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We study several sapects of the irreversible depositions of two different species of particles on a surface with
A+B—0 chemical reactions. Two types of reaction are considered in 1+ 1 dimensions. The anlaytic results are
obtained if the reation occurs only when a A (or B) particle deposits on the top of a B (or A) particle (vertical
reaction). The surface width grows like the random deposition mode! (8= 1/2) but the average height scales as
2, When the horizontal reactions occur in adition to the vertical reactions, the surface width saturates in the
long time limit and we find numerically @=1/2 and f=1/4. This model can be mapped exactly to the Edwards-

Wilkinson model with uncorrelated random desorptions.

In recent years considerable interests have developed
in a variety of growing rough surfaces. Various natural
and industrial dynamical processes lead to the formation
of rough surfaces.l'*! Crystal growth, spray painting and
coating, biological growth, vapor deposition, and electro-
plating are a few examples. However, because these are
stochastic processes involving nonequilibrium many-
body effects, the standard approaches of statistical me-
chanics are not suitable for describing the surface gro-
wth problem. It has been recognized that the deposit
has a compact structure with a well-defined density,
while its growing surface exhibits a self-affinet**! fractal
geometry and naturally evolves to a steady-state having
no characteristic time or length scale. This has led to
the development of a dynamical scaling approach(®*! for
describing growing rough surfaces. The surface of the
deposit can be described in terms of the following sca-
ling form,

w(l, t):L"f(é) L

where w is the surface width, ¢ is time and L is the late-
ral size of the deposit. The scaling fuction f(x) is defined

by

¥ x<1
flo)~ { constx>1 @

with the dynamical exponent z= /8. The study of simp-
lified numerical models aimed at underatanding the dy-
namics of growing surfaces have been done. In 1+1 di-
mensions, simulations give a=~ /1/2 and f= /1/3 for the
ballistic model’*’ and Eden model!”® By introducing
surface diffusion in the random deposition model,t*? it
has been found numerically that 8~ /1/4 and a=/1/2.

A theory of deposition processes by Edwards and Wilki-
nsont® is able to predict the values of a, § and z for
the random deposition model with surface diffusions. By
solving a linear Langevin equation in 1+ 1 dimensions,
they obtained exactly the values of the exponents a=/1/
2, f=1/4 and z2=2 which is in excellent agreement with
simulations.”®! This work was later extend by Kardar et
al.''®) who took into account the possibility of lateral gro-
wth. They showed that the values of exponents a=1/2,
p=1/3 and z=3/2 in 1+1 dimensions.

One motivation for this work is to construct models
of growing rough surface where some elementary reac-
tions may occur on the deposited surface. We study the
random deposition model on one dimensional substrate
in which particles are depositied from above onto a line
of L sites. But impinging particles are mixture of two
different species, A and B, with probabilites P, and Pg=
1—P,, respectively. On depositions, adjacent A — B pairs
react and desorb from the surface. In order to keep mo-
dels simple enough to investigate, either analytically or
numerically, we first consider the vertical reaction mo-
del.

For the vertical-reaction model, the reaction occurs
when a A (or B) particle deposits on the top of a B (or
A) particle column. Since there are no reactions possible
horizintally, the vertical reactions only affect the height
of each column independently. Without reactions, the
growing rough surface should be described by the ran-
dom deposition model. The simulation results in Figure
1 show the dependence of the surface width w on 4 at
different values of the probability P. Here the averaged
deposition height<h>is definded by the number of de-
posited particles per each sites. The heights of columns
in this case form a Poisson distribution and correspondi-
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Fig. 1. Plots of the surface width w(L, #) against the averaged
deposition height <h> for L =128. Dependence of <
h> on time ¢ is also shown in the inlet.

15] T T T
d‘"“.
Ay
> ot -
A
Vgl ]
*
{
i
OF 4
L 1 1 1 4J
0 50 100 150 200
2
| P, - Pyl ™t

Fig. 2. Scaling plot showing that data for <a>/f'? plotted
against | P,— Pgl|% for various values of P, perfectly fall
on a single curve.

ngly the surface width diverges with <2>, independent
of L. We have found that surface width diverges with
<h>, independent of L. We have found that w~ <h>for
Py=Pp=1/2 and w~ <h>'? for Py+#Ps. The depende-
nce of <h>on time ¢ is found to be <h>~\/t for P4
=Pp=1/2 and <h>~t for P, = Pg. Thus in any case the
surface width scales as w~t"? to give an exponent =1/
2. Our vertical-reaction model gives the same result as
the random deposition model, but the averaged deposi-
tion height scales as <4>~/fin the case of Py=Pz=1.2.

We also propose the following scaling form for the
average height:

<h>={"f(|Py—Psl®f) 3
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In Figure 2 we have plotted <h>/\/t against |Ps— Pp|?
for various values of P4. The curves collapse perfectly
on a single scaling function, which confirms the above
scaling form with ¥=1/2 and ¢=1/2 and ¢=2. Since
this model does not have any interactions between colu-
mns, the height of each column changes independently.
If the same (or different) kind of particle is deposited
on an existing column, its height increases (or decrease)
by unity. This is nothing but a one-dimensional random
walk. But if a particle is deposited on a bare site(subst-
rate), a new column beginss to grow; the substrate be-
haves like a mirror. So the model can be mapped into
one-dimensional random walks with a reflection boun-
dary. Using the known probability distribution of ran-
dom walks with reflected boundary conditions, for the
case of P4=Pjy (unbiased random walks), we obtain

<h>~ —i—t‘”, w~72. (5)

And for the case of P,#Pg (biased random walks)
<h>~\/2t(Pa—Pg), w~2(tP4 Ps)". (6)

These analytic results are in an excellent agreement
with the simulation result. One can also consider the
model with a particle reservoir rather than with a bare
substrate. We use a reservior of B particles as a subst-
rate and deposit. A particles from above. This model is
equivalent to the random deposition model except that
<h>~0 when P,=Pg=1/2.

