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Abstract We introduce a lattice model of Catalysis which involves a small particle (a dime) 
and a large particle (a dollar). The larger diameter~of he dollar prevents its adsorption next to a 
site which is already occupied by a dollar. The catalytic process is the reaction ind immediate 
desorption of nearest-neighbour dimdollar adsorbates. As a function of the reaction rate and 
the relative deposition rates of the two species. this system exhibits a second-order kinetic phase 
Wansition which separates a dime-saturated phase from a reactive steady state. The features of 
the phase transition are examined by numerical simulations and analytic techniques, including 
a systematic mean-field cluster expansion. 

1. Introduction 

There has been considerable effort recently devoted to the investigation of lattice models of 
catalysis [1-4]. One motivation for this effort is to~construct models which capture some 
of the essential basic steps of catalytic reactions, while keeping them simple enough to 
investigate, either analytically or numerically. By these means, it is hoped to develop a 
better insight into the kinetics of real catalytic processes. One very important~advance of this 
type was the introduction of the monomer-dimer model by Ziff, Gulari and Barshad (ZGB) 
to describe the oxidation of carbon monoxide on metal surfaces [I]. In this model, carbon 
monoxide adsorbs onto single vacant sites, while oxygen requires two adjacent vacant sites 
for dissociative adsorption. A nearest-neighbour pair of adsorbates, comprising an adsorbed 
carbon monoxide and an adsorbed oxygen atom, can bond to form carbon~dioxide which 
then desorbs from the surface. 

This monomer-dimer model exhibits non-equilibrium phase transitions, a feature which 
has generated considerable interest [1,5,6]. As a function of the relative adsorption 
probabilities of oxygen, PO, and carbon monoxide, pm = 1 - PO, there is a second-order 
transition from an oxygen-saturated phase to a reactive steady state when po decreases 
through 0.61 I. For po > 0.611, an initially empty system will eventually fill with adsorbed 
oxygen atoms and no further reaction is possible. At po 2: 0.475, there is a first-order 
transition, below which an initially empty system fills with adsorbed carbon monoxide. 
Between these two transition points, both species, as well as vacant sites, are always present 
and a steady reaction process ensues. 
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The richness of the monomer-dimer model has spawned attempts to construct related 
lattice models and study the range of their non-equilibrium phase transition behaviour. One 
such example is the monomer-monomer model [3,5], in which particles of two different 
species, A and B, adsorb onto single empty sites, with probabilities PA and PB = 1 - P A ,  
respectively. Adjacent A-B pairs react and desorb from the lattice. The lattice saturates 
with A’s if PA > f and saturates with B’s otherwise. At p~ = $, fluctuations play an 
essential role in governing the kinetics, and a finite-size lattice saturates with one of the 
two species quite slowly. In an infinite lattice, the point PA = 4 corresponds to a first-order 
transition from an A-saturated to a B-saturated phase. Another related example is the A 
model [2], a single-component system in which particles desorb at a constant rate but can 
adsorb only onto vacant sites which have at least one neighbouring adsorbed particle. This 
model exhibits a single second-order transition between an empty and a reactive steady state 
as a function of the adsorption and desorption rates. 

The aforementioned examples illustrate how microscopic details, mch as the number 
of sites required for the adsorption of a compound, play a crucial role in determining the 
behaviour of the system. This latter aspect motivates us to introduce a model for the 
catalytic reaction of ‘dollars and dimes’ (Dd model), where the adsorbates are no longer 
point particles, and their physical size is a determining factor in the process. The Dd model 
is stoichiometrically equivalent to the monomer-monomer model, A + B -+ AB t. On the 
other hand, the geometrical restrictions imposed by the size of the particles render it similar 
to the monomer-dimer model. Nevertheless, the Dd model displays kinetic behaviour which 
is different from both the monomer-monomer and monomer-dimer models. This is further 
illustration of the essential changes in macroscopic dynamic phenomena brought about by 
slight changes in microscopic details. 

