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Ahtract. We examine the dynamics of interface growth under the combined influence of 
a stabilizing and a destabilizing surface current in It 1 dimensions. It has been shown 
that the surface is weakly stablized if a newly deposited particle can move locally to 
maximize the total number of nearest-neighbour contacts with the surface (curvature-driven 
current). The introduction of a weak, destabilizing surface tension term results in an almost 
periodic, grooved surface. The width of the surface grows linearly in time and does not 
reach a steady state. It appears that such a formation cannot be described by a continuous 
Langevin equation. 

The evolution of growing surfaces has been extensively studied [I]. One of the basic 
questions that has been addressed is how the roughness of the surface depends on the 
dynamical rules of specific deposition processes. As a trivial example, the growth of 
independent columns without any local interactions produces a rough surface in which 
the width grows with the square root of time, so that a finite size system never reaches 
a steady state. When interactions between columns occur, a finite-size system can 
approach a steady state in the long-time limit [2-41. For many classes of models, it 
has been well established that the time evolution of the width w is described by a 
scaling relation [SI, 

W =  L Y ( ~ / L ’ )  (1) 

where L is the transverse linear dimension of the system, 1 is the time, and the scaling 
function f has the asymptotic behaviours f ( x ) - x e ,  with p =I/., for X K  1 ,  and 
f(x)-constant for x x  1. Consequently the limiting behaviour of the width are 

w-L’ 1 2  L‘ (20) 

w--10 1 << L‘. (26) 
An important example where intercolumn interactions lead to a steady state is the 

Edwards-Wilkinson (EW) model, where the surface current is driven by local height 
differences [6 ] .  An incoming particle rolls down the surface from the initial contact 
point and is incorporated into the deposit upon reaching a local minimum. In the 
continuum limit, the dynamics of this rearrangement process can be described by the 
linear diffusion equation with a noise source, 

where h(x ,  1 )  denotes the deviation of the height of the deposit from its average value 

0305-M70/9I/24139l+07$03.50 @ I991 IOP Publishing Ltd L1391 



L1392 Letter to the Editor 

at position x and time t, and q(x ,  t )  can he taken to be Gaussian random noise, 

(v(x. t ) ) = O  (7) (x, 1 )  q (x', t ' ) )  = 6(x - x')6( I - t ' ) .  (4) 
The solution to (3) leads to a relatively smooth surface with roughness exponents 5 = f  
and p = in the (1 + 1)-dimensional case [6 ] .  

Recently, a different surface rearrangement mechanism has been investigated by 
Wolf and Villain [7] and Das Sarma and Tamhorenea [SI, in which the surface current 

useful description of molecular beam epitaxy growth. The curvature-driven (CD) current 
is modelled by allowing the newly added particle to move within a finite local region 
(for example, among lateral nearest neighours) to  maximize the number of contacts- 
the 'valence'-between the particle and the original surface. This rearrangement leads 
to roughness exponents which are larger than those in the EW model. Simulations 

z=3.8+0.5. For this model, it was also proposed [7,8] that the continuum limit of 
the dynamics is described by the linear equation 

is driven by iocai energy curvature) difereiices, =,:lis iiiec:ranisKl may provide a 
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whose solution yields 5 = $ and z = 4, in good agreement with simulations. 
This agreement is surprising, however, because the large surface roughness implied 

by 5 =$is  inconsistent with the underlying small-gradient assumption of the continuum- 
equation description. A potential source of the inconsistency is the non-local nature 
of the current in the vertical direction at long times. Simulations reveal that the 
steady-state configuration in this model has many steep steps, indicative of the slope 

step therefore has to examine sites which are macroscopically distant vertically to find 
the site with the maximum number of contacts. This feature suggests that the curvature- 
driven model in its present form may not he adequate for describing the late stages 
of a real deposition process. 

