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A thermodynamic process at a zero-entropy production (EP) rate has been regarded as a reversible
process. A process achieving the Carnot efficiency is also considered a reversible process. Therefore,
the condition, ‘Carnot efficiency at zero-EP rate’ can be regarded as a strong condition for a
reversible process. Here, however, we show that the detailed balance can be broken for a zero-EP
rate process and even for a process achieving the Carnot efficiency at a zero-EP rate in an example
of a quantum-dot model. This clearly demonstrates that ‘Carnot efficiency at zero-EP rate’ or just
‘zero-EP rate’ is not a sufficient condition for a reversible process.
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I. INTRODUCTION

A reversible process is a process that its reversed one
returns the system to the initial state without leaving
any trace in the environment. Therefore, in a reversible
process, every transition should be equilibrated by its re-
verse transition, which is called a detailed balance (DB).
If the DB is satisfied, no current can flow. In addition,
no entropy is produced in a DB-satisfied process, as the
entropy production (EP) can be defined by the logarith-
mic ratio between the forward and its time-reversal path
probabilities [1].

As a system should always be maintained in an equi-
librium state during the process, an infinitely long time
is required to implement the process in an exactly re-
versible way. However, such an infinite-time process does
not exist in the real world. Therefore, a reversible pro-
cess is usually understood as a quasi-static-limit (very
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slowly varying) process for practical purposes. In this
limit, all currents, including the EP rate, should vanish.
Therefore, in this context, the ‘zero-EP rate’ limit has
been usually and practically regarded as an equivalent
condition for the reversible limit. In this work, we will
show that this conventional belief does not apply in some
limiting processes.

If we focus our discussion on heat engines working be-
tween two reservoirs at temperatures T1 and T2 (T1 >
T2), another conventional indicator for reversibility ex-
ists: that is, how close the engine efficiency is to the
Carnot efficiency ηC = 1 − T2/T1. This ideal efficiency
is attainable in a reversible process as in the well-known
Carnot engine [2]. This can be easily understood by the
following relation for the efficiency η and the total EP
per engine cycle ΔS [3]:

ηC − η =
T2ΔS

Q1
, (1)

where Q1 is the amount of heat absorbed from the hotter
reservoir per engine cycle. From Eq. (1), obviously, η
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approaches ηC in the ΔS → 0 (reversible) limit. On the
other hand, for ΔS > 0 (irreversible process), η should
be lowered as much as T2ΔS/Q1. For this reason, the
limit achieving ηC has been considered to be equivalent
to the reversible limit. However, note that reversibility
may not be required in achieving ηC when Q1 → ∞.

For a steady-state engine, Eq. (1) can be written as

ηC − η =
T2Ṡ

Q̇1

, (2)

where Q̇1 and Ṡ are the steady-state rates of Q1 and
EP, respectively. In the reversible limit, Ṡ approaches
zero, and the Carnot efficiency is attained. Therefore,
the Ṡ → 0 limit has been also regarded to guarantee
the Carnot efficiency. Again, however, this may not be
correct in some limits such as Q̇1 → 0. Furthermore, the
Ṡ → 0 limit does not always guarantee reversibility in
the sense of the DB satisfiability.

This can be understood in a simple way as follows:
The EP (ΔS) during a characteristic time τ can define

the EP rate in the steady state as Ṡ = ΔS/τ . If the DB
is satisfied, ΔS for any finite time interval should van-
ish. Thus, the DB always guarantees the zero-EP rate.
However, the other way around is not always true in the
τ → ∞ (slow dynamics) limit. This limit can be quite
non-trivial such that ΔS can be finite or even weakly di-
verging (ΔS ∼ τα with 0 ≤ α < 1), still with vanishing

Ṡ. Non-zero ΔS implies a broken DB, thus irreversibility.
We study various non-trivial limits analytically through
a simple quantum-dot model and discuss the feasibility
of these limits in real experiments.

Recently, several researchers motivated by studies on
the Carnot efficiency at finite power [4–8] pointed out
that the conventional belief could be wrong by studying
explicit models violating the equivalence [3, 9, 10]. Lee
and Park [3] showed that the efficiency of the Feynman-
Smoluchowski ratchet [11,12] can approach the Carnot
bound with non-vanishing ΔS (DB violation) in a spe-
cific limit. In this ratchet model, the system should
overcome a steep hill of the periodic energy barrier with
height U to extract work. They found that ΔS ∝ lnU
and Q1 ∝ U when the system overcomes the energy
barrier once (one hopping). Therefore, in the U → ∞
limit, the Carnot efficiency is attainable from Eq. (1).
However, as it takes a typical time duration τ ∼ eU to
overcome the barrier, the EP rate vanishes as e−U lnU
(Ṡ → 0). This limit is peculiar in that positive entropy
is produced when overcoming an energy barrier, but all
currents, including the EP rate, vanish due to the ex-
ponentially slow process. As vanishing currents are also
key features in a reversible process, some confusion ex-
isted on whether this process should be classified as an
irreversible or a reversible one. To clear up the ambigu-
ity in determining the reversibility, one should examine
the DB satisfiability in the steady state; if the DB is
broken, the process cannot be reversible [13]. The DB
turns out not to hold in this limit with the zero-EP rate