Another motivation for our work is that general arguments have recently been given by 
Grinstein et a1 which suggest that the second-order transition of the monomer-dimer model 
and, in fact, of a broad class of surface catalysis models with a unique absorbing state, is 
in the same universality class as Reggeon field theory 171. (One notable counter-example is 
the dimer-trimer model which exhibits a phase diagram similar to the ZGB model [SI, but 
with a second-order transition that appears to belong to a different universality class.) The 
Dd model is another testing ground which appears to confirm this universality hypothesis. 
Additionally, the Dd model is amenable to a variety of mean-field cluster expansions [6,9]. 
These represent a systematic improvement of classical mean-field theory, in which the exact 
configurational information within a cluster of a given size is retained, while higher-order 
correlations are truncated as the product of lower-order correlations. These systematic 
methods tum out to be relatively difficult to apply for both the monomer-monomer and 
monomer-dimer models. Thus the Dd model also serves as a useful testing ground for the 
development of these systematic techniques. 

2. The model 

The dollars and dimes model can be viewed as a simple variant of the monomer-monomer 
process in which one of the two species, (the Ds, for example) have a diameter which is 
larger than a lattice spacing. Consequently, D’s can adsorb only onto empty sites which 
have no D nearest neighbours, so that nearest-neighbour pairs of adsorbed D’s cannot exist 
The diameter of the d particles is smaller than a lattice spacing and they can adsorb onto any 
empty site, regardless of the occupancy of its neighbours. One can picture the d‘s as dimes 
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Figure 1. The dollan and dimes model represented as a reaction of (a) large pmicles D and 
smaller particles d, and (b) as a reaction of d particles with directed LR dimers. The changes 
in the states of each site as a result of various pmcesses are indicated~in the lo- row Of 
characten, in both representations. 

and the D’s as larger dollar coins, which provides a simple visualization of the excluded 
volume constraint in the model (figure I@)). 

According to these conditions, the reaction consists of the following kinetic steps: 

D + S & D ,  

d + S  A d ,  (1) 

Ds +d, Dd t +S + S‘ 

Here the subscript s denotes adsorbed particles, S denotes a vacant lattice site, and a prime 
indicates the further restriction of a vacant site with none of its neighbours occupied by a D. 
Since the D particle of the D,Q pair in the last step of the process does not have D nearest 
neighbours, one of the sites freed up on^ desorption must be SI, thus ensuring the catalytic 
nature of the process (the lattice sites %and S‘ remain unchanged through a cycle). The net 
effect of process (1) is the conversion D + d + Dd p, just as in the monomer-monomer 
 model.^ However, we shall see that the special requirements for the adsorption of D’s gives 
rise to different kinetics. . .  

An interesting aspect of the the Dd model in one dimension is that it can be mapped 
onto a variant of the monomer-dimer model in which the dimer has a directionality. This 
equivalence is achieved by the replacements 

D S e L R  D d u L d  

(figure I@)). Here DS denotes a pair of sites, in which the left site is occupied by a dollar 
and the right site is vacant, and LR denotes the equivalent dimer, with a well defined ‘tail’ 
at the left (L) and a ‘head’ to the right (R). Thus a dollar and only an adjacent vacant site 
to its right are replaced by a directed dimer LR. Dimes can adsorb on either the vacant 
sites or on the head of a~ directed dimer (which is also a vacant site). Thus we have a 
directed monomer-dimer model, with some degree of multiple occupancy allowed. The 
fact that the Dd model kinetics is so different from the ZGB monomer-dimer model is 
another demonstration of the importance of microscopic details. 
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3. Simulation results 

Simulations of the Dd model were performed for general values of the rates in equation (1). 
For a surface which contains N D  D's, Nd d's, NS vacant sites, and NDd nearest-neighbour 
Dd pairs, the total rate for a single event to occur (either adsorption attempt or surface 
IeactiOn) is R = (kD + k d ) N s  + k,". Thus the probability for the occurrence of an 
adsorption attempt being pa& = (kD + kd)Ns/R, and the probability for the occurrence of 
a reaction event is pRae = 1 - paas. 

0.0 
0.5 ~ 0.6 0.7 0.8 0.9 1.0 

Figure 2. Simulation results for the Dd model in one dimension in the adsorption-limited we. 
The long-time limiting concentration of dollars @) as a function of their adsorption rate p~ is 
shown. Notice the discontinuous m i t i o n  to the dollar-jammed phase a1 p~ = 1. indicmd by 
a full circle. 

