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Anomalous Binder Cumulant and Lack of Self-Averageness
in Systems with Quenched Disorder
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The Binder cumulant (BC) has been widely used for locating the phase transition point accurately
in systems with thermal noise. In systems with quenched disorder, the BC may show subtle finite-
size effects due to large sample-to-sample fluctuations. We study the globally coupled Kuramoto
model of interacting limit-cycle oscillators with random natural frequencies and find an anomalous
dip in the BC near the transition. We show that the dip is related to non-self-averageness of
the order parameter at the transition. Alternative definitions of the BC, which do not show any
anomalous behavior regardless of the existence of non-self-averageness, are proposed.
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I. INTRODUCTION

The characterization of phase transitions relies mainly
on the singularity structure of physical quantities at the
transition, which can be quantified by critical exponent
values. In numerical efforts, the accuracy of the esti-
mated exponents heavily depends on the precision of lo-
cating the phase transition point. In the case of most
thermal systems, the Binder cumulant (BC) is widely
believed to provide one of the most accurate tools for
estimating the transition point [1–3]. The critical BC
value at the transition is also believed to be universal,
even though there is still controversy over its universality
[4].

In some complex systems [5], the BC shows an anoma-
lous negative dip in finite systems, which represents a
rugged landscape (multi-peak structure) in the probabil-
ity distribution function (PDF) of the order parameter.
Great care is required in analyzing numerical data to see
whether the dip will vanish in the thermodynamic limit.
If it does, the negative dips in the finite systems can be
attributed to long-living metastable states. Otherwise, a
nonvanishing negative dip usually implies that the tran-
sition is not continuous, but is of the first order.
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In systems with quenched disorder, the disorder fluc-
tuation may also generate an anomalous negative dip in
the conventional BC, which is defined as the ratio of the
disorder-averaged moments of the order parameter. In
this case, the negative dip may be related to the non-self-
averageness (NSA) of the order parameter, which usually
implies an extended and/or multi-peak structure in the
disorder-averaged PDF [6].

We consider a typical nonequilibrium dynamical sys-
tem with quenched disorder, such as the Kuramoto
model of interacting limit-cycle oscillators with random
natural frequencies [7]. The dynamic synchronization
transition is dominated by space-time fluctuations of the
order parameter. The quenched disorder is, by defini-
tion, perfectly correlated in the time direction, so it may
generate strong disorder fluctuations similar to quantum
systems with random defects [8]. In fact, we recently
showed that the disorder fluctuation was anomalously
strong near the synchronization transition [9,10].

We take the globally coupled Kuramoto model, which
can be solved analytically to some extent. The model is
defined by the set of equations of motion

dϕi

dt
= ωi − K

N

N∑

j=1

sin(ϕi − ϕj), (1)

where ϕi represents the phase of the ith limit-cycle os-
cillator (i = 1, 2, · · · , N). The first term ωi on the right-
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hand side denotes the natural frequency of the ith oscil-
lator, where ωi is assumed to be randomly distributed ac-
cording to the Gaussian distribution function g(ω) char-
acterized by the correlation 〈ωiωj〉 = 2σδij and zero
mean (〈ωi〉 = 0).

We note that the natural frequency ωi plays the role
of “quenched disorder”. The second term of Eq. (1) rep-
resents global (all-to-all) coupling with equal coupling
strength K/N . The sine coupling form is the most gen-
eral representation of the coupling in the lowest order
of the complex Ginzburg-Landau (CGL) description [7],
and its periodic nature is generic in limit-cycle oscilla-
tor systems. We consider the ferromagnetic coupling
(K > 0), so the neighboring oscillators favor their phase
difference being minimized. The scattered natural fre-
quencies and the coupling of the oscillators compete with
each other. When the coupling becomes strong enough
to overcome the dispersion of natural frequencies, macro-
scopic regions in which the oscillators are synchronized
by sharing a coupling-modified common frequency Ω = 0
may emerge.

