l and O<r,,<l, and r,=rb A number of series analysis 
methods were attempted; empirically, we found that Pad6 approximants to the 
logarithmic derivative of the series gave the best results for the supercritical series, 
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Table 1. Estimates for the location of the critical points and the wrresponding 
critical exponents of P. for the interacting model with r,= 1. The * indicates 
that defective approximants were used in determining the numerical estimate 
forp, and the exponent. 

4207 

r, Lowerp, Lower dv Upper P< Upper dv 

0.0 0.5909fO.0005 0.283fO.005 
0.1 0.5849f0.0002 0.283fO.003 0.7647fO.W 0.249+0.006* 
0.2 0.5773+0.0002 0.301fO.W 0.6654+0.0007 0.7.39fO.009* 
0.3 0.5684f0.0002 0.338fO.Mw 0.6101i0.0004 0.251fO.006" 
0.4 0.5595f0.0011 0.37710.024' 0.5769f0.0003 0.315f0.005* 
0.5 0.5491f0.0007 0.458f0.018' 0.5545+0.0002 0.408f0.006' 
0.6 0.5385fO.0007 0.563f0.015 0.5383f0.0002 0.524f0.006" 
0.7 0.5285fO.0001 0.661fO.W 0.5261+0.0001 0.656f0.002 
0.8 0.5186f0.0002 0.772fO.007 0.5154f0.0002 0.766f0.003 
0.9 0.5094f0.0003 0.879f0.008 0.5074i0.0003 0.901t0.019* 
1.0 0.5000f0.0000 1.000+0.000 0.5000fO.OWO 1.000f0.000 

and that differential approximants 1171 yielded good estimates for the critical behav- 
iour in the subcritical regime. 

Shown in tables 1-4 are the results of unbiased estimates of the critical parameters 
for the case rB= 1 with various values of r,. The term unbiased refers to critical point 
and exponent estimates which are determined directly from the approximants, 
without additional assumptions or information. The estimates quoted are based on 
averaging all near-diagonal ((n,  n) and (n, n k 1)) non-defective approximants. Here 
an approximant is defined as defective if there is a real singularity between -x, and 
(I+E,)x,, or if there is a complex conjugate singularity pair at L and z* with 
JIm(z)J<&, with q=0.2 and ~~=0.005. When almost all approximants are defective 
(defined as three or fewer non-defective), all the approximants were used to compute 
the average. In this case, the quoted exponent value is marked by an asterisk. 

The subcritical and supercritical series data show that the two second-order 
transition points are distinct in the regime rA<r>, but become virtually identical for 
ra>rfi, with fA=0.45. For r,<rfn, the exponents obtained from analysing both series 

TableZ. Estimates of the critical parameters for p(0) for the interacting model 
with rB=l .  

rA Lowerp, Lower v(1-6) Upperp, Upper "(1 - d) 

0.0 0.5909i0.0005 1.438i0.054 
0.1 0.5853f0.0005 1.447f0.056 0.7682fO.0006 1.483i0.060 
0.2 0.5787fO.OM16 1.479f0.062 0.6684f0.0007 1.429f0.088 
0.3 0.5712+0.0005 1.522f0.052 0.6118+0.0009 1.402fO.092 
0.4 0.5621+_0.0005 1.503f0.075 0.5783f0.0009 1.193f0.082 
0.5 0.5497f0.0011 1.206f0.078 0.5546f0.0008 1.153f0.092 
0.6 0.5378'r0.0006 1.016 f0.038 0.5399 fO.wO6 0.954 f0.037 
0.7 0.5276+0.0002 0.928+0.014 0.5279fO.0003 0.851 f0.016 
0.8 0.5170f0.0003 0.817f0.019 0.5184FO.WOI 0.762f0.026 
0.9. 0.5068f0.0003 0.721 fO.020 0.5100+0.0004 0.712f0.029 
1.0 0.4975f0.0007 0.671i0.048 0.4975f0.0007 0.671f0.048 
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Table 3. Estimates oi the critical parameters for isdo) for the interacting model 
with rB=l. 