In each microscopic event, adsorption is chosen with probability pads and a reaction event 
is chosen otherwise. For the former process, adsorption of a D or a d is attempted onto 
an empty substrate site, with respective probabilities p~ = kD/(kD + kd) and pd = 1 - PD. 
If a D is selected to occupy a given vacant site, then we additionally check whether any 
of the nearest neighbours of the selected site are occupied by a D. If this is the case, then 
the adsorption attempt fails, and this completes one elemenmy step. A reaction occurs by 
having one nearest-neighbour Dd pair desorb. After these elemental steps are completed, 
the time is incremented by 1/72 and the number of the various species and the number of 
Dd bonds is updated. The repeated application of this sequence of events yields a simple 
algorithm for the kinetics when the microscopic rates have arbitrary values. 

For the adsorption-controlled limit, ( k D  + k d ) / k ,  + 0, reactions occur immediately 
following adsorption events, whenever possible. In the complementary reaction-controlled 
limit, (kD + k d ) / k ,  -+ 00, the lattice is always full and after each reaction event adsorption 
is immediately performed onto the freed lattice sites. To simulate these two limiting cases 
requires only straightforward modifications of the general algorithm. 

A plot of the steady-state concentration of D's, CD, as a function of the adsorption 
probability, P D ,  is shown in figure 2 for the adsorption-limited case. One observes a dime- 
saturated phase, and a reactive steady state. The transition between these two phases is 
second order and occurs at p~ 0.653 in the adsorption-limited case. In addition to this 
phase transition, there is a discontinuity at p~ = 1. When p~ = 1, the Dd model reduces to 
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the random sequential adsorption of dimers [IO], where the lattice saturates with a mixture 
of dollars and vacant sites, with CD = (1 - e-*)/2 N 0.4323. On the other hand, an 
infinitesimal adsorption probability for the dimes is sufficient to sustain a reactive stationary 
state. The adsorption and subsequent reaction of the dimes helps redistribute the vacant 
sites in the lattice. In this way, a more efficient packing of dollars can be sustained. When 
p~ + I-, the system eventually relaxes to the tightest packing possible, of altemating D's 

For general reaction rate, the transition between the dime-saturated and the reactive 
phase shifts to higher vdues of PD as pmC decreases. At pmc = 0 the lattice saturates with 
dimes for all p ~ .  This follows because the two sites freed during a reaction event are refilled 
immediately. and this can be accomplished only by two dimes or by a d imdol la r  pair. 
Hence, the concentration of dollars can never increase, leading to an eventual saturation 
with dimes. The phase diagram for general adsorption and reaction probabilities is shown 
in figure 3. Our numerical simulations suggest that the slope of the transition line between 
the saturated and reactive phases at the point (preac. P O )  = (0, 1) is infinite. This is also 
supported by a mean-field cluster approximation (details of that approximation are given 
below). In higher dimensions, the phase diagram exhibits the same qualitative features as 
in one dimension. 

and S'S, and CD = 0.5. 

' . O ]  reactive 

1 dime-poisoned 1 
01 I 

0 1 .o 
P reac. 

Figure 3. Phase diagram of the Dd model for general adsorption and reaction rates in one 
dimension. The hansition line tehveen lhe reactive and saturated phases is drawn in the p ~ -  
fisc plane. The opsn circles represent simulation d a h  while the lower curve is derived from 
a three-site mean-field cluster approximation. 

4. Phase diagrams and transition points 

As discussed above, the Dd model is stoichiometrically equivalent to the monomer- 
monomer model, and it also shares some microscopic similarities with both the monomer- 
monomer model and the ZB monomer-dimer model. Nevertheless, the macroscopic 
behaviour arising from the slight changes between the three models is quite different. 
In figure 4, we schematically compare the long-time asymptotic behaviour of these three 
systems. The respective phase diagrams are arranged so that equivalent transition points 
are positioned directly below each other. A correspondence is made between the monomers 
and dimers of the Z B  model, and the dimes and dollars of the Dd model, respectively. In 
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Figure 4. Schematic phase diagrams for the me model (in greater the one dimension). the Dd 
model, and lhe monomer-monomer model (top to huom). The concentrations of reactants a3 a 
function of their respective adsorption probabilities are shown. Analogous transition points are 
positioned directly below each olher. 

the monomer-monomer model, the roles played by the two species is symmetric. Therefore 
we have arbitrarily chosen the A's to be compared to the dollars and the B's to the dimes. 