Collective phase synchronization is conveniently de-
scribed by the complex order parameter defined by

∆eiθ ≡ 1
N

N∑

j=1

eiϕj , (2)

where the amplitude ∆ measures the phase synchroniza-
tion and θ indicates the average phase. When the cou-
pling is weak, each oscillator tends to evolve with its own
natural frequency, resulting in the fully random desyn-
chronized phase (∆ = 0). As the coupling increases,
some oscillators with ωi ≈ 0 become synchronized, and
their phases φi start to show some ordering (∆ > 0).

Eq. (1) can be simplified to N decoupled equations

dϕi

dt
= ωi −K∆sin(ϕi − θ), (3)

where ∆ and θ are to be determined by imposing self-
consistency. In the steady state (t → ∞), the self-
consistency equation reads

∆ = a(K∆)− b(K∆)3 +O(K∆)5 (4)

with a = (π/2)g(0) and c = −(π/16)g′′(0) [7]. This
equation has a nontrivial solution only when K > Kc =
1/a:

∆ ∼ (K −Kc)β (5)

with β = 1/2. We note that the exponent β = 1/2
corresponds to the mean field (MF) value for systems of
locally coupled oscillators [7].

Now, we perform numerical integrations of Eq. (1)
by using Heun’s method [11] for various system sizes of
N = 200 to 12800. For a given distribution of disorder
{ωi}, we average over time in the steady state after some
transient time. After the time average, we also average
over disorder. Typically, we take the time step δt = 0.05,
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Fig. 1. Phase synchronization order parameter ∆ versus
the coupling strength K for various system sizes N .

the maximum number of time steps Nt = 4×104, and the
number of samples Ns = 100 ∼ 1000. For convenience,
we set 2σ = 1 (unit variance); then, the corresponding
critical parameter value is Kc =

√
8/π = 1.595769 · · ·.

Figure 1 shows the behavior of the phase synchroniza-
tion order parameter ∆ against the coupling strength K
for various system sizes N . In the weak coupling region
(K . 1.6), we find that the order parameter approaches
zero as ∆ ∼ N−1/2, which is a characteristic of the fully
random phase. In the strong coupling region (K & 1.6),
∆ saturates to a finite value, indicating a phase transi-
tion at K ≈ 1.6 in the thermodynamic limit (N → ∞),
which is consistent with the analytic result.

To pin down the transition point Kc precisely, we use
the Binder cumulant method [1, 2]. The fourth-order
cumulant of the order parameter, the Binder cumulant
(BC), is defined in thermal systems as

B∆ = 1− 〈∆4〉
3〈∆2〉2 , (6)

where 〈· · ·〉 represents the thermal (time) average. In
systems with quenched disorder, on the other hand, we
should consider the disorder average besides the ther-
mal one. We may first consider the BC as the disorder-
averaged moment ratio [3,6,12]

B
(1)
∆ = 1− [〈∆4〉]

3[〈∆2〉]2 , (7)

where [· · ·] denotes the disorder average, i.e., the average
over different realizations of {ωi}.

Figure 2 displays B
(1)
∆ as a function of the coupling

strength K for various system sizes N . In the region
of weak coupling (K → 0), we expect the random na-
ture of the oscillator phases {φi} to yield an asymmet-
ric Poisson-like probability distribution function (PDF)
characterized by P (∆) ∼ ∆exp(−c∆2) with a constant
c, which leads to B

(1)
∆ = 1/3. On the other hand, in

the strong-coupling region, the PDF becomes a δ-like
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Fig. 2. Binder cumulant B
(1)
∆ , defined by Eq. (7), of the

phase synchronization order parameter ∆.

function with a very narrow variance, which leads to
B

(1)
∆ = 2/3. The numerical data in Figure 2 are con-

sistent with our predictions.
However, near the transition, the B

(1)
∆ shows a big

anomalous “dip” on the desynchronized side. As the
system size increases, the dip develops initially with a
broad width and then becomes sharper and also deeper.
The dip’s position moves toward the transition point.
The crossing points seem to nicely converge to the critical
point Kc =

√
8/π. However, as the system size increases,

the presence of the dip starts to hinder us in locating the
critical point accurately.

