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ABSTRACT

We study a generalized Kuramoto model in which each oscillator carries two coupled phase variables, representing a minimal swarmalator
system. Assuming perfect correlation between the intrinsic frequencies associated with each phase variable, we identify a novel dynamic mode
characterized by bounded oscillatory motion that breaks the π-reflection symmetry. This symmetry breaking enhances global coherence and
gives rise to a non-trivial mixed state, marked by distinct degrees of ordering in each variable. Numerical simulations confirm our analytic
predictions for the full phase diagram, including the nature of the transition. Our results reveal a fundamental mechanism through which
detrained (dynamic) oscillators can promote global synchronization, offering broad insights into coupled dynamical systems beyond the
classical Kuramoto paradigm.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0304615

Collective synchronization is a hallmark of many complex sys-

tems, ranging from flashing fireflies and applauding audiences

to neuronal networks and power grids. The Kuramoto model

has long served as a fundamental theoretical framework for

understanding how simple oscillators achieve synchronization

through mutual interactions. In this work, we extend this classical

paradigm by considering oscillators that possess two coupled

phase variables, providing a minimal mathematical description of

the so-called swarmalators—entities that both move and synchro-

nize. We uncover a previously unreported dynamical regime in

which oscillators exhibit bounded oscillations, leading to sponta-

neous breaking of the π-reflection symmetry of detrained oscil-

lators. This broken symmetry enhances global coherence and

gives rise to an interesting mixed state where the two phase

variables display distinct degrees of order. This mechanism

provides new insight into how coupled internal and external

degrees of freedom shape collective dynamics, with potential rele-

vance to biological swarms, active matter, and coupled electronic

oscillators.

I. INTRODUCTION

The study of coupled oscillators has long been central to under-
standing collective behavior in complex dynamical systems,1–8 with
real-world applications ranging from biological rhythms9–14 to syn-
chronization in social networks.15–17 The Kuramoto model3 and its
variants have provided deep insights into how global coherence can
emerge against intrinsic disorder.18–22 Recently, more attention has
been paid to systems that exhibit both synchronization and spatial
self-organization, such as “swarmalators.”23 A minimal extension
of the Kuramoto model for such systems considers oscillators with
two coupled variables; an internal phase and a secondary (often
spatial) variable, both evolving on a periodic domain. Interactions
between these variables lead to mutual reinforcement between spa-
tial aggregation and phase synchronization, giving rise to a variety
of long-term collective states. These include synchronized clusters,
phase waves, and mixed states characterized by strong ordering
in one variable and weak ordering in the other.24–26 However, the
mechanisms underlying such states, particularly the emergence of
mixed states, remain poorly understood. In this work, we explore a
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simplified yet physically insightful limit of the swarmalator model,
in which the intrinsic frequencies associated with the two phase
variables are perfectly correlated. This assumption retains essen-
tial features of the coupling while allowing an analytically tractable
framework.

Our most notable finding is the identification of a new dynam-
ical mode; oscillators that are not phase-locked to a fixed point but
instead exhibit bounded oscillations with zero mean velocity. Cru-
cially, these oscillators contribute to collective orderings through
interphase coupling. Using a perturbative approach, we quantify
their impact on the order parameters and show that their dynam-
ics break the π-reflection symmetry in the phase distribution. This
symmetry breaking results in a nonzero contribution from detrained
(dynamic) oscillators to the order parameter—a feature absent in
the standard Kuramoto model.3 Our findings provide deeper insight
into general coupled oscillator systems including swarmalator sys-
tems, by highlighting the critical roles of coupling asymmetry, fre-
quency correlations, and dynamic entrainment in shaping collective
behavior.

