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Abstract. We present an analytic argument for the critical exponents ( nL and q) of the 
fully directed self-avoiding walks (DSAW) on a family o f  Sierpinski carpets. In contrast to 
the eases of random walks 01 isotropic self-avoiding walks on a fractal lattice, we find that 
both exponents do not depend an the fractal dimension of the underlying carpet but take 
a trivial value of unity. Only the correction-to-scaling exponents vary with the fractal 
property of the underlying lattice. Numerical simulations confirm our prediction. 

The fully directed self-avoiding walks (DSAW) model has been extensively studied by 
many authors [ 1-51, Since DSAW has a preferred direction, two independent correlation 
lengths R ,  and RII, which are perpendicular and parallel to the preferred direction 
respectively, can be defined. The mean square end-to-end displacements diverge alge- 
braically with the number of steps N such that ( R t ) -  N2’. and (R$-N2’11 as N 
becomes large. These exponents have values vL = f and vII = 1 for Euclidean lattices 
with spatial dimensions d 2 2 [2-51. For the isotropic walks, there is only one length 
scale so U = uL = vII and U = f for ordinary random walks. For self-avoiding walks, v 
vanes with the spatial dimension of the underlying lattice. 

When the underlying Euclidean lattice is replaced by a fractal lattice, it has been 
shown that the mean square end-to-end displacement for the isotropic walks scales 
differently from the Euclidean case (see e.g. Havlin and ben-Avraham [6] and Bouchaud 
and Georges [7]). Specifically the value of the exponent Y vanes with the fractal 
dimension of the underlying lattice. The dependence of U on the property of the 
underlying fractal lattice is known analytically in some special cases [6]. 

Based on the above observation, it is natural to ask how the scaling property of 
the mean square displacement of DSAW would change on a fractal lattice. Very recently, 
Yao and Zhuang [ S j  performed numericai simuiations of DSAW on three Sierpinski 
carpets with different fractal dimensions. The generators for carpets are shown in figure 
1 (here we refer to the carpets as carpet 1, 2 and 3 for ( a ) ,  ( b )  and ( c )  respectively). 
On these carpets vI1 is trivially 1 since DSAW exhibits a characteristic one-dimensional 
SAW behaviour along the preferred direction. Due to the presence of holes, the other 
exponent vL can have a non-trivial value, different from f of the Euclidean case. Based 
on their numerical results, u,=0.59*0.01, 0.67i0.02 and 0.83*0.03 for carpets 1, 2 
and 3 with fractal dimension df= 1.975, 1.892 and 1.792 respectively, Yao and Zhuang 
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Figurel. Carpetgeneratars.(o)Carpell: b=S,I=l ,d ,=1 .975 . (b)Carpet2:  b = 5 ,  1 = 2 ,  
d,=1,892.(e)Carpet3: b=4,1=2,d ,=1 .792.  

suggest that DSAW on different Sierpinski carpets belong to different universality classes. 
In this letter, we present an anlytic argument that the value of vL does not depend on 
the fractal dimension dc and, in fact, vL takes a trivial value of unity. We perform 
numerical simulations and our numerical data strongly support the above prediction. 

Consider DSAW on a family of Sierpinski carpets whose generators are specified 
with two indices b and I (figure 2). The fractal dimension of the carpets is given by 
df=In(b2-I2)/b. A walker can go either right or up by a unit length of the carpet. A 
trajectory of DSAW passing through the nth-generation carpet can be decomposed into 
(1) movements inside the ( n  - 1)th-generation carpets and (2) movements along the 
boundary of the largest hole of the nth-generation carpet (figure 3). The largest hole 
in the nth-generation carpet will be called the nth-generation hole. Define A. ( E . )  as 
the average number of the (n - 1)th- (nth-) generation holes encountered by a walker 
passing through the nth-generation carpet. Self-similarity structure of carpets guaran- 
tees the ratio of these two numbers, AJB., n-independent for large n. From now on, 
we will drop the subscript n for convenience. If a walker traces out the special path 
shown in figure 3, for example, this ratio is b-I=4.  Along this path, a walker sees 
every hole of nth- and ( n  - 1)th-generations located along the diagonal direction in 
the nth-generation carpet. For the similar paths in carpet 2 and 3, the ratio becomes 
again b - 1 = 3, 2 respectively. 