In this Letter, we explain why the dip develops in this
system and propose alternative definitions of the Binder
cumulant that do not show any dip in the same system.
We measure the disorder (sample-to-sample) fluctuations
defined as

AO =
[〈O〉2]
[〈O〉]2 − 1, (8)

where O is any observable, such as ∆ and ∆2, in a sys-
tem. This quantity is positive definite and is supposed
to vanish in the thermodynamic limit in self-averaging
systems and to remain finite in non-self-averaging sys-
tems [12, 13]. As one can see in Figure 3, the disorder
fluctuation A∆2 is quite sizable in the range of K where
the dip appears (A∆ shows a similar behavior). In other
words, the B

(1)
∆ shows a dip where the system is not well

self-averaged. A careful finite-size analysis on A∆2 re-
veals that it vanishes as ∼ N−1 away from criticality,
but saturates to a finite value at criticality. The non-
self-averageness at criticality is not surprising because
the quenched randomness in natural frequencies should
be relevant at this transition.

Strong disorder fluctuations may cause non-negligible
spreading of the effective coupling constants over dif-
ferent realizations of disorder [13]. Figure 4 shows for
20 independent samples, the PDF of ∆ just below the
transition and obtained from the time series of ∆ af-
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Fig. 3. Disorder fluctuation A∆2 defined by Eq. (8).
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Fig. 4. Probability distribution function (PDF) at K = 1.5
and N = 12800 in the steady state. Each curve corresponds
to one of 20 independent samples.

ter the system had reached the steady state. Indeed,
a large part of the sample-to-sample variations can be
interpreted as a shift in the Kc of individual samples.
The two quantities [〈∆2〉] and [〈∆4〉] in Eq. (7) can
be considered as the second and the fourth moments of
the disorder-averaged PDF, which is much broader than
the individual PDFs near the transition. One can easily
see that broadening yields a larger value for the ratio
[〈∆4〉]/[〈∆2〉]2 and, hence, a smaller BC. The effect is
particularly pronounced on the small K side of the tran-
sition, where ∆ itself is small, in which case a shift in Kc

has a stronger influence on the moments.
An alternative definition for the Binder cumulant

for systems with quenched disorder (especially non-
diminishing disorder fluctuations) is [8,14]

B
(2)
∆ = 1−

[
〈∆4〉

3〈∆2〉2
]
. (9)

We note that the disorder average is performed over the
ratio of the time-averaged moments. The moment ratio
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Fig. 5. Binder cumulant B
(2)
∆ defined by Eq. (9). Note

that the dip shown in B
(1)
∆ disappears.
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Fig. 6. Binder cumulant B
(3)
∆ defined by Eq. (10).

is calculated for each sample first and, is then averaged
over disorder. It is clear that this definition of the Binder
cumulant should eliminate the most dominant contribu-
tion from the disorder fluctuations, i.e., the anomaly
caused by the spreading of the effective coupling con-
stants. This definition has been adopted mostly in quan-
tum disorder systems, where strong disorder fluctuations
are anticipated [8]. Figure 5 displays B

(2)
∆ versus K. We

note that the dip shown in Figure 2 disappears and that
the crossing points nicely converge to Kc, implying that
B

(2)
∆ should serve better for locating the transition point

than the conventional one, which is confirmed numeri-
cally (not shown here).