II. MODEL

We consider a system of N Kuramoto oscillators with two
phase variables. The dynamics of these variables are governed by the
coupled differential equations

ẋi = vi +
J

N

N
∑

j=1

sin(xj − xi) cos(θj − θi), (1)

θ̇i = ωi +
K

N

N
∑

j=1

sin(θj − θi) cos(xj − xi), (2)

where xi and θi are the phase variables of oscillator i (i = 1, . . . , N),
each with period 2π , accompanied by intrinsic frequencies vi and
ωi drawn randomly from given distributions. Each variable evolves
according to the Kuramoto-type dynamics, but with a coupling
strength modulated by the difference in the other variable. This
cross-modulated interaction promotes a mutual enhancement of
local synchrony of both phases for sufficiently large and positive J
and K.

By interpreting xi as the position of the ith oscillator, Eqs. (1)
and (2) effectively describe the dynamics of mobile oscillators with
the internal phase θi on a one-dimensional (1D) ring with length
2π . Phase synchrony in the xi variables corresponds to spatial aggre-
gation (swarming) of oscillators, which is enhanced by synchrony
in the internal phases. Conversely, the tendency toward phase syn-
chronization is amplified by spatial clustering of oscillators. These
mechanisms capture the hallmark behavior of swarmalator systems,
i.e., the co-emergence of spatial structure and phase coherence.

This model, initially studied in Refs. 24 and 25 and later with
thermal noise replacing quenched intrinsic frequencies,26 exhibits
several long-term states, including incoherent, phase wave, synchro-
nized, and mixed states. In this paper, we go beyond the identi-
fication of these states to investigate the underlying mechanisms
that govern the behavior of both entrained (static) and detrained

(dynamic) oscillators, as well as their distinct roles in shaping the
collective dynamics of the system.

The model studied in this work is primarily mathematical in
nature. Nevertheless, it can serve as a minimal representation of cer-
tain real systems, such as the population of calling frogs or Janus
particles navigating pseudo-one-dimensional grooves or channels.
Although this study presents a toy model for such systems, it
offers a useful framework for reproducing and elucidating various
intriguing phenomena observed in real-world settings.24

III. CORRELATED INTRINSIC FREQUENCIES

In previous studies, the intrinsic frequencies vi and ωi were
drawn independently, implying no correlation between them.
Although some degree of correlation may exist in real-world sys-
tems, such correlations are generally expected to have limited influ-
ence on the system’s collective behavior, except for transition thresh-
olds and potentially critical scalings. Here, we explore the extreme
case of perfect correlation by setting vi = ωi for all i. This sim-
plifying assumption not only allows for more tractable analytical
treatments but also provides insight into the behavior of the origi-
nal, more general model. For mathematical convenience, we assume
the intrinsic frequencies follow a symmetric Lorenzian distribution,
g(ω) = γ

π

1
ω2+γ 2 , centered at zero with width γ .

The global ordering typically measured by the standard
Kuramoto order parameter3 fails to capture the collective behavior
in this model.24–26 Instead, a more suitable order parameter is the
correlation between xi and θi, which effectively characterizes the col-
lective states. This observation naturally motivates a reformulation
of the dynamic equations in terms of new variables that explicitly
encode the correlations between position and phase. In this context,
by introducing the variables Xi = xi + θi and Yi = xi − θi, Eqs. (1)
and (2) can be rewritten as

Ẋi = 2ωi + J+S+ sin(8+ − Xi) + J−S− sin(8− − Yi), (3)

Ẏi = J−S+ sin(8+ − Xi) + J+S− sin(8− − Yi), (4)

where J± = J±K
2

and S± are the magnitudes of the complex order
parameters Z±, defined as

Z± ≡ S±ei8± =
1

N

N
∑

j=1

eiXj

(

Yj

)

. (5)

Here, S± (≥0) quantify the degree of coherence in the X and Y vari-
ables, respectively, while 8± denote the corresponding mean phases.
By assuming that S± and 8± approach time-independent constants
in the long-time limit, as expected for the symmetric g(ω), we may,
without loss of generality, set 8± = 0.