As an attempt to limit the non-locality of the vertical surface diffusion, we introduce 
a mode! in which a particle incident on a steep slope experiences a lateral attraction 
to the surface so that the particle can actually stick 'uphill' from its initial target point 
(figure l(o)).  We shall describe this feature in terms of a variable antigravity (or 

being zn inrrezsing fcnrtion of the !ength sra!el a partic!e which is added at a steep 

0 

Flgore 1. (a) Schematic illustration of the lateral attranion of an incident particle to the 
surface. ( b )  A microscopic realization of the upward current by the 'tie-breaking' when 
the valenee in the 3-site neighbourhood. U = (2.2.2). In this example a particle moves to 
the highest site with probability p.  
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negative surface-tension) current, and investigate the competing effects of the negative 
surface-tension and curvature-driven currents. To realize the negative surface tension 
microscopically, we intrdouce an additional repositioning criterion beyond that in the 
CD model, whenever the microscopic rules of the CD model permit more than one 
choice for the final particle position. Writing the valence in the three-site neighbourhood 
of i as u=(v , - , ,  vi, U(+,), then, for example, no repositioning takes place in the 
microscopic model of [7] for U = (2,2,1) or v = (2,2,2),  while the particle moves at 
random to a nearest neighbour when U = (3, 1,3).  In our model, the 'tie' is resolved 
by imposing an additional rule which favours the attachment of the particle to the 
highest point in the local neighbourhood (figure I(6)). This rule is opposite to the 
rearrangment process of the EW model, and gives rise to an infinitesimal destablization 
which competes with the stabilizing curvature-driven current. 

For our competing current model, we simulated periodic systems with the linear 
dimension L in the range 2-1000, and followed the evolution of the surface for up to 
222 time steps. To control the strength of the negative surface tension, we introduce a 
parameter O s p s  1, which gives the probability that in the case of ties in valence, the 
newly added particle actually sticks at the highest site in the neighbourhood, while 
with probability (1  - p )  the particle chooses to stick at random among the neighbouring 
sites of the same valence (figure I(6)).  The original CD model corresponds approxi- 
mately to the case p = 0, while forp  = 1 there is maximal destablization. Figure 2 shows 
the form of the surface in the long time limit for various values of p. 
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Figam 2. Steady state surface configurations Tor the competing-current deposition process 
for a system of linear dimension L= I28 at 2" time steps. Shown arc the cases ( a )  p =O.l. 
and ( b )  p = 0.5. In the latter case, the plateaux appear to be Rat becuase of the large vertical 
Scale. 

Perhaps the most striking feature in these figures is the formation of a robust and 
almost periodic deeply grooved surface. There are two different macroscopic growth 
velocities for the plateaux and the grooves, so that the width of the surface grows 
linearly in time. The distance between grooves forms a nearly uniform distribution 
with the upper limit typically equal to twice the lower limit. For example, when p = f ,  
the minimum distance between grooves is 11 and the maximum is 21. As p decreases, 
the groove separation and width both increase and ultimately diverge as p + 0. When 
L is smaller than the minimum distance between grooves for a given value of p, then 
the surface grows in a stable manner, with the width saturating to fine value at long 
times. As a function of L, there is a transition line, p =pc( L), below which the surface 
reaches a steady state and above which a grooved surface occurs (figure 3). For fixed 
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Figure 3. Phase diagram of the competing-current deposition process in the p-L-' plane. 
The erron associated with the data points are smaller than the size of the point. The line 
is drawn as a guide to the eye only. 

L, we determine the transition point by monitoring the time dependence of the width 
and looking for the value of p where the asymptotic behaviour crosses over from linear 
growth to saturation at a finite value. The accurate location of this transition point is 
time consuming due to  the long relaxation time until the surface exhibits its asymptotic 
temporal behaviour. For a large system, the distance between grooves is proportional 
to the inverse function L J p ) .  Numerically, we find that this distance diverges as p 7  
asp+O, with y=O.9iO.l .  

We can give the following heuristic argument for the p dependence of the distance 
between grooves. For small p ,  the growing surface develops grooves only when the 
system is larger or equal to a critical size L,. The formation of grooves at L,  is driven 
by the competition between the curvature-driven and negative surface tension-driven 
currents. In the p + O  limit, the surface consists primarily of consecutive steep steps. 
since the roughness exponent 5 exceeds unity. In the neighbourhood of these steps, 
the negative surface tension generates an upward current. Within the scale of a single 
groove, the net upward current is proportional to pL, which is the product of the 
upward hopping probability at  the steps times the spatial extent of the steps. On the 
other hand, the curvature-driven term generates a current from the plateau into the 
groove, but this contribution occurs only at the edge of a plateau. Since there is typically 
of the order of one such location on the length scale of a single groove, the downward 
current is of order unity. At the boundary between grooved and stable growth, these 
two currents should balance. Thus we suggest that L, -p - l ,  i.e. y =  1, consistent with 
our numerical estimate. 