The dime-saturated phase of the Dd model is exactly analogous to the monomer- 
saturated phase in the ZGB model, and to the B-saturated phase in the monomer-monomer 
model. However, the remainder of the phase diagram is different for the three systems. In 
the monomer-monomer model there is a sharp transition to an A-saturated phase. The ZGB 
and Dd models instead exhibit a transition to a reactive steady state, but the transition is 
first order in the ZGB model and second order in the Dd model. In the ZGB model there 
is an additional second-order transition to a dimer-saturated phase, a feature which has no 
analogue in the Dd model. Indeed, saturation with dollars is not possible in the Dd model, 
for as long as there is a finite probability of adsorption of dimes, the dimes can land in 
the interstices between dollars and maintain a reactive steady state. Finally, jamming with 
dimers or dollars is observed when the adsorption rates for monomers or dimes is zero. The 
transition to this jammed state is discontinuous, but it happens from a reactive state in the 
Dd model and from a dimer-saturated phase in the ZGB model. 

The phase diagram of the Dd model is different from that of the monomer-monomer or 
the ZGB model, but does resemble that of the A model mentioned in the introduction. For 
the A model, the second-order transition between the empty state and the reactive state was 
shown to belong to the same universality class as Reggeon field theory (RFT), a universality 
class which also includes directed percolation and the second-order transition between the 
reactive state and the dimer-saturated phase of the ZGB model. It is therefore natural to 
inquire whether the phase transition in the Dd model is also in the RFT class. Grinstein 
et al [71 have given a general argument that any second-order kinetic phase transition from 
a single absorbing state to a reactive steady state should belong to the m class. The 
transition point of the Dd model should be no exception to this rule. Indeed, our numerical 
simulations results in one dimension are roughly consistent with an Rm-type of transition. 
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This is further confirmed by the mean-field cluster analysis discussed in the next section. 
We fmd it intriguing that the transition point of the Dd model is in the  universality 

class while the analogous transition points in the ZGB model and in the monomer-monomer 
model are not even second order (cf figure 4). According to the argument of Grinstein et al, 
near the transition to a saturated phase there is a progressively smaller concentration of single 
empty sites, pairs of empty sites, triplets of empty sites, etc. Therefore, it is justifiable to treat 
the smallest clusters, of one and two empty sites exactly, and approximate the concentration 
of larger clusters in a mean-field spirit. Following this approach one can write down a 
set of coupled reaction-diffusion equations for the concentrations of one- and two-sites 
clusters of empty sites. Upon diagonalizing these equations, one of the (orthogonal) fields 
has a negative eigenvalue which means that it can be renormalized away. The other field 
is associated with an eigenvalue that changes sign at a critica1,value of the rate parametem. 
This, and the fact that the latter field satisfies a RFT diffusion-re'action equation, suggests 
that the system undergoes a Rm transition. 

The argument of Grinstein et al also predicts that the transition of the Dd model belongs 
to the RFT universality class. However, their criterion is not conclusive. For example, it also 
predicts that the one-dimensional zGB model is in the RFT universality class, even though 
simulation clearly shows that the second-order transition does not exist. Thus the Grinstein 
el al argument provides an indication that the Dd model is in the RFT universality class, but 
the criterion cannot be regarded as definitive. 

5. Mean-field cluster approximation 

Another analytical method for analysing the kinetics of the Dd model is a systematic cluster 
approximation in which one writes rate equations for the evolution of the probability of 
having a cluster of size n in a specified state. The time development of an n-site cluster 
is generally influenced by the state of even larger clusters which contain the initial 'n-site 
cluster. Thus, there results an infinite hierarchy of rate equations which usually cannot be 
solved exactly. Mean-field techniques consist of cutting off this hierarchy by approximating 
the probabilities of clusters beyond a certain size in terms of products of state probabilities 
of clusters which are smaller than the cutoff [6,9] 

Mean-field approximations are expected, at the very least, to predict the correct 
qualitative features of phase diagrams. With an increase in the approximation degree (i.e. 
the cutoff size of the cluster), one expects kinetic predictions to become progressively more 
accurate on a quantitative level as well. So far, mean-field techniques have been employed 
mostly in the former sense, as a predictor of the general features of phase diagrams. 
Recently, the potential of the mean-field cluster approximation for the study of quantitative 
features has been explored [9]. For models in dimensions greater than one, we have not yet 
been able to find a systematic and tractable way to improve the approximation degree. The 
essential difficulty is in devising a consistent strategy for the truncation of large clusters in 
terms of groups of smaller clusters. In one dimension, however, an approximation method 
has been developed which does allow one to increase the cluster size systematically [9].~ 
Unfortunately, the phase transition' behaviour disappears in one dimension for many lattice 
models. However, the Dd model and the single-component A model do exhibit a kinetic 
phase transition in one dimension. Thus, these two models serve as a useful test of our 
systematic cluster mean-field techniques. 