As in the original model,25 we expect various long-term col-
lective states to emerge: (a) An incoherent (disordered) state with
(S+, S−) = (0, 0), (b) a phase wave state with (0, S) or (S, 0), (c) a
mixed state with (S1, S2), where S1 6= S2 and both are finite, and (d)
a synchronized (ordered) state with (S, S). Due to the introduction
of the correlation between vi and ωi, the symmetry between the X
and Y variables is explicitly broken.27 As a consequence, the inter-
nal symmetry between S+ and S−, which was present in the original
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model, is no longer preserved. In fact, the synchronized state with
(S, S) is not realizable except in special limiting cases. On the other
hand, the absence of intrinsic frequency in the Y dynamics (a conse-
quence of the perfect correlation) renders the mathematical analysis
of the system significantly more tractable.

When J− = 0 (i.e., J = K), the dynamics of X and Y become
decoupled, as seen in Eqs. (3) and (4). The X variable follows
the standard Kuramoto dynamics with intrinsic frequency 2ω
and coupling strength J+. As is well known,3 the oscillators are
divided into two distinct groups in the long-time limit; entrained
(static) oscillators, which settle into fixed points with Ẋi = 0 and
detrained (dynamic) oscillators, which circulate incessantly with
a nonzero mean velocity. It is noteworthy that only the static
oscillators contribute to the order parameter S+. In contrast, the
Y variable, having zero intrinsic frequency, evolves according to
the Watanabe–Strogatz (WS) dynamics.28 In this case, for any
J+ > 0, all oscillators become static and thus contribute fully to
the order parameter S−. The long-time behavior of the order
parameters is then given as follows: (S+, S−) = (0, 0) for J+ < 0
(incoherent), (0, 1) for 0 < J+ < 4γ (phase wave), and (S, 1) with
S =

√
1 − 4γ /J+ for J+ > 4γ (mixed). Thus, the system exhibits a

discontinuous jump in S− from 0 to 1 at J+ = 0, and a continuous
transition in S+ at J+ = 4γ .

When J− 6= 0 (i.e., J 6= K), on the other hand, the dynamics of
X and Y are coupled, leading to a nontrivial interplay between the
orderings in the X and Y variables. We note that the system retains
a symmetry under the transformation of J− → −J− and, therefore,
restrict our analysis to the case of J− ≥ 0, from now on, without loss
of generality.

Let us first consider the S+ = 0 solution. In this case, the Y
dynamics is unaffected by X, even when J− 6= 0, resulting in S− = 1
with Yi = 8− for J+ > 0, and S− = 0 for J+ < 0. The X dynamics
then simplifies to Ẋi = 2ωi, leading to S+ = 0 for all values of J+,
thus ensuring the self-consistency of the solution. As usual, the (0, 1)
solution for J+ > 0 is expected to lose stability against solutions with
nonzero S+ as J+ increases further beyond a certain threshold. In
that regime, the Y dynamics becomes influenced by the X variable
through the emergence of nonzero S+ [see Eq. (4)], which in turn
reduces the Y ordering (S− < 1). This reduction feeds back into
the X dynamics, further altering S+, and the cycle continues. This
mutual feedback eventually settles into a new steady state character-
ized by S+ > 0 and S− < 1. As J− increases, the coupling between
X and Y strengthens, further disrupting the ordering in X. Accord-
ingly, the onset of nonzero S+ is delayed compared to the J− = 0
case. This overall qualitative picture is consistent with the phase
diagram shown in Fig. 1, which will be analytically derived and
numerically confirmed later.

Most interestingly, for finite S+, the Y variable may exhibit
a new type of dynamic behavior, neither static (i.e., fixed point)
nor fully dynamic with nonzero mean velocity. For small S+, the
solution of Eq. (4) would involve a weak periodic modulation in
time, induced by the X dynamics, around the mean phase angle 8−
[see Eqs. (S36), (S46), and (S50) in the supplementary material]. This
time-dependent modulation persists even in the long-time limit,
particularly for oscillators with sufficiently large ωi, where Xi con-
tinues to evolve with a finite mean velocity. These oscillators are
not static in the usual sense with respect to the Y variable, since

FIG. 1. Phase diagram in the (J−, J+) plane for γ = 1. Purple and red circles
represent numerical results from simulations, while solid lines indicate theoretical
predictions. The red curve corresponds to the hyperbolic transition line given by
Eq. (13).

they do not converge to a fixed point, but their mean phase veloc-
ity vanishes, as Yi does not circulate but instead undergoes bounded
oscillations around 8−. This type of bounded dynamic motion leads
to a reduction in the Y ordering (S− < 1). However, the effect on the
X ordering is more subtle and nontrivial, as it feeds back through
the coupling and alters the collective dynamics in a more intricate
manner.