0.0 0.5911 i0.0005 2.282f0.053 
0.1 0.585410.0003 2.237f0.036 0.7685f0.0004 2.289f0.039 
0.2 0.5786fO.MHn 2.273f0.0927 0.6685fO.OW4 2.247f0.039 
0.3 0.5708f0.0002 2.225f0.020 0.6119k0.0006 2.165f0.062 
0.4 0.5613fO.0002 2.074f0.018 0.577910.0003 1.911 f0.027 
0.5 0.550710.0001 1.843f0.017 0.5545fO.wo4 1.730f0.035 
0.6 0.539610.0002 1.58710.028 0.5382fO.MXn 1.535f0.015 
0.7 0.5288+0.0004 1.36310.049 0.5ZOf0.0003 1.339f0.042 
0.8 0.519OfO.MM6 1.248f0.055 0516310.0003 1.182fO.oW 
0.9 0.5087+0.0002 1.064f0.019 0.507810.0203 1.065f0.018 
1.0 0.5000f0.0000 1.000fO.000 0.5000fO.ooOO 1.000f0.000 

are consistent with the corresponding values from m, with the subcritical series 
providing better agreement with m. When the transition points merge, exponent 
estimates change substantially as r,, increases beyond rk. This feature had been found 
to be characteristic of the discontinuous transition in the monomer-dimer model [IS]. 
Thus series analysis suggests that there is a tricritical point at (pr, r k )  I (0.56,0.45) in 
the interior of the phase diagram. This is in contrast to the mean-field prediction of a 
tricritical point at the monomer-monomer limit. Analysis of the symmetric case 
indicates a qualitatively similar topology for the phase diagram, but with the 
additional feature of the obvious symmetry about p = *  (figure l(b)). 

More precise estimates of critical exponents can often be obtained if we use 
independent accurate values for the location of the critical point. We found that thep, 
values obtained from time-dependent Monte Carlo simulations (to be described in the 
next section) are rather more precise than the series estimates. Thus at several points 
on the phase diagram (marked in figure l(a)), we used Monte Carlo estimates forp, as 
the basis for computing biased approximants for exponents. The results of this 
approach give exponents which are very close to those of RFT (table 5). 

Table 4. Estimates of the critical parameters for isdo) for the interacting model 
with r B = l .  Here. Ndr) is defined as the total number lattice sites which are not 
occupied by Bs. 

r, Lowerp, Lower v(l  i qr )  Upper pc Upper ~ ( 1  .t qr) 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.5908fO.0005 
0.5891 f 0.0012 
0.5796f0.0007 
0.5715f0.0001 
0.5619 i 0.0001 
0.5509 50.0001 
0.5391 f0.0003 
0.5278f0.0003 
0.5165 f 0.W3 
0.5063 f O.wO2 
0.4984fO.wO2 

2.7.4OfO.062 
2.317 f 0.122 
2379 10.096 
2.375 f0.015 
2.228f0.008 
2.127 f 0.013 
1.920f 0.022 
1.755t 0.025 
1.585f0.025 
1.493f0.021 
1.689 f 0.034 

0.7683f0.0003 
0.6682fO.0006 
0.6108f0.006 
0.5773f0.0006 
0.5550fO.MHn 
0.5394i0.0005 
0.5279f0.0003 
0.518610.0003 
0.510410.0002 
0.4984+0.0002 

2.310f 0.026 
2.29950.055 
2.334f0.073 
2.118f0.044 
1.958f0.016 
1.806f0.053 
I ,672f0.047 
1.557f0.031 
1 S07f 0.024 
1.689f0.034 
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TableS. Biased estimates of critical parameters for the interacting model at specified 
points in the phase diagram of figure 1. The ' indicates that defective approximants 
were used in determining the numerical estimate for vB. The RFT exponents are taken 
from 1151. 
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a 
b 

d 
e 
f 
g 

C 

RFT - 

0.5910 
0.7687 
0.6111 
0.5709 
0.2324 
0.4004 
0.4714 

0.281f0.002 
0.291f0.013' 
0.276f0.011 
0.312 f 0.004 
0.262f0.016 
0.274f0.003 
0.272fO.002* 
0.277 f 0.W1 