Fig. 1. (Color online) Venn diagram showing relations be-
tween the three limits. Here, the reversible limit refers to a
limit process satisfying the DB condition.

and the Carnot efficiency, which clearly shows that the
conventional belief of the equivalence does not hold.

Polettini and Esposito [10] showed that the Carnot ef-
ficiency could be attained at a divergent power output in
a two-cycle model. In this limit, both Ṡ and Q̇1 diverge
while the ratio Ṡ/Q̇1 vanishes; thus, the efficiency ap-
proaches ηC by Eq. (2). This confirms that the Carnot-
efficiency limit guarantees neither zero-EP rate nor re-
versibility.

In this work, we study the relationship between Ṡ → 0,
η → ηC, and the reversibility (DB satisfiability) in a
systematic way. This is a generalization of our previous
work [3] to a general and simpler setup. The reversibility
condition, of course, guarantees the two other limits of
Ṡ → 0 and η → ηC. Then, the most general logical Venn
diagram for the three limits can be drawn as in Fig. 1,
which suggests four possible cases: (i) Region I: The EP
rate vanishes without the Carnot efficiency. (ii) Region
II: The Carnot efficiency is attained with non-vanishing
EP rate, which is negligible as compared to power. The
models studied by Polettini and Esposito [10] and also
by Holubec and Ryabov [14, 15] belong to this region.
(iii) Region III: A process is irreversible even when both

Ṡ → 0 and η → ηC are satisfied. Therefore, the ‘Carnot
efficiency at zero EP rate’ does not guarantee a reversible
process. The Feynman-Smoluchowski ratchet [3] is one
such example. A similar behavior was also observed in
other systems, such as a quantum refrigerator [9]. (iv)
Region IV: All three limits are realized simultaneously,
which corresponds to the conventional belief.

II. QUANTUM-DOT MODEL

To demonstrate our conclusion shown in Fig. 1, we
consider the thermoelectric device [16–18] illustrated in
Fig. 2. This device consists of a quantum dot in contact
with two leads or reservoirs with different temperatures
T1 and T2 and different chemical potentials μ1 and μ2,
respectively. Electrons can move from one reservoir to
another via the quantum dot where only a single elec-
tron can occupy a state with a sharply defined energy
E. Thus, two states of the dot, occupied and unoccu-
pied states whose energies are E and 0, respectively, are
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Fig. 2. (Color online) Schematic of the model. There are
two reservoirs or leads 1 and 2 with temperatures T1 and T2

and chemical potentials μ1 and μ2, respectively. An electron
can move from one reservoir to the other via the quantum dot,
which has a well-defined single energy level E. The transition
rate from reservoir 1 (2) to the dot is q (ε) and the reversed
rate is q̃ (ε̃).

possible.
In this study, we consider the case T1 > T2 and μ1 <

μ2 < E. The transition rate of an electron from lead
1 (2) to the dot is q (ε) and the corresponding reverse
rate is q̃ (ε̃). Then, this system can be described by the
following master equations [16,18–21]:

Ṗoc = (q + ε)Pun − (q̃ + ε̃)Poc ,

Ṗun = (q̃ + ε̃)Poc − (q + ε)Pun , (3)

where Poc and Pun are the probabilities of occupied
and unoccupied states of the quantum dot, respectively.
Here, we assume the local detailed balance conditions for
the transition rates such that

q

q̃
= e−(E−μ1)/T1 ≡ x , (4)

ε

ε̃
= e−(E−μ2)/T2 ≡ y , (5)

where we set the Boltzmann constant kB = 1 for con-
venience. For simplicity, we take the time constants for
the transition rates as q + q̃ = ε + ε̃ = 1. Then, the
steady-state solution of Eq. (3) is given by

P ss
oc =

1

2
(q + ε) = 1− P ss

un , (6)

where P ss
oc and P ss

un are steady-state probabilities of oc-
cupied and unoccupied states, respectively. Then, the
steady-state current of electrons becomes

J ss = qP ss
un − q̃P ss

oc =
1

2
(q − ε) =

x− y

2(1 + x)(1 + y)
.