Now we consider the model with the horizontal reac-
tions in addition to the vertical reactions. The impinging
particle now looks for its nearest-neighbor sites. If a dif-
ferent kind of particles is found, they react and leave
from the surface by the A + B—0 reaction. When a parti-
cle finds B particles both on the target site and the nea-
rest-neighbor sites, the horizontal reaction occurs. For
convenience, we use a B particle reservior as a substrate
and then deposit particle A with the probability P4. The
simulation results in Figure 3 show the dependence of
the surface width w(L, t) on time ¢, defined by t=N/L
where N is the total number of impinging particles. The
nearest neighbor interactions invoked by the horizontal
reactions tend to smooth out the surface. In the short
time region(1< <L), w(L, t) varies with ¢ as the surface.
In the short time region (1<K¢<KL), w(l, ) varies with
t as

w(l, t)y~th )

The slopes from the curves in Figure 3 give =1/2 for
P,=0 and p=1/4 for nonzero P,. Even for very small
value of Py, the exponent 8 is found to be 1/4 as shown
in the inlet of Figure 3. In the long time limit, the surface
width begins to saturate to a constant value w(L, «) un-
like the vertical reaction model. The dependence of w(l,
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Fig. 3. Time dependence of the surface width w(L, £) for L=
1024. The case of P,=0.01 in the inlet.
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Fig. 4. Size dependence of the saturated surface width w(oo,
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) on L is shown in a log-log plot in Figure 4. The strai-
ght line through the data points indicates that the satu-
rated surface width varies as

w(l, w0)~Le, ®)

where we estimate the slope of the line, a=0.505+
0.002.

The scaling results of Egs. (7) and (8) suggest us to
fit the data into the well-known dynamical scaling form,
Eq. (). In Figure 5, we have plotted w/L"? against #/L>
for various values of L at P,=0.5. The data collapse on
a single scaling function almost perfectly.

The above scaling results indicate that our nearest-
neighor reaction models (including both vertical and ho-
rizontal reactions) at nonzero P, may belong to the same
universality class as the Edwards-Wilkinson (EW) model,
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Fig. 5. Scaling plot of w/LY2 against t/L? for various system
sizes.
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Fig. 6. (a) Mapping to the EW model at Py=1. (b) Mapping
to the EW model with random desorptions for nonzero
Py,

which is the random deposition model with diffusion
process (a=1/2 and f=1/4). Actually at P4=1, our mo-
del can be mapped exactly to the EW model as shown
in Figure 6(a). By turning upside down of a surface con-
figuration of our model, we can get a corresponding sur-
face configuration of the EW model. A vertical reaction
corresponds to a deposition of a particle without diffu-
sion and a horizontal reaction to a surface diffusion of
a particle into a lower site in the EW model. For nonzero
Pg, our model is equivalent to the EW model with uncor-
related random desorption processes. A deposition of
a B particle on a B-particle reservoir corresponds to a
desorption of a particle in the EW model. Qur simulation
results imply that the uncorrelated random desorption
processes in the EW model are irrelevant on the scaling
behavior of the rough surface. A trivial limit of our mo-
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del is obtained at P, =0, which is the pure random depo-
sition model with f=1/2 and no saturation occurs.

In summary we have studied the surface deposition
model with the reactions between two different species
of particles. The model with the vertical reactions only
exhibits the same critical behavior as the random depo-
sition model but the average height scales differently
when P,=Pz=1/2. The model with the horizontal and
vertical reactions is found to belong to the same univer-
sality class of the EW model with the random deposition
process. Extended versions of the present model, for
example, with the ballistic depositions or the random
depositions with the correlated desorptions are now un-
der investigation. These results will be reported else-
where.

This work was supported in part by the BSRI, Minis-
try of Education, Korea, and by the Korea Science and
Engineering Foundation through the Center for Ther-
mal and Statistical Physics at Korea University, and by
the Korea Research Center Theoretical Physics and
Chemistry.

REFERENCES

[1] T. R. Thomas, Rough Surfaces (.ongman, London, 1982).

[2] Dynamics of Fractal Suragces, edited by F. Family and
T. Vicsek (World Scientific, Singapore, 1991).

[3] F. Family and T. Vicsek, J. Phys. A18, L75 (1985).

{4] B. B. Mandelbort, The Fractal Gemetry of Nature (Free-
man, San Francisco, 1982).

(5] F. Family, in Universalities in Condensed Matter Physics,
edited by R. Jullien, L. Peliti, R. Rammal and N. Boccara
(Springer, Berlin, 1988).

[6] P. Meakin, P. Ramamlai, L. M. Sander and R. C. Ball,
Phys. Rev. A34, 5081 (1986).

[7] R. Jullien and R. Botet, J. Phys. A18, 2279 (1985).

[8] P. Meakin, R. Jullien and R. Botet, Europhys. Lett. 1, 609
(1986).

[9] S. F. Edwards and D. R. Wilkinson, Proc. Roy. Soc. Lond.
A17, 381 (1982).

[10] M. Kardar, G. Parisi and Y. C. Zhang, Phys. Rev. Lett
56, 889 (1986).