1.459fO.027 
1.447f0.029 
1.477t0.043 
1.5ffif0.041 
1.458i0.022 
1.439i0.024 
1.476+0.021 
1.447f0.002 

2.281iO.013 2.285fO.OU 
2.269f0.011 2.283f0.030 
2.242f 0.036 2.297 f 0.025 
2.240 f 0.009 2.317 fO.020 
2.279f0.034 2.285 f0.022 
2.276 f 0.008 2.280 f 0.004 
2.278t0.051 2.239t0.015 

2.281 fO.002 

Another interesting feature of the series approaches is that they provide two new 
exact results at the monomer-monomer limit. By the very simple form of their 
respective series expansions, we infer that P, = (2p - l)/p and nE(0) = l/(l - 2p) .  The 
first result can be explained by the fact that the dynamics of the quantity n(r)= 
(NA(t) + 2 NE(t))  is identical to a state-dependent random walk, in which the probabili- 
ties of going from state n to n +  1, n- 1, and n,  are pW(n), (1 -p)W(n) and W(n),  
respectively. Here W(n) is an unknown function of ii; but the crucial point is that the 
ratio of the hopping probabilities do not involve W(n).  The initial condition where all 
sites are occupied by Bs except for a single empty site corresponds to a random walk in 
nspace which starts one step away from an absorbing boundary at n =O. Since the 
ultimate survival probability depends only on the ratio (pW(n))l[(l -p)W(n)] = 
p / ( l  - p ) ,  the functional form of P, at rA= 1 is identical to that of a pure random walk 
which starts one step from an absorbing boundary. We have, however, not yet been 
able to find a simple explanation for the apparent exact result for aE(O). 

6. Monte Carlo simulations 

To check the series results by independent means, we performed Monte Carlo (MC) 
simulations of the interacting surface reaction model. Our goal was to obtain 
additional evidence for the existence of a tricritical point in the model. We first 
performed time-dependent MC simulations at several representative points which lie to 
the left of the tricritical point (figure 1). This simulation method provides an efficient 
and accurate method for determining the critical parameters of models that exhibit a 
continuous phase transition to an absorbing state [ l ,  19-22]. The reaction is simulated 
with all the sites initially'occupied by a single species (either As or Bs, depending on 
where in the phase diagram one wishes to examine) except for a single vacancy. 
During the simulation, we track the number of empty sites, NE(t), and the number of 
the species opposite from those in the initial state, N&). The lattice is suffrciently 
large so that the initial defect cannot reach the boundary throughout the simulation. 
The simulation was run for up to 2000 time steps and averages over 2 . 5 ~ 1 0 1  
independent runs were performed. 

We measured: (i) the survival probability P(t);  (ii) the average number of empty 
sites NE(t) and the average number of the other species N.(t); and (ii) the mean- 
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square spread of the region of empty sites, Rz(f). At the critical point pc, the scaling 
assumption discussed in section 4 implies that for large f ,  these quantities have the 
following power law time dependences 

P(t) - t-b 

and 

Rz(t)  - f. (27) 
Thus at pc, graphs of log P(t) ,  log NE(f) ,  log N&), and log R2(t) versus log t should 

asymptotically fall on a straight line, while off-critical plots will exhibit curvature. 
More precise estimates for the critical exponents can be obtained by examining the 
trend in the local slopes of the data, when plotted on a double logarithmic scale. For 
example, for P(t),  we define the effective exponent as 

log[ P(f) /P( t /b) ]  
log b -6(t) = 

where we have chosen b = 5 for most of our extrapolations. We then estimate the 
asymptotic value of the exponent, by using the fact that the pre-asymptotic corrections 
can be written as [19] 

a a' 
t f6 

6(r)=6+-+7+. . 

where a ,  a' and 6' are constants, to monitor how the effective exponent approaches its 
limiting value as l/f-0. Similar expressions exist for qE(t), q&) and z( f ) .  