We assume that this ratio averaged over paths weighed properly by DSAW cannot 
be larger than the resizing factor b. Figure 4 shows 100 simulated trajectories of DSAW 

with the number of steps, N = 1000, on the 4th-generation carpet 1. One can easily 

b 

Figore 2. The  generator of size b with a hole of size 1. 
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Figore 3. A special path along which a walker o f  DSAW can see very hole of the nth and 
(n -1)th generations located along the diagonal direction in the nth-generation carpet 1. 

Figure 4. The trajectories of 100 random samples far 1000-step walks an the 4th-generation 
carpet I .  The starting position of the walkers are set at the lower left comer. 

see that the fluctuation of walks perpendicular to the preferred direction is much 
smaller than the size of the largest hole (here, the 4th-generation hole). It implies that 
it is extremely unlikely for a walker to go around the largest hole without encountering 
it. This may be explained as follows. The Gaussian fluctuations of DSAW along the 
perpendicular direction is order of after N steps, while the size of the holes that 
a walker will encounter along the preferred direction increases linearly with N. For 
large, N, the probability of not encountering the largest hole is exponentially small, 
-exp(-N). This suggests that the average value of the ratio A / B  may be very close 
to b - 1, the value for the special path in figure 3, which is consistent with our assumption 
of A I B S b .  
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We check this assumption numerically by studying the distribution D(s)  of the 
holes of size s, which intersect with the trajectory of DSAW. One can easily show that 
D ( s )  scales as 

We have numerically obtained the hole size distribution to compare with (1). After 
starting a walker at the lower left comer on the 4th-generation carpet 1 (figure 4), we 
have measured the number of hoies of each generation encountered by a walker during 
1000 steps and averaged over 10 000 configurations. The resulting histogram is shown 
in figure 5.  These data are fit into the power law with exponent -1.83+0.04. Therefore 
the ratio A/B=3.8*0.3, which is close to b-I=4.  Note that the linear fractal 
dimension of holes along the diagonal line of the carpet is given by d, = In(b - /)/In b. 
The hole size distribution along this line scales as - -s- ' -~I .  Our numerical result suggests 
that the statistics of the holes encountered by a walker of DSAW are effectively the 
same as in the case of a one-dimensional SAW along the diagonal direction. Here, we 
emphasize that the actual value of A / B  does not change our main result (v, = 1 )  of 
this letter (but the inequality A / B <  b is crucial). This value determines the scaling 
behaviour of correction-to-scaling terms only. 

Figure 5. The histogram of distribution D ( s )  of the holes of size s an the carpet 1. The 
dotted line represents the hale size distributions according to (I) .  3 = I ,  5,  25, 125 from 
the lefl box. 

We now proceed to estimate the mean square end-to-end displacement in the 
perpendicular direction. Define N. as the number of steps needed to path through the 
nth-generation carpet and R. as the fluctuation of DSAW perpendicular to the preferred 
direction in N. steps. If we consider the trajectory from the lower left comer to the 
upper right corner, N. = 2b". In general, a walker can start at any point along the left 
and bottom lines of the nth generation carpet. But N. averaged over these starting 
nnritions _........ ~- is still -.... ~. nroaortional .= -..... ~~~~ to h", 

The estimation of R. is a little tricky. There are two effects which contribute to 
R.. One is the Gaussian fluctuation from the inherent randomness, the other is due 
to the presence of holes. The contribution due to the holes can be estimated as follows. 
As discussed before, the trajectory of DSAW passing through the nth-generation carpet 
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can be decomposed into two parts (the ( n  - 1)th-generation and the nth-generation 
holes). The contribution to R. by the nth-generation boles is proportional to the size 
of the nth-generation holes times the number of those holes encountered by a walker, 
Ib"-'B,. The average number of the ( n  - 1)th-generation holes encountered by a walker 
with respect to that of the nth-generation holes is given by A./&. In general, this 
ratio for the (n-i-1)th- and the (n-i)th-generation holes is A.JBn_j  for i =  
0,1,. . . , n - 1. The contribution to R. by a single ( n  - i)th-generation hole encountered 
by a walker is proportional to its size Ib"-". As discussed before, we now assume 
that the ratio A J B .  is n-independent. If we simply add up the contributions from 
holes of all generations, 

"-1 

R.-B.I b"-'-'(A/B)' 
i=o 

B. [ I / (b  - A /  B ) ]  b"( 1 - ( A /  bB)").  (2) 

Since A / B  e b and B. and I / ( b  - A / B )  are order of unity, R, - b" in the large n limit. 
The total fluctuation, which is the sum of the hole and gaussian contribution, should 
be larger than b". On the other hand, R. cannot be larger than the linear size of the 
carpet, which also scales as b". Due to these two constraints, R. should also scale as 
b". Therefore the exponent uL, defined as R. - N >  as n + m, becomes a trivial value 
of unity. 