The mean-field predictions yield, as expected, the correct qualitative features of the 
phase diagram of the Dd model for general- rates, even in one dimension (see figure 3). In 
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figure 5, we plot CD against p~ based on the mean-field cluster approximation for increasing 
cluster size in the adsorption-limited case. It is evident from the figure that the mean-field 
data converge to the simulation results. Curves for up to the four-site approximation are 
shown, and we have obtained results for up to eight-site clusters. 

I 

0.2 

0.1 

0.0 r 0.5 0.6 0.7 0.8 0.9 1.0 

Fwre 5. The clusler mean-field approximation for the one-dimensional Dd model in the 
adsorption-limited case. The concentration of dollars CO against their adsorption probability po 
is shown. The C U N ~ S  from left to right represent the predictions from n = 2, 3, 4 in the n-site 
approximation, and the computer simulation results (bmken curve). 

The values of the critical adsorption probability obtained by the cluster approximation 
extrapolate to 0.6529 f 0.0008, very close to our best numerical estimate of pc = 0.653. 
The order parameter critical exponent, ,¶, can be evaluated from the slope of the curves 
of CD against p~ as they intersect the pD-axis, by means of the coherent anomaly method 
[ 1 I,]. Based on results for two successive cluster sizes of u p  to eight sites, we estimate 
p = 0.29 k 0.05 for the concentration of dollars, and ,¶ = 0.27 & 0.05 for the concentration 
of vacancies. These show a reasonable convergence to the best estimate of the ,¶ exponent 
for Rm in one dimension, of ,¶ ZI: 0.277. 

6. Summary and discussion 

We have presented the dollars and dimes model for heterogeneous catalysis, where the 
physical size of the adsorbed particles plays a significant role. While the Dd model is 
stoichiometrically equivalent to the monomer-monomer model. and also closely related to 
the ZGB model, its phase diagram and kinetic behaviour are different from either of these 
two cases, showing the importance of microscopic details. Indeed, the Dd model differs 
from the monomer-dimer model not only in its phase diagram, but also in some deeper 
characteristics such as the role of the spatial dimension: the monomer-dimer model exhibits 
different behaviour in dimensions d = 1 and 2, while the Dd model exhibits similar kinetics 
in all dimensions d 2 1. 

On the other hand, we have found that the second-order transition from a dime-poisoned 
phase to a reactive phase in the Dd model belongs to the RFT universality class. This 
supports the argument of Grinstein et ai [7] that all second-order transitions from a single 
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absorbing~state in dynamic lattice models are in the R F ~  universality class. We have tested 
this possibility both numerically and using a mean-field cluster approximation technique. 

The Dd model sharpens the question of classification of dynamic lattice models. In view 
of the vast effects of microscopic details, it becomes apparent that some powerful criteria 
will be needed before one can foretell the behaviour of an arbitrary model. The argument 
in Grinstein er a1 171 is a first step in that direction, in that it groups seemingly disparate 
models under the same universality class. 

Among the many problems motivated by the Dd model one is the subject of current 
interest. Suppose one starts with a lattice jammed with dollars and then tums on a very 
small probability, E ,  for adsorption of dimes (and a probability 1 - E for adsorption of 
dollars). The system will evolve to a new stationary state with a small steady reaction rate, 
proportional to E ,  where the concentration of dollars achieves its possible maximum of i. 
That is, the minute adsorption of dimes acts as an annealing field that lets the system relax 
from the frozen disorder of jamming with dollars to a highly ordered, periodic state. A 
similar situation occurs in the zGB monomer-dimer model if one turns on an E adsorption 
rate of monomers, starting from a lattice initially jammed with dimers (only that here the 
system will eventually poison with dimers and reaction will stop). In arecent work, F’rivman 
and Nielaba [12] study a similar process where the dimers are allowed to diffuse in order 
to anneal. It would be interesting to see whether the relaxation kinetics in all these cases is 
essentially similar. 
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