IV. ANALYTIC RESULTS

To investigate the influence of this new dynamic mode on the
order parameters, we employ a perturbation approach, treating S+ as
a small parameter near the transition. As a first step, we decompose
the contributions to the order parameters into two components,
arising from static and dynamic oscillators, respectively. For con-
venience, the newly identified dynamical mode, characterized by
bounded oscillations, is included in the dynamic contribution. This
decomposition is expressed as

S± = Ss
± + Sd

± =
1

N

∑

j∈3s

eiXj(Yj) +
1

N

∑

j∈3d

eiXj(Yj), (6)

where 3s and 3d denote the sets of static and dynamic oscillators,
respectively. Static oscillators, characterized by a stable fixed point
(Ẋi = 0 and Ẏi = 0), are described by

Xi = sin−1

(

ωi

aS+

)

, and Yi = − sin−1

(

ωi

bS−

)

, (7)

Chaos 35, 121101 (2025); doi: 10.1063/5.0304615 35, 121101-3

Published under an exclusive license by AIP Publishing

 01 D
ecem

ber 2025 23:40:07

https://pubs.aip.org/aip/cha
https://doi.org/10.60893/figshare.cha.c.8140076


Chaos ARTICLE pubs.aip.org/aip/cha

with a = J2+−J2−
2J+

and b = J2+−J2−
2J−

, and the sin−1 function is restricted

to the first quadrant [0, π/2]. This fixed-point solution exists only
when both conditions, |ωi/a| ≤ S+ and |ωi/b| ≤ S−, are satis-
fied. Moreover, a stability analysis requires a, b > 0, i.e., J+ > J−
(supplementary material). Since we expect aS+ ≤ bS− in the small
S+ regime (with S− . 1), the constraint for the existence of fixed
point solutions simplifies to |ωi| ≤ aS+. In the limit N → ∞, the
static contribution to the X ordering is given by29

Ss
+ =

∫ aS+

−aS+
ei sin−1[ω/(aS+)]g(ω)dω

=
γ

aS+





√

1 +
(

aS+

γ

)2

− 1





=
1

2

(

aS+

γ

)

−
1

8

(

aS+

γ

)3

+ O
(

S5
+
)

, (8)

where we used g(ω) = γ

π

1
ω2+γ 2 . As expected, the imaginary part van-

ishes. A similar expression for Ss
− can be derived as Ss

− = 2
π

(

aS+
γ

)

+ O(S3
+) [see Eq. (S93) in the supplementary material].

To calculate the contribution from dynamic oscillators, Sd
+,

we consider the average probability distribution Pd
ω(X) for a given

intrinsic frequency ω in the long-time limit. This leads to the
following expression:

Sd
+ =

∫

|ω|>aS+
dωg(ω)

∫ π

−π

dXeiXPd
ω(X). (9)

Deriving the exact form of Pd
ω(X) is generally intractable. However,

in the small-S+ limit, a perturbative expansion becomes possible. In
this regime, S− remains close to unity, so we set S+ = ε with ε � 1
and approximate S− ≈ 1 − d1ε − d2ε

2, with constants d1 and d2 to
be determined. Expanding all relevant terms up to O(ε2), we derive
an analytical expression for Pd

ω(X), which is rather complicated (see
the supplementary material for the explicit expression).