Further insights into the underlying mechanism for the groove instability can be 
obtained by considering small systems. Numerical simulations or our competing current 
model at p = 1 show that the surface is stable (no grooves) for linear dimension L s  7, 
but is unstable to the formation of a single deep groove for L P 8 ,  in the long-time 
limit. To understand the mechanism responsible for this instability, we consider a 
growth model which possesses a stronger destabilizing current than in the competing 
current model, but still exhibits a groove instability of a similar nature. The transition 
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in the modified model occurs at a small enough value of L that we can provide an 
analytical description of the transition. 

We realize the stronger destablizing current by the following augmentation to the 
surface rearrangement rules of the competing current model (figure 4). Qualitatively, 
this enhancement permits some degree of surface rearrangement by the simultaneous 
increase in the particle height and decrease in the number of nearest-neighbour surface 
contacts. When the valence at a neighbouring site j is larger than the valence at the 
incident site i by + I ,  the newly added particle remains fixed with probability a and 
moves with probability I - a  if the move decreases the particle height (Ah <O), and 
always moves if the particle height remains the same. When the valence at neighbouring 
sites is the same as at the incident site, a lateral move occurs only if Ah > 0. Finally, 
when the valence at j is smaller than the valence at i by -1, the newly added particle 
remains fixed with probability 1 -a and moves with probability a if Ah > 0, and does 
not move if the particle height remains the same. 

The case a = 0 corresponds to the competing current model with p = 1, for which 
stable surface growth occurs for L s  7. However for a = 1, grooved surface growth 
occurs already when L = 3. This can be understood by considering what happens when 
the first two particles are incident on adjacent sites. Due to the enhanced destabilizing 
current, the new particle is moved on top of the first particle. Thus independent of the 
location of incident particles, a single tower grows for a = 1. Since a smooth surface 
grows for a = 0, we expect a transition from stable to grooved surface growth as a is 
vaned between 0 and 1. To locate this transition, we map the interface dynamics onto 
a random walk process whose individual steps reflect the various ways that a surface 
is modified upon the addition of a single particle. With periodic boundary conditions, 
a surface configuration for L = 3 can be represented by n = (n,, nJ, where n; = hi,, - h i  
is the height difference between sites i and i +  1. The periodic boundary condition 
implies that n3 = h, - h3 = -n, - n2.  Deposition of a particle at i results in n, - ,  -f ni+, + 1 
and nj + ni - 1. Thus in the (n,, n2) plane, the addition of a particle at site i is equivalent 
to hopping from n to n + dj ,  i = 1,2,3,  with d,  = (-1,0), d2 = (1, -l), and d, = (0 , l )  
(figure 5). 

To determine the long-time properties of this random walk, it is sufficient to consider 
only the fourth quadrant n,  > 0 and n2<0 .  Permutations of the surface column heights 
correspond to the remaining quadrants. Define P,(n) as the probability of hopping 
from n to n + d,. By enumerating the possible changes in the surface upon the addition 
ofasingleparticle, we find P - ( P , ( n ) ,  P2(n) ,  P3(n))=(l-Za/3,  n/3,  a / 3 )  for n,<O,  
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I 1: 

i 
i 

1+ 

Flgare 4. Illustration of the additional surface rearrangement processes that can occur 
when the negative surface tension term is enhanced by allowing an incident particle 10 
move to a neighbouring site with a valence decreased by one, but with a larger.height. 
Shown is an example involving a possible transition between sites of valence 2 and 3; a 
similar situation exists far two neighbouring silcs with valence 1 and 2. 
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Figure 5. Equivalent random walk to describe the growth of a periodic 3-column surface 
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are the step directions d, which correspond to adding a single particle at site i (upper 
right). In the four quadrant of the n,-n2 plane, the hopping probabilities that correspond 
to adding a single panicle at sites 1, 2, and 3, are indicated, The hopping probabilities 
projected onto the interval are also shown. The dashed arrows indicate the direction 
of the probability current on a broad scale for f < n G i .  
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P = ( a / 3 ,  a /3 ,  1-2aj3)  for n3>0 ,andP=( (1 -a ) /2 ,  a , ( l - a ) /2 )  for n,=O.  I f the 
random walk approaches the origin at long times, it implies that the surface is smooth, 
while if the walk escapes to infinity, a surface with a deep groove is formed. 