Yet another definition of the Binder cumulant is

B
(3)
∆ = 1− [〈∆4〉]

3[〈∆2〉2] . (10)

We expect that B
(3)
∆ may also behave smoothly near the

transition because it does not involve disorder fluctua-
tion terms such as [· · ·]2 included in B

(1)
∆ . Figure 6 dis-

plays B
(3)
∆ versus K. As expected, we find no anomalous

behavior in B
(3)
∆ . We can directly relate B

(1)
∆ and B

(3)
∆

through the disorder fluctuation A∆2 . Simple algebra
leads to

B
(1)
∆ = B

(3)
∆ − (1−B

(3)
∆ )A∆2 . (11)

As the disorder fluctuation A∆2 becomes larger, B
(1)
∆

shows a bigger dip. This explains quantitatively the
size and the location of the dip in B

(1)
∆ . The critical

value of B
(3)
∆ (≈ 2/3) provides additional information

on the temporal variations of ∆. One can show that
3B

(3)
∆ = 2−[〈δ∆2〉]/[〈∆2〉2], where 〈δ∆2〉 = 〈∆4〉−〈∆2〉2.

Our numerical result indicates that the relative temporal
fluctuations are almost negligible even at criticality. In
this case, B

(3)
∆ is not practically useful in locating the

transition point accurately.
In summary, we studied Binder cumulants in the

quenched disorder system. For the Kuramoto model, we
found that the conventionally defined BC shows a big
anomalous dip near the transition. This dip is shown to
be directly related to the disorder fluctuation (non-self-
averageness). Alternative definitions of the BC, which
did not show any anomalous behavior were proposed and
may be useful in locating the transition point accurately
in general systems with quenched disorder.

ACKNOWLEDGMENTS

This work was supported by research funds of Chon-
buk National University (2004) and the Korea Research
Foundation Grant (MOEHRD) (R14-2002-059-01000-0)
(HH), and by the Research Grants Council of the HK-
SAR under project 2017/03P and Hong Kong Baptist
University under project FRG/01-02/II-65 (LHT).

REFERENCES

[1] K. Binder, Z. Phys. B 43, 119 (1981); Phys. Rev. Lett
47, 693 (1981).

[2] K. Binder, in Finite-Size Scaling and Numerical Sim-
ulation of Statistical Systems, edited by V. Privman
(World Scientific, Singapore, 1990), p. 173; K. Binder
and D. W. Heermann, Monte Carlo Simulation in Statis-
tical Physics. An Introduction, 3rd ed. (Springer, Berlin,
1997).

[3] R. N. Bhatt and A. P. Young, Phys. Rev. Lett. 54, 924
(1985); Phys. Rev. B 37, 5606 (1988); N. Kawashima
and A. P. Young, Phys. Rev. B 53, R484 (1996).

[4] X. S. Chen and V. Dohm, Phys. Rev. E 70, 056136
(2004); W. Selke, Eur. Phys. J. B 51, 223 (2006).

[5] M. Acharyya, Phys. Rev. E 59, 218 (1999); G. Korniss,
P. A. Rikvold and M. A. Novotny, Phys. Rev. E 66,
056127 (2002).

[6] K. Hukushima and H. Kawamura, Phys. Rev. E 62, 3360
(2000); T. Shirakura and F. Matsubara, Phys. Rev. B 67,
100405(R) (20003).



Anomalous Binder Cumulant and Lack of· · · – Hyunsuk Hong et al. -L1889-

[7] Y. Kuramoto, in Proceedings of the International Sympo-
sium on Mathematical Problems in Theoretical Physics,
edited by H. Araki (Springer-Verlag, New York, 1975);
Y. Kuramoto, Chemical Oscillations, Waves and Turbu-
lence (Springer-Verlag, Berlin, 1984); Y. Kuramoto and
I. Nishikawa, J. Stat. Phys. 49, 569 (1987).

[8] C. Pich, A. P. Young, H. Rieger and N. Kawashima,
Phys. Rev. Lett. 81, 5916 (1998); R. Sknepnek, T. Vojta
and M. Vojta, Phys. Rev. Lett. 93, 097201 (2004).

[9] H. Hong, H. Park and M. Y. Choi, Phys. Rev. E 70,
045204(R) (2004); Phys. Rev. E 72, 036217 (2005).
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