(7)

We note that the DB condition for the probabilistic cur-
rent balance between the quantum dot and each lead
reads as

qP ss
un

q̃P ss
oc

=
εP ss

un

ε̃P ss
oc

= 1 ⇐⇒ x = y (DB condition) ,

(8)

with which we get J ss = 0 trivially.
As energy and matter are strongly coupled in this

model, the steady-state heat currents are given as fol-
lows:

Q̇1 = J ss(E − μ1) = −J ssT1 lnx , (9)

Q̇2 = J ss(E − μ2) = −J ssT2 ln y , (10)

where Q̇1 (Q̇2) is the heat current from lead 1 (2) to the
dot, respectively. Then, the work rate is the difference
between the two heat currents:

Ẇ = Q̇1 − Q̇2 = J ss(T2 ln y − T1 lnx) . (11)

By definition, positive Ẇ means useful work extraction
as an engine. Using Eqs. (9) and (10), we can calculate

the EP rate Ṡ and the efficiency η as

Ṡ =
Q̇2

T2
− Q̇1

T1
= J ss(lnx− ln y) , (12)

η = 1− Q̇2

Q̇1

= 1− T2 ln y

T1 lnx
. (13)

III. VARIOUS LIMIT PROCESSES

Two constraints for x and y exist: (i) From the ther-

modynamic second law, Ṡ ≥ 0 and (ii) for being an en-

gine, Ẇ ≥ 0. These two constraints are summarized as

xT1/T2 ≤ y ≤ x , (14)

and the corresponding region is shaded in Fig. 3. The
lower bound (y = xT1/T2) corresponds to Ẇ = 0 (μ1 =

μ2), η = 0, J ss > 0 and Ṡ > 0, and the upper bound
(y = x) corresponds to equilibrium with J ss = 0 and,

thus, Ṡ = Ẇ = Q̇1 = Q̇2 = 0.
We first consider a simple limit to reach the equilib-

rium line (y = x) for fixed nonzero x. This can be real-
ized by varying μ2 close to μ1+ ηC(E−μ1) with fixed E
and μ1. This is the reversible limit, where η → ηC and
Ṡ → 0 with the DB condition in Eq. (8) satisfied. In
fact, any linear or nonlinear approach to the equilibrium
line except for the origin (x = y = 0) turns out to be the
reversible limit (Region IV).

However, various limits can approach the origin, where
the energy gap E −μ1 (E −μ2) is much higher than the
thermal energy T1 (T2), respectively (see Eqs. (4) and
(5)). For example, if one approaches the origin along
the equilibrium line, the process is maintained as a re-
versible process with the Carnot efficiency (Region IV).
The other simple limit is obtained by taking the lower-
bound line (y = xT1/T2) in Fig. 3. Along this line, the
efficiency is always zero (η = 0), and the DB is al-

ways broken (x �= y). The EP rate Ṡ vanishes as one
approaches the origin because J ss vanishes faster, even
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Fig. 3. (Color online) x − y diagram. The shaded area is
the region satisfying Eq. (14). Various limits can reach the
equilibrium line (y = x) and the origin (x = y = 0).

though ln(x/y) diverges in Eq. (12). Here, we define τ
as an average duration for one-electron transfer. Then,
the average EP per one-electron transfer (defined as an
engine cycle) can be defined as

ΔS ≡ Ṡτ = Ṡ/J ss = ln(x/y) , (15)

which is nonzero and in fact diverges in this limit. This
is in sharp contrast to the former case (equilibrium line),
where ΔS = ln(x/y) = 0 due to the DB. Thus, the latter
case should be regarded as irreversible and belongs to
Region I.

These two boundary limits are not useful, though,
because the extracted power is always zero along the
boundaries (Ẇ = 0). We consider other limits approach-
ing the origin in between the two boundaries. The sim-
plest one is a linear limit along the y = ax line with
0 < a < 1, as illustrated in Fig. 3. This can be achieved
by tuning both energy gaps appropriately with fixed
temperatures. In this limit, one can see easily from
Eqs. (7), (11), (12), and (13) that J ss → 0, Ẇ → 0,

Ṡ → 0, and η → ηC. With the zero-EP rate and the
Carnot efficiency, this limit might be considered as a re-
versible limit. Surprisingly, however, the DB conditions
in Eq. (8) is violated as

rq ≡ qP ss
un

q̃P ss
oc

=
x(x+ y + 2)

2xy + x+ y

x→0−−−→ 2

1 + a
�= 1 ,

rε ≡ εP ss
un

ε̃P ss
oc

=
y(x+ y + 2)

2xy + x+ y

x→0−−−→ 2a

1 + a
�= 1 . (16)

In Fig. 4(a), Ṡ, the normalized efficiency η̃ = η/ηC, and
the probability current ratio rε are presented as func-
tions of x when a = 0.4, T1 = 1, and T2 = 1/3. This
clearly shows an example with both the Carnot efficiency
and the zero-EP rate, but with the DB violated. This
limit belongs to Region III and should be regarded as
irreversible. The DB violation results in a finite EP per
one-electron transfer as ΔS = − ln a > 0.