Plots of the effective exponent against l l t  exhibit either upward or downward 
curvature in the plots away from criticality. Since the direction of this curvature 
depends sensitively on the value of p ,  a relatively accurate estimate for pc  may be 
deduced. The value of the exponent is then estimated by the intercept of the data on 
the vertical axis when p=pc. A typical example of such aplot is shown in figure 3, 
which corresponds to point c in the phase diagram of figure l(a). Figure 3(c) shows 
that the local slope qE(t) veers downward (subcritical) for p = 0.6113 and upward 
(supercritical) for p=0.6009. Therefore, our estimate for the critical point is pe= 
0.6111i0.0002 and the corresponding exponent qE=0.31 CO.02. The quoted error 
bars represent a subjective estimate of the range over which the curvature of the data 
when plotted against I/f does not indicate a systematic upward or downward trend. 
Once the critical point is determined, we use this information to estimate the other 
critical exponents 6, qB and z from the asymptotic values of the corresponding local 
slope when plotted against l l t .  The results of this analysis are summarized in table 6, 
along with the corresponding exponents values of RFT. Our estimates for the 
exponents at the representative points of the phase diagram with r < r i  are in good 
agreement with those of RFT. Thus, the time-dependent MC simulations corroborate 
the series results. 

However, both the series and the Monte Carlo results do not unambiguously rule 
out the possibility that a narrow region of steady-state behaviour exists, even as 
rA+l .  In fact, the Monte Carlo merely indicated that the critical exponents change 
continuously along the transition line as r is increased beyond r,. Such a feature was 
found to be indicative of a first-order transition in the monomer-dimer model [18]. 
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"E 0.34 I. . I I 

2 
1.30 

% 
0.65 

0.45 1.25 

0.25 I/t 1.20 I/t 0 0.01 0.02 0.03 0 0.01 0.02 0.03 

Figure3. Plots of the effective exponents versus llf at the point corresponding to the 
p int  marked c in figure I(a). The five curves, from the bottom to top, correspond to 
p=0.6115,0.6113,0.6111,0.6009, and 0.MXn. 

However, to provide direct evidence for a first-order transition for r>rc,  we use a 
complementary Monte Carlo approach which appears suitable for distinguishing 
sensitively between a second-order and first-order transition. We follow the time 
development of the system from a 'kink' initial condition, i.e. a lattice filied with Bs 
for x<O, with As for x>O, and with a vacancy at x=O.  If there is a first-order 
transition between A- and B-saturated phases at p =pc, then the kink should move to 
the left forp >p.  and to the right forp >p., with the kink width growing at a negligible 

Table6 Critical parameter estimates from the time-dependent MC simulation at specified 
points in the phase diagram of figure 1. 

Point p .  d V E  ?a 2 

a 0.5910f0.0002 0.155f0.010 0.32fO.M 0.33f0.02 1.24f0.02 
b 0.7687f0.0002 0.160fO.008 0.31f0.01 0.32f0.01 1.25f0.01 
C 0.6111f0.0002 0.165f0.005 0.31rt0.02 0.32f0.02 1.25rt0.03 
d 0.5709f0.0002 0.160f0.010 0.31f0.02 0.33f0.M 1.25f0.03 
e 0.2324fO.OoM 0.160f0.005 0.31f0.01 0.32f0.01 1.25f0.02 
f 0.4004f0.00M 0.160f0.004 0.31f0.01 0.32f0.01 1.26f0.01 
8 0.4714f0.0003 0.161 f O . O 1 O  0.32f0.M 0.32f0.03 1.24f0.03 
RFT 0.160f0.003 0.317f0.002 1.272 fO .CU7 
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rate to the translational motion. This qualitative behaviour is readily observed in 
simulations of the monomer-monomer model. On the other hand, near a second- 
order transition to a reactive steady state, the kink width will grow much faster than its 
translational motion. These qualitative differences in the development of a kink are 
the criteria we use to infer the character of the phase transition. 