A key feature of Pd
ω(X), arising from the coupling with the Y

variable, is the breaking of the π-reflection symmetry,

Pd
ω(X) 6= Pd

ω(π − X), (10)

indicating that Pd
ω(X) is not purely a function of sin(X), but also

contains cos(X)-like components [see Eqs. (S59) and (S52) in the
supplementary material). These cosine-like terms originate from
the influence of the new dynamic mode of Y variables, mediated
by the coupling term when J− 6= 0. In contrast, this symmetry is
preserved in the standard Kuramoto model resulting in a vanish-
ing real part of the dynamic contribution to the order parame-
ter in Eq. (9);

∫ π

−π
dX cos(X)Pd

ω(X) = 0. In our case, however, the
symmetry breaking leads to a nonzero real contribution to the
order parameter. This symmetry breaking is primarily exhibited
by slightly detrained oscillators (see the supplementary material).
The numerical evidence of the π-reflection symmetry breaking

FIG. 2. The π -reflection symmetry breaking of the average probability distri-
bution function Pd

ω(X) for a detrained (dynamic) oscillator. The data (red open
circles) are obtained from numerical simulations with N = 819, 200, using the
parameters J = 9, K = 3, and ω = 4.37 (>aS+), showing excellent agree-
ment with the theoretical prediction (black solid line) given by Eq. (S59) in the
supplementary material. For comparison, the same data are replotted with respect
toπ − X (green open circles and orange line), clearly demonstrating the breaking
of the π -reflection symmetry: Pd

ω(X) 6= Pd

ω(π − X). The inset shows the corre-
sponding results for J = K = 5 (J− = 0), where the π -reflection symmetry is
preserved.

[Eq. (10)] is presented in Fig. 2 for a typical detrained (dynamic)
oscillator with ω > aS+.

After a lengthy calculation (supplementary material), we obtain

Sd
+ ≈ c1S+ − c2S

2
+, (11)

with non-negative coefficients given by c1 = J2−
2J+(J++2γ )

and

c2 = 4aJ2−
3πγ J2+

. This result clearly demonstrates that the ordering is

enhanced by dynamic oscillators, at least within the small-S+ regime.
Combining the contributions from both static and dynamic oscilla-
tors, we arrive at the following self-consistent equation as

S+ =
(

a

2γ
+ c1

)

S+ − c2S
2
+ + O

(

S3
+
)

. (12)

This equation always admits the trivial solution S+ = 0 and a
nontrivial solution emerges when the linear coefficient satisfies
a

2γ
+ c1 − 1 > 0. The nontrivial solution is always stable against the

trivial one, so the transition from the (0, 1) (phase wave) to the
(S1, S2) (mixed) state occurs at the critical line given by a

2γ
+ c1

− 1 = 0, which yields the following hyperbolic transition line in the
(J−, J+) plane as

(J+−γ )2 − J2
− = (3γ )2. (13)

For comparison, in the absence of dynamic contributions (i.e.,
setting c1 = 0), the corresponding transition line is given by
(J+ − 2γ )2 − J2

− = (2γ )2. Since the actual transition line always
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lies below this reference curve, we conclude that the presence of
dynamic oscillators enhances the ordering in X, resulting in an
earlier onset of synchronization. It is noteworthy that the self-
consistent equation includes a quadratic term S2

+, which is absent in
the standard Kuramoto model. As a result, the order parameter S+
grows linearly near the transition point, characterized by the order
parameter exponent β+ = 1, in contrast to the Kuramoto model
where β = 1/2.

The order parameter S−, associated with the Y variable, can
be evaluated in a similar manner (supplementary material) and is
given by

S− = Ss
− + Sd

− = 1 −
c1

2
S2

+ + O
(

S3
+
)

, (14)

where the linear terms from static and dynamic contributions cancel
out exactly. As S− begins to deviate from 1 (perfect ordering) due to
the onset of a nonzero S+, the corresponding transition occurs along
the same transition line given by Eq. (13). The reduction in S− is pro-
portional to S2

+, corresponding to d1 = 0 and d2 = c1
2

, which implies
a quadratic decay near the transition with the exponent β− = 2.