Fig. 4. (Color online) Normalized efficiency η̃, the EP rate

Ṡ, and the DB ratio rε as functions of x (a) in the linear limit

(y = ax) with a = 0.4. As x → 0, we find η̃ → 1, Ṡ → 0, and
rε → 4/7. (b) Along the path y = cxT/T2 with c = 2, we find

η̃ → 0, Ṡ → 0, and rε → 0 as x → 0. The blue shaded region
indicates an anomalous behavior of the efficiency versus the
EP rate.

A more practical limit can be obtained by taking the
y = cxT1/T2 line with c > 1. This can be easily realized
in experiments by increasing E through controlling the
gate voltage connected to the quantum dot with fixed μ1

and μ2 [17]. The results are similar to the simple lower-

bound line case (c = 1) such that J ss → 0, Ẇ → 0,

Ṡ → 0, and η → 0. The probability current ratios in
this case rq → 2 and rε → 0 (broken DB); thus, this
limit belongs to Region I with diverging ΔS. Figure 4(b)
shows plots of various quantities when c = 2, T1 = 1, and
T2 = 1/3. We note an interesting anomalous behavior
in that ‘the larger the irreversibility is, the higher the
efficiency (or higher power) is’. Usually, the efficiency
or power decreases as the EP rate increases. However,
in the blue shaded region of Fig. 4(b), we can see the
opposite behavior, which was also reported previously in
the Feynman-Smoluchowski ratchet [3]. For a general

path limit with y ∼ xα, we find that J ss → 0, Ẇ → 0,
Ṡ → 0, and η → 1− (1− ηC)α with rq → 2, rε → 0, and
ΔS → ∞, which belongs to Region I.

The mechanism of this abnormal behavior is as fol-
lows: As mentioned before, the EP rate can be factor-
ized into two terms: J ss and ΔS, that is, Ṡ = J ssΔS
from Eq. (15). With the DB satisfied, the EP is always

zero by definition (ΔS = 0); thus Ṡ = 0, which is the
usual reversible limit. However, one can reach the zero-
EP rate with the DB violated (ΔS �= 0) when the engine
is operated so slowly that J ss vanishes in some limits.
This case generally belongs to Region I.

In some special cases, the efficiency may also reach
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the Carnot efficiency when the EP rate vanishes signifi-
cantly faster than the heat absorption rate, Ṡ � Q̇1/T2

(see Eq. (2)). This case belongs to Region III and was
found in the linear limit of the quantum-dot model with
non-zero finite ΔS and diverging Q1 ≡ Q̇1/J

ss (heat ab-
sorbed per one-electron transfer) in Eq. (9). This mech-
anism is essentially the same as what was found in a
previous work [3], where ΔS was also diverging, but
weaker (logarithmic divergence) than Q1 (linear diver-
gence), with increasing energy barrier height.

IV. CONCLUSION

In summary, we demonstrate that (i) the zero-EP rate
limit does not guarantee the ideal efficiency or reversibil-
ity and (ii) the Carnot efficiency can be approached at
zero-EP rate in an irreversible process. Using a simple
quantum-dot model, we find that such a limit can be
achieved by properly increasing the energy of the quan-
tum dot or the chemical potentials. The Ṡ → 0 and
η → ηC limit is also consistent with the recently proven
power-efficiency trade-off relations [22–24], in that the
power vanishes with the Carnot efficiency.

Finally, we add a comment about an experiment with
the quantum-dot model. The quantum-dot model was
experimentally implemented by using the setup studied
by Josefsson et al. [17]. In this experiment, the charging
energy of the quantum dot was 4.9 meV at T1 = 2 K
(corresponding thermal energy was 0.17 meV). Thus, x
can be reduced to ∼ e−4.9/0.17 ≈ 3.0 × 10−13. If we
take T2 = 1 K and a = 1/e, the normalized efficiency
η̃ becomes 0.97 with vanishing EP rate and broken DB.
Therefore, the limits considered in this work could be
accessible in the real experiments. We note that in this
setup ΔS = 1, Q1 = −T1 lnx = 58 K, Q2 = −T2 ln y =
30 K, W ≡ Q1 − Q2 = 28 K. Thus, ΔS � Q1/T2 is
satisfied.
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