For example, for the case where rA=0.7 and r B = l ,  we find the following 
behaviour, based on 50 000 realizations of up to 2500 time steps. For p = 0.5273, the 
mean position of the kink is systematically moving to the right and has reached 1.79 
(in lattice units) at 2500 time steps. The average width of the kink equals the k e d  
value of 7.84 by this time. However, for p =0.5275 the mean position of the kink has 
moved -1.79 to the left while maintaining a fixed width of 7.82. These results suggest 
the existence of a first-order transition for p=0.52740.  On the other hand, for 
r A = 0 . 3 ,  there is definite translational kink motion for p < l ,  while the kink merely 
grows in width without translating for p<pc. This behaviour is indicative of a 
second-order phase transition from A-saturation to a steady state. 

A complementary approach was taken for the symmetric model where r, = r B = r .  
In this case we lix p to be somewhat larger than 0.5, and examine the evolution of a 
kink as a function of r. The existence of a tricritical point would imply that the 
A-saturated phase would be stable for a finite range of r between a critical value and 
unity (figure l(b)). For example, for p=0 .51  we find that the region of A-saturation 
extends to at least r - 0 . 7 ,  based on the range of values of which a kink translates with 
negligible spreading. When p = 0.502, this region of A-saturation extends to least 
r-0.8. The net conclusion from the two data sets is that a first-order line extends a 
finite distance from the monomer-monomer limit. These kink evolution studies 
provides indirect, yet relatively strong evidence for the existence of a tricritical point. 

7. Summary and discussion 

We have investigated the role of adsorbate interactions on a simple model of surface 
reactions in which there is a variable repulsive interaction between same species 
reactants. The special cases of an excluded-volume interaction among only one 
species, and a symmetric system with the same excluded-volume interaction for both 
species have been considered. For strong repulsion, this system exhibits two con- 
tinuous Rm-type transitions between a reactive steady state, and A -  and B-saturated 
states as a function of the relative deposition rates of the two species. For weak 
repulsion, there is only a single first-order transition between A- and 8-saturated 
states as a function of relative deposition rates. Using series expansions and Monte 
Carlo simulation approaches, we mapped out the phase diagram of the system and 
estimated the critical parameters of the associated non-equilibrium phase transitions. 
The numerical data suggests the existence of a tricritical point at the confluence of the 
first- and second-order transitions which is located at a non-zero value of the 
interaction strength. 

Within the stoichiometry of the monomer-monomer model, it would be interest- 
ing to examine the effects of other basic microscopic features that can occur in realistic 
adsorption processes. Typical examples include attractive interactions between adsor- 
bates [ l o )  and various non-linear adsorption processes [23].  By such studies, one may 
be able to gain new insights about how the details of the elemental steps of surface 
reactions affect the macroscopic kinetic features, such as the universality classes of the 
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non-equilibrium phase transitions that result. A repulsive interaction may also give 
rise to anomalous effect in the monomer-dimer model. For example, if the monomers 
experience a particular type of excluded-volume repulsion in which a monomer 
cannot adsorb on vacancies in which all nearest neighbours are occupied by 
monomers, then an infinitely degenerate monomer-only phase occurs. Consequently, 
an unusual non-equilibrium phase transition may arise between this degenerate state 
and a reactive phase. 

It would also be desirable to have better numerical tools to prohe of the nature of 
the phase diagram more definitively. Although the series method is appropriate for 
studying second-order non-equilibrium phase transitions, this method indicates that 
certain physical quantities exhibit power law behaviour with non-universal exponents 
at a first-order transition. There is not yet a clear physical interpretation of these 
results. It would also be worthwhile to find the underlying basis for the power law 
behaviour of P, and NE(0) at the first-order transition in the monomer-monomer 
model. 
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