We note that the nature of the transition depends on the char-
acteristics of the frequency distribution g(ω), as in the conventional
Kuramoto model. As long as the distribution is symmetric and

FIG. 3. The order parameters S± are plotted as functions of J+ for J− = 4 and
γ = 1. Open red circles and green squares represent numerical data for S+ and
S−, respectively, in excellent agreement with analytical predictions, including tran-
sition points and their nature. The order parameter S− exhibits a discontinuous
jump from 0 to 1 at J+ = 0 and remains nearly constant at 1 thereafter, except for
a slight dip beginning around J+ = 6 (see upper inset). At this point, S+ begins
to grow continuously. Both S+ and S− approach 1 asymptotically as J+ → ∞,
without crossing. The solid purple line corresponds to the prediction obtained by
neglecting dynamic contributions, which clearly deviates from the numerical data.
For comparison, the lower inset shows the results for the case with J− = 0. Ver-
tical lines indicate the boundaries between different regimes: (0, 0), (0, 1), and
(S1, S2).

unimodal, such as the Gaussian or Lorentzian forms considered in
this study, the transition nature is expected to be universal.

V. NUMERICAL SIMULATIONS

We perform numerical simulations to support the analytic
results. The self-consistent equations, Eqs. (3) and (4), are integrated
iteratively, using the order parameters defined by Eq. (5). The sys-
tem is initialized with random phase values, and time integration
is carried out using Heun’s method30 for Mt = 105 time steps with
a discrete interval dt = 0.01. To ensure the system reaches a steady
state, the first half of the simulation (Mt/2) is discarded, and the
order parameters S± are computed by averaging over the remaining
time steps. The total number of oscillators is set to N = 105, and we
use γ = 1.

Figure 3 shows the behavior of S± as a function of J+ for a fixed
value of J− = 4. The analytic results predict an abrupt transition
from the (0, 0) state to the (0, 1) state at J+ = 0, followed by a con-

tinuous transition to the (S1, S2) state at J+ = γ +
√

J2
− + (3γ )2 = 6

[see Eq. (13)]. These predictions are in excellent agreement with
numerical results. Furthermore, the critical behaviors of the order
parameters, characterized by the exponents β+ = 1 and β− = 2,
are also confirmed numerically (see Fig. S2 in the supplementary
material). Importantly, neglecting the contribution from dynamic
oscillators leads to incorrect threshold and exponent values [see
Eq. (S30) in the supplementary material], as indicated by the pur-
ple line in Fig. 3. In the special case J− = 0, dynamic contributions
vanish and the purple line agrees with numerical data, yielding the
expected exponent β+ = 1/2, as illustrated in the inset of Fig. 3.

VI. CONCLUSION

We investigated a population of Kuramoto oscillators with two
coupled phase variables, representing a minimal model for more
general swarmalator systems. By assuming a perfect correlation
between the intrinsic frequencies associated with each phase vari-
able, we obtain a simplified yet analytically tractable version of the
model that retains essential physical features.

A central result of our study is the identification of a
novel dynamic mode characterized by bounded oscillations, which
induces π-reflection symmetry breaking in the dynamics of the
coupled phase. This symmetry breaking draws dynamic oscillators
into contributing positively to global ordering, thereby enhanc-
ing overall coherence and lowering the coherence threshold. As a
result, the mixed state emerges prior to the onset of the symmetric
synchronized state.

This form of π-reflection symmetry breaking is reminiscent of
the transition from apolar nematic to polar symmetry in systems
composed of non-spherical objects, such as liquid crystals,31 active
matter,32 and various biological systems. Our findings suggest that
this type of symmetry breaking through inter-variable coupling may
serve as a general mechanism for an earlier onset of ordering in
a broad class of coupled dynamical systems. Consistent with this
view, preliminary studies of the original uncorrelated model also
reveal spontaneous π-reflection symmetry breaking and the earlier
emergence of coherence in the form of mixed states, preceding the
symmetric synchronized state.
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SUPPLEMENTARY MATERIAL

See the supplementary material for additional derivations and
figures supporting this work.
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