To solve this problem, we separately consider the random walk motion projected 
onto the horizontal line which is perpendicular to the n3 = 0 axis, and the vertical 
motion (figure 5 ) .  To determine whether the random walk approached the origin in 
LllC IUrl~-LL"Lc 1111111, w c  >,,a,, GU,,qJ,u,r; LIIL: llvc1ngc " G I L I b a I  CYIICIII ,  a"cL'lgc" ""=. , L I S  

steady-state probability distribution along S. Due to reflection symmetry with respect 
to the n, = 0 axis, the projected horizontal problem can be reduced to the half interval 
QB, with a reflecting boundary condition at the symmetry point Q. For interior points, 
the hopping probability to the left (toward Q) is p, = 1 - 2a/3, the hopping probability 
to the right is p r=a /3 ,  and the probability of not hopping is p.=a/3. At Q, the 
probability of hopping to the right is p: = 1 - a and the probability of not hopping is 
p: = a. Using conventional generating function methods, the horizontal steady-state 
probability distribution is P ( m ) = [ 3 ( 1 - u ) / Z a ] [ a / ( 3 - 2 a ) l m  for m=l ,2 ,3 , . .  . and 
P(O)=$, where m is the distance from the boundary point Q. Here we have assumed 
an infinite half-interval, appropriate f o r m  far from the origin. 

The vertical components of the hopping probabilities give rise to a net vertical 
current at horizontal position m which is given by j (m # 0) = (1  - a) /2  and j ( 0 )  = 
(1-3a)/2. This leads to a mean steady-state curent ( j ) = Z m j ( m ) P ( m ) = ( 1 - 2 a ) / 2 .  
Thus for a >$, there is a net probability current toward infinity, indicative of grooved 
surface growth in the longtime limit, while for a <;, the current flows to the origin, 
and smooth surface growth occurs. For larger system sizes, we expect that a similar 
approach will give a decreasing value of a at which grooved surface growth first appears. 
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Finally we discuss the possibility of a continuum-equation description for the 
competing-current growth model. Naively, one might expect that the competing currents 
could be described by a linear diffusion equation which contains a stabilizing quartic 
term and a destabilizing quadratic term. Such an equation selects a characteristic length 
scale, whose qualitative dependence on phenomenological parameters mirrors the p 
dependence of the distance between grooves in the competing current model. However 
in this continuum equation, there are a range of wavenumbers for which the surface 
is unstable. The linear equation also yields a different morphology than in the competing 
current model. Another possibility is that the competing current is described by a 
higher-order surface tension term 191, i.e. -AV(Vh)3 and A > O .  This is a relevant 
contribution with respect to the fourth-derivative term in (3, and serves to destabilize 
the surface. Numerical integration of the resulting equation leads to 'spiky' formations, 
but not of the qualitative form as the grooves in the competing current model. 
Furthermore, since the two driving terms in the continuum equation involve the same 
power of spatial derivatives, a characteristic length scale is not selected, in contrast to 
our discrete model. Thus it appears that a simple continuum equation cannot describe 
the existence of a phase in which the surface exhibits a quasi-periodic array of grooves. 

In conclusion, we introduced a new model which includes a destabilizing negative 
surface-tension current (antigravity) in addition to a stabilizing curvature-driven cur- 
rent. The stability of the surface with respect to this destabilizing current was examined. 
The resulting surface exhibits a robust instability in which a nearly periodic array of 
grooves is formed. The wavelength of this periodicity can be controlled by tuning the 
strength of the destabilizing surface current. In the grooved phase, the surface width 
increases linearly in time and there is no steady state. Up to fourth-order terms in 
spatial derivatives, a continuous Langevin equation is inadequate to describe the surface 
morphology that arises from this competing current growth mechanism. 
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