Now consider the leading correction-to-scaling term. Substituting N. for 6" in (2) 
and adding the Gaussian contribution to R., the perpendicular fluctuation of DSAW 

becomes 

R. - N>(1-  n , N i Y '  + asN;ya +, . .) (3) 

where uI = 1 and a , ,  a, are constants. The subdominant exponent of the hole contribu- 
tions y, = -l+ln(A/B)/ln b and the leading exponent of the Gaussian contributions 
y ,  =f.  If A / B  = b - 1 ,  then y, = -1 + d, where d, is the one-dimensional fractal 
dimension discussed previously. Note that, for carpets 1, 2 and 3, d, =0.861, 0.683 
and 0.5 respectively. Therefore the leading correction-to-scaling term in R.  comes from 
the subdominant term of the hole contributions in all three carpets considered here. 
This correction term decreases ( y ,  increases) as d ,  becomes smaller. This may explain 
why the numerical value of uL obtained by Yao and Zhuang [8] monotonically increases 
to 1, the true value, as d ,  becomes smaller. 

We have performed numerical simulations to confirm our analytic arguments. First, 
we have generated the Sierpinski carpets using the generators as shown in figure 1. In 
order to investigate the properties of DSAW on a given carpet, we randomly choose a 
point and start a two-choice random walker. A walker can go right or up by a unit 
length with equal probability. If a walker touches the boundary of the carpet, we 
discard the walker and start a new walker at a newly chosen position. We have continued 
these procedures until getting 10 000 configurations for each given steps N up to 256 
for the carpets 1 and 2, but up to 128 for carpet 3 with relatively small lattice size. 
The end-to-end displacements, R ,  , are measured for each configuration in the direction 
perpendicular to the preferred direction. The squares of the displacements are averaged 
over 10 000 configurations. In figure 6, we plot log,(R:) versus log, N for all three 
carpets. The lines connecting successive data points are quite straight and their slopes 
are calculated by using least-squares fitting. The results are uL = 1.04* 0.04, 1.02 + 0.03 
and 1.02+0.03 for the carpets 1, 2 and 3, respectively. Our numerical results clearly 
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Figure 6. Plots of iog2(R:(N)) versus log, N for carpet I ,  2 and 3. The data for carpet 2 
and 3 almost coincide with each other. The extrapolated values of the half slopes are 
1.04*0.M, 1.02+0.03 and 1.02+0.03 for each carpet. 

confirm our prediction of uL = 1 for all carpets. However, at present, we could not 
extract the reasonable information about the correction-to-scaling terms due to statis- 
tical errors. In order to confirm our prediction about the leading subdominant exponent, 
one needs to perform much more extensive simulations with large n. Another note 
worthy of mention is about taking periodic boundary conditions. We attempted to 
apply periodic boundary conditions to get longer steps of walks. But, as we expected, 
this scheme yields only Euclidean crossover to give the value of uL close to f. 

In conclusion, we argue that vL and U,, of DSAW on Sierpinski carpets should be 
the trivial value of unity, independent of the fractal dimensions of the underlying 
carpets. In fact they depend only on the one-dimensional characteristic of the carpet 
along the preferred direction of DSAW. We summarize our argument for uI = 1 as 
follows. There are two contributions to the fluctuation along the perpendicular direction 
( R A ) .  One is the Gaussian randomness, the other is the presence of the holes. The 
Gaussian fluctuation perpendicular to the diagonal direction is of the order of m, 
where N is the total number of steps. But the size of the largest hole increases linearly 
with N along the diagonal direction (the preferred direction of DSAW). Therefore the 
random walker eventually has to encounter the largest bole, increasing the fluctuations 
of R,  by the amount proportional to the linear size of that hole (see figure 4). Therefore 
R ,  must scale as the linear size of the holes along the preferred direction, hence vL = 1. 
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